Multivariable Regular Variation of measures: An overview

H.P. Scheffler, University of Siegen

Abstract: The theory of multivariate regular variation of measures is a powerful tool to analyze limit theorems of matrix-normed sums of i.i.d. random vectors on \mathbb{R}^d . The theory is based on regular variation of linear operators, which is a matrix-valued extension of the classical one-dimensional theory of regular variation.

We say that a Borel measurable function $f : \mathbb{R}^+ \to \mathrm{GL}(\mathbb{R}^d)$ varies regularly with index $-E \in \mathrm{GL}(\mathbb{R}^d)$ if

(0.1)
$$\lim_{t \to \infty} f(\lambda t) f(t)^{-1} = \lambda^{-E}$$

for all $\lambda > 0$, where $\lambda^E = \exp(E \log \lambda)$ is the matrix exponential.

Moreoever, a finite Borel measure μ on \mathbb{R}^d is called regularly varying with index $E \in \mathrm{GL}(\mathbb{R}^d)$ if there exists a regularly varying function f as in (0.1) such that

(0.2)
$$t \cdot (f(t)\mu) \to \phi$$
 vaguely for $t \to \infty$,

for a certain σ -finite measure ϕ on $\mathbb{R}^d \setminus \{0\}$. Here $(f(t)\mu)(A) = \mu(f(t)^{-1}A)$ denotes the image measure. The limit measure ϕ in (0.2) then satisfies

$$\lambda \cdot \phi = (\lambda^E \phi) \text{ for all } \lambda > 0.$$

In the talk we give an overview of some key results of the above mentioned theories.