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De�nition. (Algebraic geometry: Fano manifolds)

A smooth complex manifold X is called Fano if it has a Kähler metric g
satisfying: Take ω(u, v) = g(Ju, v), then c1(X) = [ω] ∈ H2(X,R).

Examples of Fanos: CPn, quadrics, Grassmanians.

Claim. In each dimension there is a �nite number of families of Fanos.
Manifolds from one family are symplectomorphic to each other.
⇒ This gives us a �nite number of symplectic 2n-manifolds (X,ω) for each n.

Probabilistic Question

Fix dimension 2R, 4R, 6R, ... and pick a random Fano manifold (X,ω). What is
the probability that this manifold admits a Hamiltonian S1-action?

Dimension 2R. CP 1. Probability= 1.

Dimension 4R. 10 families - del Pezzo surfaces. 5 admit the action:
CP 1 × CP 1, CP 2 blown up in ≤ 3 points. Probability= 1/2.

Dimension 6R. Fano 3-folds, 105 families. 62 contain a Fano with a
C∗-action. Probability> 0.59.

Dimension 8R?? Fanos are not classi�ed...
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De�nition. Chern classes of a symplectic manifold (M,ω)

Choose an almost complex structure J tamed by ω: ω(v, Jv) > 0 for any v 6= 0.
The Chern classes of (M,ω) are the Chern classes of (TM, J).

De�nition. (M,ω) is called a symplectic Fano if

c1(M) = [ω] ∈ H2(M,R).

Remark. Symplectic Fanos are often called monotone manifolds.

Gromov: Hard vs. Soft in symplectic geometry.

Theorem (Hard: Gromov, Taubes, McDu�, Ohta-Ono)

Every closed 4-dimensional symplectic Fano is symplectomorphic to an
algebraic del Pezzo surface. There exist exactly 10 such manifolds up to a
symplectomorphism: S2 × S2 and CP 2 blown up in ≤ 8 points.
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Soft

Theorem (Gompf, 1995. Divergence from algebraic geometry)

Let G be any �nitely presented group. Then there exists a compact symplectic
4-manifold M4 with π1(M4) = G.

Conjecture (Eliashberg. Dimension 2n ≥ 6)

Let (M2n, J, h), n ≥ 3 be an almost complex manifold with a class
h ∈ H2(M2n) such that hn 6= 0. Then there is a symplectic form ω on M2n

such that [ω] = h, and a taming J(ω) is homotopic to J .

Remark. The conjecture is completely open!

If it holds, any closed smooth oriented 6 manifold X without 2-torsion in
H3(X,Z) and with a 2-class h with h3 6= 0 is a symplectic Fano.

However, no non-algebraic Symplectic Fanos are known in dim < 12.
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New symplectic Fanos / symplectic domination

Theorem (Fine, P. 2010)

For any n ≥ 6 there exist symplectic Fanos (M2n, ω) of arbitrary topological
complexity.

Proof. Fix n and consider the following matrix in the lie algebra so(2n, 1)

n = 1
(

0 -1 0
1 0 0
0 0 0

)
,n = 2

(
0 -1 0 0 0
1 0 0 0 0
0 0 0 -1 0
0 0 1 0 0
0 0 0 0 0

)
,n = 3


0 -1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 -1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 -1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

, ... ( J2n 0
0 0

)
,

J2
2n = −Id, 〈e2n+1〉 ⊥ 〈e1, . . . e2n, 〉

The orbit Z2n of this matrix under the action of SO(2n, 1) is symplectic.

Claim. This orbit is a bundle over the hyperbolic space H2n. The �ber is
given by all J ∈ SO(2n), conjugate to J2n: point, CP 1, CP 3...

Quotient Z2n by a co-compact torsion free lattice Γ in SO(2n, 1).

For n = 1 the quotient is a hyperbolic surface. For n = 2 a 6-manifold
with c1 = 0, for n ≥ 3 a symplectic Fano of dimension n(n+ 1).

Z2n is the Twistor space of H2n.
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Theorem (Fine, P. Symplectic domination, 2019)

For any smooth orientable manifold X2n there exists a symplectic one
(M2n, ω) that admits a map of positive degree to X2n.

Proof.

Theorem (Ontaneda. Hyperbolisation)

Let X be a compact oriented manifold and ε > 0. There exists a degree 1 map
f : N → X from a compact oriented Riemannian manifold N of the same
dimension, with sectional curvatures in the interval [−1− ε,−1].

Theorem (Reznikov. Twistor spaces of pinched manifolds)

For a small enough ε(n) > 0, the twistor space Z of any compact oriented
Riemannian manifold N2n with sectional curvatures in [−1− ε,−1] has a
natural integral symplectic form ω ∈ H2(Z,Z).

Theorem (Donaldson. Symplectic hypersufaces)

Let (Z, ω) be a compact symplectic manifold with [ω] ∈ H2(Z,Z). Then there
exists a symplectic submanifold M of codimension 2, with [M ] Poincaré dual
to k[ω] with integer k > 0.
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Manifolds with Hamiltonian Tk-symmetries

Theorem (Delzant, 1988)

Any symplectic manifold (M2n, ω) with an e�ective Hamiltonian Tn-action
admits a compatible Tn-invariant Kähler structure. I.e, it's a toric manifold.

The Hamiltonians (H1, . . . ,Hn) of the Tn-action de�ne the moment map
M2n → Rn and the image of this map is a Delzant polytope. This is a simple
polytope whose edges have rational directions. At each vertex the minimal
integer vectors along n incoming rays form a basis in Zn ⊂ Rn.

Theorem (Karshon, 1999)

Any symplectic manifold (M4, ω) with a Hamiltonian S1-action is
S1-symplectomorphic a toric surface or a blow-up of a ruled surface.

Theorem (Tolman, McDu�, 2009)

Let (M6, ω) be a Hamiltonian S1-manifold and suppose b2(M6) = 1. Then M6

is S1-symplectomorphic to one of 4 Fano 3-folds:
1) CP 3, 2) The quadric Q3 ⊂ CP 3, 3) The intersection of GC(2, 5) with a
plane of codimension 3, 4) X22 (−K3 = 22).
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Symplectic Fanos with S1-action

Conjecture. Fine, P.

Let (M,ω) be a 6-dimensional symplectic Fano manifold with a Hamiltonian
S1-action. Then M is di�eomorphic to a complex projective Fano 3-fold.

Remark. We said di�eomorphic to be on the safe side, a stronger version
would be to replace di�emorphic by S1-symplectomorphic a complex projective
Fano with an algebraic S1-action.

Theorem (Lindsay, P.)

Let (M,ω) be a symplectic Fano 6-manifold with a Hamiltonian S1-action.
Then M is symplectically birational to CP 3. It has π1 = 0 and has c1 · c2 = 24.

Theorem (Cho)

Let (M,ω) be a 6-dimensional symplectic Fano manifold with a semi-free
Hamiltonian S1-action. Then it has a compatible S1-invariant Kähler metric.

Remark. The last two results rely on Seiberg-Witten theory.
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Tolman's manifold

Theorem (Tolman 1998)

There exists a symplectic 6 manifold MT with b2(MT ) = 2 and with a family
of symplectic structures ωλ1,λ2

, 0 < λ1 < λ2, that admits a Hamiltonian
T2-action but doesn't admit a compatible T2-invariant Kähler form.

Questions about Tolman's manifolds open till 2019.

1 Does the manifold MT have any Kähler metric?

2 Does (MT , ω) have a compatible Kähler metric?

Theorem (Goertsches, Konstantis, Zoller. 2019)

Tolman's manifold is di�eomorphic to a CP 1 bundle over CP 2. Furthermore
MT is a projectivisation of a rank 2 bundle E with c1(E) = −1, c2(E) = −1.

Theorem (Lindsay, P. 2019)

For 2λ1 ≥ λ2 the symplectic form ωλ1,λ2
doesn't admit a compatible Kähler

metric.
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Construction of Tolman's manifold

(1) Start with two toric 3-folds M̂ and M̃ .
(2) M̂ is CP 1 × CP 2.
(3) M̃ is the projectivisation of the bundle O ⊕O(−3) over CP 2.
(4) Choose T2-subactions and symplectic forms, so that the moment images

are as on the �gure (0 < λ1 < λ2):
(5) Glue the gray halves

Figure 1: Tolman's sum construction

Remark. If λ1 is tiny, all three pictures look like a triangle = CP 2!
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Idea of proof of non-Kählerness for 2λ1 ≥ λ2

1 Localisation: c31(MT ) = 64, c1(MT ) is divisible by 2. Ring structure on
H∗(MT ) in terms of classes [ωλ1,λ2

].

2 Since b2 = 2, if MT is Kähler then is MT projective.
3 Apply minimal model programme. We have tree possibilities

(a) One can blow down CP 2 on MT to get a 3-Fano. But then c31 increases.
However 3-Fanos have c31 ≤ 64.

(c) MT is a quadric �bration over CP 1. Impossible for topological reasons.
(b) MT is a CP 1-bundle over CP 2.

4 Analyse Kähler cones of CP 1-bundles over CP 2 that are projectivisations
of E with c1(E) = −1, c2(E) = −1.

Remark/Question

This is the �rst known symplectic manifold admitting a Hamiltonian S1-action
with isolated �xed points, but without a compatible Kähler structure.
Question. Can one always deform such an example to an algebraic one?

Remark. Tolman's manifold is almost a Fano, i.e., c1” ≥ ”0!
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