Symplectic Fanos and their symmetries

Dmitri Panov

July 29, 2020

Acknowledgment

Based on joint papers with Joel Fine and Nick Lindsay.

Definition. (Algebraic geometry: Fano manifolds)

A smooth complex manifold X is called *Fano* if it has a Kähler metric g satisfying: Take $\omega(u, v) = g(Ju, v)$, then $c_1(X) = [\omega] \in H^2(X, \mathbb{R})$.

Examples of Fanos: $\mathbb{C}P^n$, quadrics, Grassmanians.

Claim. In each dimension there is a finite number of families of Fanos. Manifolds from one family are symplectomorphic to each other. \Rightarrow This gives us a finite number of symplectic 2*n*-manifolds (X, ω) for each *n*.

Probabilistic Question

Fix dimension $2_{\mathbb{R}}$, $4_{\mathbb{R}}$, $6_{\mathbb{R}}$,... and pick a random Fano manifold (X, ω) . What is the probability that this manifold admits a Hamiltonian S^1 -action?

- Dimension $2_{\mathbb{R}}$. $\mathbb{C}P^1$. Probability= 1.
- Dimension $4_{\mathbb{R}}$. 10 families del Pezzo surfaces. 5 admit the action: $\mathbb{C}P^1 \times \mathbb{C}P^1$, $\mathbb{C}P^2$ blown up in ≤ 3 points. Probability=1/2.
- Dimension $6_{\mathbb{R}}$. Fano 3-folds, 105 families. 62 contain a Fano with a \mathbb{C}^* -action. Probability> 0.59.
- Dimension $8_{\mathbb{R}}$?? Fanos are not classified...

Dmitri Panov

Definition. Chern classes of a symplectic manifold (M, ω)

Choose an almost complex structure J tamed by ω : $\omega(v, Jv) > 0$ for any $v \neq 0$. The *Chern classes* of (M, ω) are the Chern classes of (TM, J).

Definition. (M, ω) is called a symplectic Fano if

 $c_1(M) = [\omega] \in H^2(M, \mathbb{R}).$

Remark. Symplectic Fanos are often called *monotone* manifolds.

Gromov: Hard vs. Soft in symplectic geometry.

Theorem (Hard: Gromov, Taubes, McDuff, Ohta-Ono)

Every closed 4-dimensional symplectic Fano is symplectomorphic to an algebraic del Pezzo surface. There exist exactly 10 such manifolds up to a symplectomorphism: $S^2 \times S^2$ and $\mathbb{C}P^2$ blown up in ≤ 8 points.

Theorem (Gompf, 1995. Divergence from algebraic geometry)

Let G be any finitely presented group. Then there exists a compact symplectic 4-manifold M^4 with $\pi_1(M^4) = G$.

Conjecture (Eliashberg. Dimension $2n \ge 6$)

Let (M^{2n}, J, h) , $n \geq 3$ be an almost complex manifold with a class $h \in H^2(M^{2n})$ such that $h^n \neq 0$. Then there is a symplectic form ω on M^{2n} such that $[\omega] = h$, and a taming $J(\omega)$ is homotopic to J.

Remark. The conjecture is completely open!

- If it holds, any closed smooth oriented 6 manifold X without 2-torsion in $H^3(X, \mathbb{Z})$ and with a 2-class h with $h^3 \neq 0$ is a symplectic Fano.
- However, no non-algebraic Symplectic Fanos are known in dim < 12.

New symplectic Fanos / symplectic domination

Theorem (Fine, P. 2010)

For any $n \ge 6$ there exist symplectic Fanos (M^{2n}, ω) of arbitrary topological complexity.

Proof. Fix n and consider the following matrix in the lie algebra so(2n, 1)

- The orbit Z_{2n} of this matrix under the action of SO(2n, 1) is symplectic.
- Claim. This orbit is a *bundle* over the hyperbolic space \mathbb{H}^{2n} . The fiber is given by all $J \in SO(2n)$, conjugate to J_{2n} : point, $\mathbb{C}P^1$, $\mathbb{C}P^3$...
- Quotient Z_{2n} by a co-compact torsion free lattice Γ in SO(2n, 1).
- For n = 1 the quotient is a hyperbolic surface. For n = 2 a 6-manifold with $c_1 = 0$, for $n \ge 3$ a symplectic Fano of dimension n(n+1).
- Z_{2n} is the *Twistor space* of \mathbb{H}^{2n} .

Theorem (Fine, P. Symplectic domination, 2019)

For any smooth orientable manifold X^{2n} there exists a symplectic one (M^{2n}, ω) that admits a map of positive degree to X^{2n} .

Proof.

Theorem (Ontaneda. Hyperbolisation)

Let X be a compact oriented manifold and $\epsilon > 0$. There exists a degree 1 map $f: N \to X$ from a compact oriented Riemannian manifold N of the same dimension, with sectional curvatures in the interval $[-1 - \epsilon, -1]$.

Theorem (Reznikov. Twistor spaces of pinched manifolds)

For a small enough $\epsilon(n) > 0$, the twistor space Z of any compact oriented Riemannian manifold N^{2n} with sectional curvatures in $[-1 - \epsilon, -1]$ has a natural integral symplectic form $\omega \in H^2(Z, \mathbb{Z})$.

Theorem (Donaldson. Symplectic hypersufaces)

Let (Z, ω) be a compact symplectic manifold with $[\omega] \in H^2(Z, \mathbb{Z})$. Then there exists a symplectic submanifold M of codimension 2, with [M] Poincaré dual to $k[\omega]$ with integer k > 0.

Dmitri Panov

Symplectic Fanos and their symmetries

Manifolds with Hamiltonian $\mathbb{T}^k\text{-symmetries}$

Theorem (Delzant, 1988)

Any symplectic manifold (M^{2n}, ω) with an effective Hamiltonian \mathbb{T}^n -action admits a compatible \mathbb{T}^n -invariant Kähler structure. I.e, it's a toric manifold.

The Hamiltonians (H_1, \ldots, H_n) of the \mathbb{T}^n -action define the moment map $M^{2n} \to \mathbb{R}^n$ and the image of this map is a *Delzant polytope*. This is a simple polytope whose edges have rational directions. At each vertex the minimal integer vectors along n incoming rays form a basis in $\mathbb{Z}^n \subset \mathbb{R}^n$.

Theorem (Karshon, 1999)

Any symplectic manifold (M^4, ω) with a Hamiltonian S^1 -action is S^1 -symplectomorphic a toric surface or a blow-up of a ruled surface.

Theorem (Tolman, McDuff, 2009)

Let (M^6, ω) be a Hamiltonian S^1 -manifold and suppose $b_2(M^6) = 1$. Then M^6 is S^1 -symplectomorphic to one of 4 Fano 3-folds: 1) $\mathbb{C}P^3$, 2) The quadric $Q^3 \subset \mathbb{C}P^3$, 3) The intersection of $G_{\mathbb{C}}(2,5)$ with a plane of codimension 3, 4) X_{22} ($-K^3 = 22$).

Dmitri Panov

Symplectic Fanos and their symmetries

July 29, 2020 8 / 12

Symplectic Fanos with S^1 -action

Conjecture. Fine, P.

Let (M, ω) be a 6-dimensional symplectic Fano manifold with a Hamiltonian S^1 -action. Then M is diffeomorphic to a complex projective Fano 3-fold.

Remark. We said diffeomorphic to be on the safe side, a stronger version would be to replace diffeomphic by S^1 -symplectomorphic a complex projective Fano with an algebraic S^1 -action.

Theorem (Lindsay, P.)

Let (M, ω) be a symplectic Fano 6-manifold with a Hamiltonian S^1 -action. Then M is symplectically birational to $\mathbb{C}P^3$. It has $\pi_1 = 0$ and has $c_1 \cdot c_2 = 24$.

Theorem (Cho)

Let (M, ω) be a 6-dimensional symplectic Fano manifold with a semi-free Hamiltonian S^1 -action. Then it has a compatible S^1 -invariant Kähler metric.

Remark. The last two results rely on Seiberg-Witten theory.

Tolman's manifold

Theorem (Tolman 1998)

There exists a symplectic 6 manifold $M_{\mathcal{T}}$ with $b_2(M_{\mathcal{T}}) = 2$ and with a family of symplectic structures $\omega_{\lambda_1,\lambda_2}$, $0 < \lambda_1 < \lambda_2$, that admits a Hamiltonian \mathbb{T}^2 -action but doesn't admit a compatible \mathbb{T}^2 -invariant Kähler form.

Questions about Tolman's manifolds open till 2019.

- 1 Does the manifold $M_{\mathcal{T}}$ have any Kähler metric?
- 2 Does $(M_{\mathcal{T}}, \omega)$ have a compatible Kähler metric?

Theorem (Goertsches, Konstantis, Zoller. 2019)

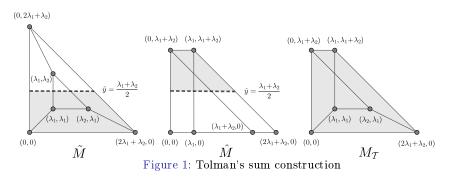
Tolman's manifold is diffeomorphic to a $\mathbb{C}P^1$ bundle over $\mathbb{C}P^2$. Furthermore $M_{\mathcal{T}}$ is a projectivisation of a rank 2 bundle E with $c_1(E) = -1$, $c_2(E) = -1$.

Theorem (Lindsay, P. 2019)

For $2\lambda_1 \geq \lambda_2$ the symplectic form $\omega_{\lambda_1,\lambda_2}$ doesn't admit a compatible Kähler metric.

Construction of Tolman's manifold

- (1) Start with two toric 3-folds \hat{M} and \tilde{M} .
- (2) \hat{M} is $\mathbb{C}P^1 \times \mathbb{C}P^2$.
- (3) \tilde{M} is the projectivisation of the bundle $\mathcal{O} \oplus \mathcal{O}(-3)$ over $\mathbb{C}P^2$.
- (4) Choose \mathbb{T}^2 -subactions and symplectic forms, so that the moment images are as on the figure $(0 < \lambda_1 < \lambda_2)$:
- (5) Glue the gray halves



Remark. If λ_1 is tiny, all three pictures look like a triangle = $\mathbb{C}P^2$!

Dmitri Panov

Symplectic Fanos and their symmetries

Idea of proof of non-Kählerness for $2\lambda_1 \geq \lambda_2$

- Localisation: $c_1^3(M_T) = 64$, $c_1(M_T)$ is divisible by 2. Ring structure on $H^*(M_T)$ in terms of classes $[\omega_{\lambda_1,\lambda_2}]$.
- Since $b_2 = 2$, if M_T is Kähler then is M_T projective.
- Apply minimal model programme. We have tree possibilities
 - (a) One can blow down $\mathbb{C}P^2$ on $M_{\mathcal{T}}$ to get a 3-Fano. But then c_1^3 increases. However 3-Fanos have $c_1^3 \leq 64$.
 - (c) $M_{\mathcal{T}}$ is a quadric fibration over $\mathbb{C}P^1$. Impossible for topological reasons.
 - (b) $M_{\mathcal{T}}$ is a $\mathbb{C}P^1$ -bundle over $\mathbb{C}P^2$.
- Analyse Kähler comes of $\mathbb{C}P^1$ -bundles over $\mathbb{C}P^2$ that are projectivisations of E with $c_1(E) = -1$, $c_2(E) = -1$.

Remark/Question

This is the first known symplectic manifold admitting a Hamiltonian S^1 -action with isolated fixed points, but without a compatible Kähler structure. **Question**. Can one always deform such an example to an algebraic one?

Remark. Tolman's manifold is almost a Fano, i.e., c_1 " \geq "0!

Dmitri Panov

- Y. Cho, Classification of six dimensional monotone symplectic manifolds admitting semifree circle actions.
- T. Delzant. Hamiltoniens périodiques et images convexes de l'application moment. Bulletin de la Société Mathématique de France, 116 (3) (1988), 315–339.
- J. Fine and D. Panov. Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle. Geometry and Topology, 14(3):1723–1764, (2010).
- J. Fine and D. Panov. Circle invariant fat bundles and symplectic Fano 6-manifolds. J. London Math. Soc. 91(3) 709–730, (2015).
- J. Fine, D. Panov. Symplectic domination, arXiv:1905.05671
- O. Goertsches, P. Konstantis, L. Zoller. GKM theory and Hamiltonian non-Kähler actions in dimension 6. arxiv 1903.11684.
- Y. Karshon. Periodic Hamiltonian flows on four dimensional manifolds. Memoirs Amer. Math. Soc. 672, 71p, (1999).
- N. Lindsay, D. Panov. S¹-invariant symplectic hypersurfaces in dimension 6 and the Fano condition. Volume 12, Issue 1, March 2019, Pages 221–285.

- D. McDuff. Some 6-dimensional Hamiltonian S^1 -manifolds. J. Topol., 2(3): 589–623, (2009).
- S. Tolman. Examples of non-Kähler Hamiltonian torus action. Invent. math 131 (2) (1998) 299–310.
- S. Tolman. A Symplectic Generalisation of Petries Conjecture. Transactions of the American Mathematical Society 362 (08): 3963–3996, 2010.