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I In a joint work with Dmitri Panov we have proven that a
symplectic 6-manifold constructed by Tolman, having a
Hamiltonian T2-action does not have a compatible Kähler
metric. Part of the proof used Mori’s minimal model program
for projective 3-folds.

I I will discuss a recent work, in which I focused on the category
of smooth projective 3-folds. My goal was explore the
topology of complex projective 3-folds having a holomorphic
C∗-action with 6 fixed points (equivelantly b2 = 2 and finite
fixed point set), using Mori’s contraction theorem.

I In particular, I studied an invariant of the underlying
6-manifold, called the ∆-invariant. The ∆-invariant only
depends on the integral cohomology ring of the manifold.
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∆(M) ∈ Z.

I Let a, b form an integral basis of H2(M,Z), then let
a0 =

∫
M a3, a1 =

∫
M a2b, a2 =

∫
M ab2 and a3 =

∫
M b3. Then

we may associate

∆(X ) = (a0a3 − a1a2)2 − 4(a0a2 − a21)(a1a3 − a22).

I One may check that this does not depend on the choice of
integral basis, hence is a topological invariant.
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An Example (Okonek, Van-de-Ven)

I Suppose E is a rank 2 holomorphic vector bundle over CP2,
then the ∆-invariant of the associated CP1-bundle is given by
a simple formula:

∆(P(E )) = c1(E )2 − 4c2(E ).

I In particular, for the toric 3-folds Xn = P(O ⊕O(n)), the
∆-invariant is:

∆(Xn) = n2.

I These 3-folds are examples of conic bundles, i.e. 3-folds
having a morphism to an algebraic surface such that all of the
fibres are isomorphic to conics in CP2 (not neccesasarily a
topological S2-bundle) .
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First main Result

The first main result is as follows:

Theorem
There is a constant K such that any smooth projective 3-fold X
having a holomorphic C∗-action with 6-fixed points satisfies one of
the following two conditions:

1. X is a conic bundle over CP2

2. ∆(X ) < K .

I We remark that this gives a restriction on the cohomology
ring of X , since a conic bundle Y contains a non-zero class
α ∈ H2(Y ,Z), having

∫
Y α

3 = 0.

I The proof relies on the contraction theorem of Mori (which I
will state shortly), and the boundedness of of Fano 3-folds
with a certain class of (terminal) singularities.
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Mori’s contraction theorem

We will need the following Theorem of Mori:

Theorem (Mori)

Let X be a smooth projective 3-fold such that KX is not nef.
Then, there exists a projective variety Y and a morphism
φ : X → Y associated to a ray in R ⊂ H2(X ,R). A curve C is sent
to a point by φ ⇐⇒ [C ] ∈ R. Moreover one of the following
possibilities occur:

I dim(Y ) = 0 and X is a Fano 3-fold with b2(X ) = 1.

I dim(Y ) = 1 , Y is a smooth, projective curve.

I dim(Y ) = 2, Y is a smooth, projective surface, φ is a conic
bundle.

I dim(Y ) = 3, φ is birational, which is an isomorphism away
from a smooth divisor E ⊂ X . There is two cases:

1. φ(E ) is a curve. Here, Y is smooth φ is the inverse of a
blow-up in a smooth curve.

2. φ(E ) is a point. In this case, either E = CP2 or
E = CP1 × CP1. φ is called a divisorial contraction.
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Blanchard’s theorem

Due to the following theorem of Blanchard, the morphisms given
by Mori’s contraction theorem may be made C∗-equivariant.

Theorem (Blanchard)

Suppose that X is a smooth projective variety with an action of a
holomorphic torus T and φ : X → Y is a Mori extremal
contraction. Then there is an action of T on Y , making φ
equivariant.
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Let X be a smooth projective 3-fold with a C∗-action with 6 fixed
points. We note that since X is rational (BB-decomposition), KX

is not nef, hence by Mori’s contraction theorem there is an
extremal contraction φ : X → Y . We deal first with the case that
dim(Y ) < dim(X ).

I Firstly we recall that if dim(Y ) = 0 then X is a Fano 3-fold
with b2(X ) = 1. Since X has 6 fixed points, b2(X ) = 2,
hence this is impossible.

I If dim(Y ) = 1, then the fibre [F ] ∈ H2(X ,Z) satisfies
[F ]2 = 0, the existence of such an element implies that
∆(X ) = 0 (Okonek, Van-de-Ven).

I If dim(Y ) = 2, then φ is a conic bundle. By Blanchard’s
theorem the C∗-action descends to X , making φ equivariant.
Since the preimage of every fixed point in X contains at least
two fixed points, implying that X has exactly 3 fixed points.
Hence, X ∼= CP2, as required.
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Now we proceed to prove the main theorem in the case that
dim(X ) = dim(Y ). First we suppose that the extremal contraction
φ : X → Y is a blow-down to a smooth curve.
I We first note b2(X ) = 1, implying that X is a Fano 3-fold.
I There are 4 Fano 3-folds X with b2(X ) = 1 having a

C∗-action: CP3, Q the quadric 3-fold, V5 and V22 (Tolman).
I There are finitely many possibilities for smooth curve blow-ups

of V5 and V22 due to a result of Tolman which states that if
we normalise the Kähler form so that [ω] is the positive
generator of H2(X ,Z), then the range of the Hamiltonian is
precisely [−6, 6]. Hence, by the Duistermaat-Heckman
−KX .C ≤ 24 for any smooth invariant curve. Implying there
are at most 24 possibilities for the blow-up, up to
diffeomorphism.

I In the cases Q, and CP3, then all of the possibilities are
exhausted by Yn = BlCn(CP3) and a similar family of
examples in the quadric 3-fold, Y ′n = BlC ′

n
(Q). By direct

calculation we may check that

lim
n→∞

(Yn) = lim
n→∞

(Y ′n) = −∞.



Proof of main result 3: divisorial blow downs with

exceptional divisor E = CP1 × CP1

Here we may show that a smooth projective 3-fold with a
C∗-action may not have a extremal contraction with exceptional
divisor E = CP1 × CP1, using a geometric argument involving the
Bialynicki-Birula decomposition.
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Proof of main result 4: divisorial blow downs to a cyclic
quotient singularity

I In this case, we have once again that b2(X ) = 1 and X is
rational, hence X is a Fano 3-fold.

I Either E = CP2 is mapped to a smooth point or a cyclic
quotient singularity of the form C3/± 1.

I This cyclic quotient singularity is terminal, hence the relevant
class of Fano 3-folds forms a bounded family (Borisov)
(although are not classified to my knowledge).

I This in turn show that there is finitely many possibilities for Y
up to diffeomorphism, in particular the ∆-invariant is bounded
above, hence proving the main theorem.


