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Abstract

Let Hv(An) and Hv(Bn) be the Hall algebras over Q(v) of the Dynkin quivers An and

Bn (n ≥ 1) respectively, where v is an indeterminate and the quivers have linear orienta-

tion. By comparing the quantum Serre relations we find a natural algebra epimorphism

π : Hv(Bn) −→ Hv2(An). We determine the kernel of π by giving two sets of genera-

tors. Let ϕ be the algebra homomorphism from Hv(An) to the quantized Schur algebra

Sv(n + 1, r) (r > 1) defined in [4] and write ϕ̃ : Hv2(An) −→ Sv2(n + 1, r) for the induced

map. We obtain several ideals of Hv(Bn) by lifting the kernel of ϕ to the kernel of the

composition map ϕ̃ ◦ π : Hv(Bn) −→ Sv2(n + 1, r).
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1 Introduction

Let Hv(An) and Hv(Bn) be the Hall algebras over Q(v) of the Dynkin quivers An and Bn

(n ≥ 1) respectively, where v is an indeterminate and the quivers have linear orientation

as follows:
·1 ·n− 1 ·n- · · · - -An

·1 ·n− 1 ·n(2,1)- · · · - -Bn

By Ringel [7], the Hall algebras Hv(An) and Hv(Bn) are isomorphic to the positive parts

of the corresponding quantum groups, and can be described by quantum Serre relations.

Our main results are the following. By comparing the quantum Serre relations, we find

a natural algebra epimorphism π : Hv(Bn) −→ Hv2(An). We determine the kernel of π

as an ideal of Hv(Bn) by giving two sets of generators, see Theorem 2.3. Let ϕ be the

algebra homomorphism from Hv(An) to the quantized Schur algebra Sv(n + 1, r) (r ∈ N)

defined in [4]. Write ϕ̃ : Hv2(An) −→ Sv2(n + 1, r) for the Q(v)-algebra map naturally

induced by ϕ. Let ψ : Hv(Bn) −→ Sv2(n + 1, r) be the composition map of ϕ̃ and π. We

express the kernel of ψ as the sum of two ideals I2(Bn) and Ker(π) of Hv(Bn), and also as

the direct sum of two subspaces I1(Bn) and Ker(π), in Theorem 2.5. The Q(v)-bases of

1The research was partially supported by NSF of China (No.10631010) and NKBRPC (No.2006 CB805905).
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I2(Bn) and I1(Bn), which are of PBW-type, are obtained in Theorem 2.4 and Theorem 2.5

respectively.

It was first explored in [1] that the quantized Schur algebra Sv(n + 1, r) (r > 1) is

closely related to the quantum group, and hence to the Hall algebra, of type An. In [4]

R.M. Green determined the kernel of ϕ : Hv(An) −→ Sv(n + 1, r) explicitly, which has

a beautiful basis of PBW-type. Our motivation is to generalize this basis to type B and

construct ideals of the Hall algebra Hv(Bn) so that they have representation meaning. It

would also be interesting to define the map from Hv(Bn) to the quantized Schur algebra

of type B and determine its kernel.

The paper is organized as follows. Section 2 recalls the definition of the Hall algebras

Hv(An) and Hv(Bn) and states the main theorems. Section 3 proves a so-called generalized

quantum Serre relation for type An. Section 4 proves our theorems using the results

developed in Section 3.

We write N for the set of positive integers, and N0 for the set of non-negative integers.

2 The Hall algebras Hv(An) and Hv(Bn)

Root systems and Euler forms: Let Φ+(An) and Φ+(Bn) be the sets of positive roots

of the simple Lie algebras of type An and Bn (n > 1) respectively. By Gabriel [3], they are

in bijections with the sets of isomorphism classes of the indecomposable representations of

the quivers An and Bn respectively. For a positive root α, write Mα for an indecomposable

representation corresponding to α. We have the following known facts.

1. (Ringel [5]) Write Φ+ for both Φ+(An) and Φ+(Bn). There exists a ’good’ order

on Φ+ such that Φ+ = {β1, β2, . . . , βN} with Hom(Mβi
,Mβj

) = 0 unless i 6 j, and

Ext(Mβi
,Mβj

) = 0 unless j < i. We define βi 4 βj if and only if i 6 j, and βi ≺ βj if and

only if i < j.

2. #Φ+(An) = n(n+1)
2 , #Φ+(Bn) = n2. Identifying the simple roots provides an

embedding of Φ+(An) into Φ+(Bn), which is compatible with their ’good’ orders. Let us

denote by Φ+
1 the subset of Φ+(Bn) identified with Φ+(An) and Φ+

2 the complement, i.e.

Φ+(Bn) = Φ+
1 ∪ Φ+

2 .

3. Let α1, . . . , αn be the simple roots of both An and Bn. Write 0a1b0c, where b > 0

and a + b + c = n, for the root αa+1 + αa+2 + · · ·+ αa+b in Φ+(An) and Φ+
1 . The roots in

Φ+
2 have the form 0a1b2c = αa+1 + · · · + αa+b + 2αa+b+1 + · · · + 2αa+b+c, where b, c > 0

and a + b + c = n.

4. (Crawley-Boevey [2]) By definition, the Euler form 〈−,−〉 in type An is given by

〈αi, αj〉 =





1 if i = j

−1 if j − i = 1

0 otherwise
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and in type Bn given by

〈αi, αj〉 =





2 if i = j ∈ {1, . . . , n− 1}
1 if i = j = n

−2 if j − i = 1

0 otherwise

5. (’Good’ order on Φ+(An) and Φ+
1 ) For β = 0a11b10c1 and β′ = 0a21b20c2 , β ≺ β′ if

and only if either a1 > a2 or (a1 = a2, b1 > b2).

Hall algebras and PBW-type bases: Let Q be the linearly oriented quiver An or

Bn with vertices {1, 2, . . . , n}. Write Si for the irreducible representation of Q supported

at the vertex i (1 6 i 6 n). Let Φ+ = {β1, β2, . . . , βN} be the set of positive roots with

respect to the ’good’ order. Let P be the set of isomorphism classes of finite dimensional

Fq-representations of Q, where Fq is a finite field of q elements.

Fix any [M ], [N ], [X] ∈ P. By Ringel [6], the Hall number g
[X]
[M ],[N ] is a polynomial in

Z[v]. When valued at v =
√

q, it counts the number of submodules X1 of X satisfying

X1
∼= N and X/X1

∼= M . The Hall algebra of type Q, denoted by Hv(Q), is the Q(v)-

algebra with basis {[M ] : [M ] ∈ P} and product

[M ] ∗ [N ] = v〈dim(M),dim(N)〉[M ] ¦ [N ],

where [M ], [N ] ∈ P and

[M ] ¦ [N ] =
∑

[X]∈P
g
[X]
[M ],[N ][X].

They are called the star product and the diamond product respectively.

Set 〈Mα〉 = vε(α)[Mα] for α ∈ Φ+, where ε(α) = dim(End(Mα)) − dim(Mα). Since

indecomposable representations have no self-extensions, we have that ε(α) = 〈α, α〉 −
dim(Mα). By Ringel [7], the Hall algebra Hv(Q) has a PBW-type basis over Q(v)

{〈Mβ1〉(∗n1) ∗ 〈Mβ2〉(∗n2) ∗ · · · ∗ 〈MβN
〉(∗nN ) : ∀ n1, . . . , nN ∈ N0},

where the divided power

〈Mβi〉(∗ni) =
〈Mβi

〉∗ni

[ni]〈βi,βi〉!

and [n]m! =
∏n

k=1[k]m and [k]m = vkm−v−km

vm−v−m ∈ Q(v) for n ∈ N0 and m ∈ N. Fur-

thermore Hv(Q) is isomorphic to the positive part of the corresponding quantum group.

Hence the Hall algebra can be described by quantum Serre relations as follows, where the

multiplication corresponds to the star product.

The Hall algebra Hv(An) is the associative Q(v)-algebra with generators {Ei = 〈Si〉 :

i = 1, 2, . . . , n} and relations

(A1) E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0, for |i− j| = 1,
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(A2) EiEj = EjEi, for |i− j| > 1.

Define the root vector Eα = 〈Mα〉 for α ∈ Φ+(An). In particular Eαi
= Ei for 1 6 i 6 n.

Since all 〈α, α〉 = 1, the divided powers are given by E
(nα)
α = Enα

α

[nα]! .

The Hall algebra Hv(Bn) is the associative Q(v)-algebra with generators {Ei = 〈Si〉 :

i = 1, 2, . . . , n} and relations

(B1) E2
i Ej − (v2 + v−2)EiEjEi + EjE2

i = 0, for |i− j| = 1 and i 6= n

(B2) E3
nEn−1 − (v2 + 1 + v−2)E2

nEn−1En + (v2 + 1 + v−2)EnEn−1E2
n − En−1E3

n = 0,

(B3) EiEj = EjEi, for |i− j| > 1.

Define the root vector Eα = 〈Mα〉 for α ∈ Φ+(Bn) = Φ+
1 ∪ Φ+

2 . In particular Eαi = Ei for

1 6 i 6 n.

The Hall algebra and the quantized Schur algebra: We are not going to define

the quantized Schur algebra here. Instead we state the work of R.M. Green which is

sufficient for our purpose. Let ϕ be the algebra homomorphism from Hv(An) to Sv(n+1, r)

defined in [4]. Then the kernel of ϕ has Q(v)-basis

{
∏

α∈Φ+(An)

E(nα)
α :

∑
nα

nα > r, nα ∈ N0},

where the product respects the ’good’ order. We write I1(An) for the ideal Ker(ϕ) of

Hv(An).

Now from the Q(v)-algebra homomorphism ϕ : Hv(An) −→ Sv(n + 1, r), we get nat-

urally a Q(v)-algebra homomorphism ϕ̃ : Hv2(An) −→ Sv2(n + 1, r), where Hv2(An) and

Sv2(n + 1, r) are obtained from Hv(An) and Sv(n + 1, r) respectively with v replaced by

v2 everywhere. We write I2(An) for the ideal Ker(ϕ̃) of Hv2(An). It is clear that I2(An)

has a Q(v)-basis of the same form as I1(An), with v replaced by v2 everywhere.

Main results: We start with two lemmas about the positive roots of An and Bn.

Lemma 2.1. (Type An) For a positive and non-simple root α ∈ Φ+(An), there exist

(unnecessarily unique) γ1, γ2 ∈ Φ+(An) and a short exact sequence:

0 −→ Mγ1 −→ Mα −→ Mγ2 −→ 0.

Proof. Write α = 0a1b0c with a+b+c = n and b > 2. Take b1, b2 ∈ N such that b1+b2 = b.

Set

γ1 = 0a+b11b20c, γ2 = 0a1b10b2+c.

Then α = γ1 + γ2, 〈γ1, γ2〉 = 0, 〈γ2, γ1〉 = −1, and γ1 ≺ γ2. Now the lemma follows from

the Auslander-Reiten quiver of the linearly oriented An.
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Lemma 2.2. (Type Bn) (1) For a positive and non-simple root α ∈ Φ+
1 , there exist

(unnecessarily unique) γ1, γ2 ∈ Φ+
1 and a short exact sequence

0 −→ Mγ1 −→ Mα −→ Mγ2 −→ 0.

(2) For a positive root β ∈ Φ+
2 , there exist uniquely γ1, and γ2 ∈ Φ+

1 such that there is

an Auslander-Reiten sequence

0 −→ Mγ1 −→ Mα −→ Mγ2 −→ 0.

Proof. (1) Suppose α = 0a1b0c with a + b + c = n and b > 2. Then γ1, and γ2 of the same

form as in Lemma 2.1 will play the role. Note that they have different Euler form now:

〈γ1, γ2〉 = 0, 〈γ2, γ1〉 = −2.

(2) Suppose β = 0a1b2c with a + b + c = n and b, c > 0. Take γ1 = 0a+b1c and

γ2 = 0a1b+c in Φ+
1 . Then β = γ1 + γ2, γ1 ≺ γ2 and

〈γ1, γ2〉 = 1, 〈γ2, γ1〉 = −1.

It is clear that such pair (γ1, γ2) is unique. The existence of the Auslander-Reiten sequence

follows from the Auslander-Reiten quiver of Bn.

Our main results are the following and will be proved in Section 4.

Theorem 2.3. There exists a Q(v)-algebra epimorphism

π : Hv(Bn) −→ Hv2(An)

sending Ei to Ei. The kernel of π is an ideal of Hv(Bn) generated by

E2
nEn−1 − (v2 + v−2)EnEn−1En + En−1E2

n,

and also generated by

{Eβ − v2 − 1
v + v−1

Eγ1Eγ2 : ∀ β ∈ Φ+
2 },

where γ1 and γ2 ∈ Φ+
1 are determined uniquely by β by Lemma 2.2 (2).

Fix any positive integer r ∈ N.

Theorem 2.4. Write I2(Bn) for the ideal of the Hall algebra Hv(Bn) generated by

{
∏

α∈Φ+
1 , β∈Φ+

2

E(nα)
α E(nβ)

β :
∑
nα

nα + 2
∑
nβ

nβ > r, nα, nβ ∈ N0},

where the product respects the ’good’ order. Then the set of generators is actually a Q(v)-

basis of I2(Bn).

Consider the composition map ψ : Hv(Bn) −→ Sv2(n+1, r) of π : Hv(Bn) −→ Hv2(An)

and ϕ̃ : Hv2(An) −→ Sv2(n + 1, r).
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Theorem 2.5. Write I1(Bn) for the Q(v)-subspace of Hv(Bn) with basis (the product

respects the ’good’ order)

{
∏

α∈Φ+
1

E(nα)
α :

∑
nα

nα > r, nα ∈ N0}.

The kernel of the composition map ψ is the sum I2(Bn) + Ker(π) as an ideal of Hv(Bn),

and is the direst sum I1(Bn)⊕Ker(π) as a Q(v)-subspace of Hv(Bn).

3 Generalized quantum Serre relations

In this section we prove some equalities in the Hall algebra Hv(An). Recall that the

root vector Eα = 〈Mα〉 = vε(α)[Mα] for a positive root α ∈ Φ+(An), where ε(α) =

dim(End(Mα))−dim(Mα) = 〈α, α〉−dim(Mα). The Euler form 〈−,−〉 and the symmetric

Euler form (−,−) on the root lattice are defined by

〈α, β〉 = 〈dim(Mα),dim(Mβ)〉 = dim(Hom(Mα,Mβ))− dim(Ext(Mα,Mβ)),

(α, β) = 〈α, β〉+ 〈β, α〉,

for any positive roots α, β ∈ Φ+(An), see [2].

Lemma 3.1. For α, β ∈ Φ+(An), the following are equivalent:

(1) The symmetric Euler form (α, β) = −1.

(2) There exists a short exact sequence of one of the following forms

0 −→ Mα −→ Mα+β −→ Mβ −→ 0,

0 −→ Mβ −→ Mα+β −→ Mα −→ 0.

(3) The sum α + β is again a positive root in Φ+(An)

Proof. (1) ⇒ (2): Note that for any γ1, γ2 ∈ Φ+(An), the Euler form 〈γ1, γ2〉 ∈ {1, 0,−1}.
Hence (α, β) = −1 if and only if

(〈α, β〉 = 0, 〈β, α〉 = −1) or (〈α, β〉 = −1, 〈β, α〉 = 0).

In the first case, from the properties of ’good’ order on Φ+(An) it follows that Ext(Mα,Mβ) =

0, Hom(Mα,Mβ) = 0, Hom(Mβ ,Mα) = 0 and dim(Ext(Mβ ,Mα)) = 1. We have a non-

split short exact sequence of the form

0 −→ Mα −→ X −→ Mβ −→ 0.

Assume the middle term X is decomposable. Then there exists a nonzero proper direct

summand X1 such that the composition map Mα −→ X1 −→ Mβ is nonzero. This is a

contradiction with Hom(Mα,Mβ) = 0. Hence X is indecomposable and in particular the
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dimension vector dim(X) = α + β. Similarly the second case gives rise to a short exact

sequence of the form

0 −→ Mβ −→ Mα+β −→ Mα −→ 0.

Proof of the existence of such an X1: Write X = ⊕s
i=1Xi, where s > 2 and each direct

summand Xi is indecomposable. Write f = (f1, . . . , fs)tr and g = (g1, . . . , gs), where

fi : Mα −→ Xi and gi : Xi −→ Mβ . Suppose gi ◦ fi 6= 0 for any i. Then Im(fi) ⊆ Ker(gi)

for any i and

Im(f) ⊆ ⊕s
i=1Im(fi) ⊆ ⊕s

i=1Ker(gi) ⊆ Ker(g).

But Im(f) = Ker(g) by the exactness of the short exact sequence. So it holds for any i

that Im(fi) = Ker(gi) and

Im(f) = ⊕s
i=1Im(fi) = ⊕s

i=1Ker(gi) = Ker(g).

Note that Im(f) ∼= Mα is indecomposable. Hence there exists a unique j such that fj is

nonzero and Im(f) = Im(fj). On the other hand

Mβ
∼= Cok(g) = ⊕s

i=1Xi/Ker(gi) = Xj/Ker(gj)⊕
⊕

i:i 6=j

Xi/Ker(gi)

is indecomposable. Hence there exists a unique k such that Xk/Ker(gk) 6= 0. If k 6= j,

then the short exact sequence is split. So we have k = j. Then X = Xj is indecomposable,

a contradiction!

Another method: show that in type An, let α = 0a11b10c1 and β = 0a21b20c2 . Then

(α, β) = −1 if and only if a1 = a2 + b2 or a2 = a1 + b1. Prove case by case, not hard.

(2007.07.16)

(2) ⇒ (3) is clear. For (3) ⇒ (1): Since α + β is a positive root in Φ+(An), we have

that

1 = 〈α + β, α + β〉 = 〈α, α〉+ (α, β) + 〈β, β〉.

Also 1 = 〈α, α〉 = 〈β, β〉. Hence (α, β) = −1.

Proposition 3.2. (Generalized quantum Serre Relations) In Hv(An), we have the follow-

ing generalized quantum Serre relations:

(S) E2
αEβ − (v + v−1)EαEβEα + EβE2

α = 0,

for all positive roots α, β satisfying (α, β) = −1.

Proof. By definition, it suffices to prove for the star product that

[Mα]∗2 ∗ [Mβ ]− (v + v−1)[Mα] ∗ [Mβ ] ∗ [Mα] + [Mβ ] ∗ [Mα]∗2 = 0.

Since (α, β) = −1, we have either (〈α, β〉 = 0, 〈β, α〉 = −1) or (〈α, β〉 = −1, 〈β, α〉 = 0).
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In the first case, by Lemma 3.1 we have a short exact sequence

0 −→ Mα −→ Mα+β −→ Mβ −→ 0.

Hence

[Mα]∗2 ∗ [Mβ ] = (v(v2 + 1)[Mα ⊕Mα]) ¦ [Mβ ]

= v(v2 + 1)[Mα ⊕Mα ⊕Mβ ],

[Mα] ∗ [Mβ ] ∗ [Mα] = ([Mα] ¦ [Mβ ]) ∗ [Mα] = [Mα ⊕Mβ ] ∗ [Mα]

= [Mα ⊕Mβ ] ¦ [Mα]

= (v2 + 1)[Mα ⊕Mβ ⊕Mα] + [Mα ⊕Mβ+α],

[Mβ ] ∗ [Mα]∗2 = v(v2 + 1)[Mβ ] ∗ [Mα ⊕Mα]

= v(v2 + 1)v−2[Mβ ] ¦ [Mα ⊕Mα]

= (v + v−1)([Mβ ⊕Mα ⊕Mα] + [Mα+β ⊕Mα]).

The relation (S) follows.

Now assume 〈α, β〉 = −1, 〈β, α〉 = 0. By Lemma 3.1 we have a short exact sequence

0 −→ Mβ −→ Mα+β −→ Mα −→ 0.

Hence

[Mα]∗2 ∗ [Mβ ] = (v(v2 + 1)v−2[Mα ⊕Mα]) ¦ [Mβ ]

= (v + v−1)([Mα ⊕Mα ⊕Mβ ] + [Mα ⊕Mα+β ]),

[Mα] ∗ [Mβ ] ∗ [Mα] = v−1([Mα] ¦ [Mβ ]) ∗ [Mα]

= v−1([Mα ⊕Mβ ] + [Mα+β ]) ∗ [Mα]

= v−1v([Mα ⊕Mβ ] + [Mα+β ]) ¦ [Mα]

= ((v2 + 1)[Mα ⊕Mβ ⊕Mα] + [Mα+β ⊕Mα]),

[Mβ ] ∗ [Mα]∗2 = v(v2 + 1)[Mβ ] ∗ [Mα ⊕Mα]

= v(v2 + 1)[Mβ ] ¦ [Mα ⊕Mα]

= v(v2 + 1)[Mβ ⊕Mα ⊕Mα].

The relation (S) follows similarly.

Note that the quantum Serre relation (A1) in Section 2 is a special case of the gener-

alized quantum Serre relation (S).

Proposition 3.3. Let α, β, γ ∈ Φ+(An) be three positive roots satisfying α = β + γ and

β ≺ γ. Then it holds in Hv(An) that

Eα = EγEβ − v−1EβEγ , EαEβ = vEβEα.
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Proof. By Lemma 3.1, there exist a short exact sequence

0 −→ Mβ −→ Mα −→ Mγ −→ 0

and 〈β, γ〉 = 0, 〈γ, β〉 = −1. By definition of the product in the Hall algebra Hv(An), we

have that

[Mβ ] ∗ [Mγ ] = [Mβ ] ¦ [Mγ ] = [Mβ ⊕Mγ ],

[Mγ ] ∗ [Mβ ] = v−1[Mγ ] ¦ [Mβ ] = v−1([Mβ ⊕Mγ ] + [Mα]).

Hence

[Mα] = v[Mγ ] ∗ [Mβ ]− [Mβ ] ∗ [Mγ ].

Notice that dim(Mα) = dim(Mβ) + dim(Mγ) and 〈α, α〉 = 〈β, β〉 = 〈γ, γ〉 = 1. Since

the root vector Eα = 〈Mα〉 = vε(α)[Mα] and ε(α) = 〈α, α〉 − dim(Mα), it holds that

Eα = EγEβ − v−1EβEγ .

Now from Proposition 3.2, we have the generalized quantum Serre relation

EγE2
β − (v + v−1)EβEγEβ + E2

βEγ = 0.

Hence

EαEβ = (EγEβ − v−1EβEγ)Eβ = EγE2
β − v−1EβEγEβ

= vEβEγEβ − E2
βEγ = vEβ(EγEβ − v−1EβEγ)

= vEβEα.

4 Proof of main results

The root systems Φ+(An) and Φ+(Bn) = Φ+
1 ∪Φ+

2 are described in Section 2. Recall that

Φ+
1 = Φ+(An) by identifying the simple roots.

Lemma 4.1. Let α = 0a1b0c, γ1 = 0a+b11b20c, γ2 = 0a1b10b2+c ∈ Φ+
1 , where a, c ∈

N0, b, b1, b2 ∈ N such that a + b + c = n and b1 + b2 = b. We have in the Hall algebra

Hv(An)

Eα = Eγ2Eγ1 − v−1Eγ1Eγ2

and in the Hall algebra Hv(Bn)

Eα = Eγ2Eγ1 − v−2Eγ1Eγ2 .

Proof. Clearly α = γ1+γ2, and γ1 ≺ γ2 with respect to the ’good’ order. The first equality

in Hv(An) now follows from Proposition 3.3.
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Consider the Euler form on Φ+(Bn). We have that

〈γ1, γ2〉 = 0, 〈γ2, γ1〉 = −2, 〈γ2, γ2〉 = 2,

and 〈γ1, γ1〉 = 〈α, α〉 = 2 when c = 0, and 〈γ1, γ1〉 = 〈α, α〉 = 1 when c 6= 0. Also

dim(Mα) = dim(Mγ1) + dim(Mγ2). Hence ε(α) + 2 = ε(γ1) + ε(γ2).

By Lemma 2.2 (1) there is a short exact sequence

0 −→ Mγ1 −→ Mα −→ Mγ2 −→ 0.

We have in the Hall algebra Hv(Bn) that

[Mγ1 ] ∗ [Mγ2 ] = [Mγ1 ] ¦ [Mγ2 ] = [Mγ1 ⊕Mγ2 ],

[Mγ2 ] ∗ [Mγ1 ] = v−2[Mγ2 ] ¦ [Mγ1 ] = v−2([Mγ2 ⊕Mγ1 ] + [Mα]).

Hence

[Mα] = v2[Mγ ] ∗ [Mβ ]− [Mβ ] ∗ [Mγ ].

The equality Eα = Eγ2Eγ1−v−2Eγ1Eγ2 follows from the definition that Eα = vε(α)[Mα].

Lemma 4.2. Let β = 0a1b2c ∈ Φ+
2 , and γ1 = 0a+b1c, γ2 = 0a1b+c ∈ Φ+

1 . We have in the

Hall algebra Hv(An)

Eγ2Eγ1 = vEγ1Eγ2

and in the Hall algebra Hv(Bn)

Eβ =
1

v + v−1
(Eγ2Eγ1 − Eγ1Eγ2).

Proof. Let γ3 = 0a1b0c ∈ Φ+(An). Then γ2 = γ1 + γ3 and γ1 ≺ γ3. The relation in

Hv(An) follows from Proposition 3.3.

For the relation in Hv(Bn), note that β = γ1+γ2 and dim(End(Mβ)) = 2,dim(End(Mγ1)) =

dim(End(Mγ2)) = 1, dim(Mβ) = dim(Mγ1) + dim(Mγ2). Thus εβ = εγ1 + εγ2 . From

Eα = 〈Mα〉 = vεα [Mα] for any positive root α, it suffices to prove that

(R) [Mβ ] =
1

v + v−1
([Mγ2 ] ∗ [Mγ1 ]− [Mγ1 ] ∗ [Mγ2 ]).

By Lemma 2.2 (2), we have the Auslander-Reiten sequence

0 −→ Mγ1 −→ Mβ −→ Mγ2 −→ 0,

and 〈γ1, γ2〉 = 1, 〈γ2, γ1〉 = −1. Hence Hom(Mγ2 ,Mγ1) = 0, Ext(Mγ1 ,Mγ2) = 0,

dim(Ext(Mγ2 ,Mγ1)) = 1, dim(Hom(Mγ1 ,Mγ2)) = 1 and Mγ1 is a submodule of Mγ2 .

We have

[Mγ2 ] ∗ [Mγ1 ] = v−1[Mγ2 ] ¦ [Mγ1 ] = v−1(v2[Mγ2 ⊕Mγ1 ] + (v2 + 1)[Mβ ]),

[Mγ1 ] ∗ [Mγ2 ] = v1[Mγ1 ] ¦ [Mγ2 ] = v[Mγ1 ⊕Mγ2 ].

The relation (R) follows now.
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From the description of the Hall algebras Hv2(An) and Hv(Bn) by quantum Serre

relations in Section 2, one sees directly that sending Ei to Ei (i = 1, 2, . . . , n) provides an

algebra epimorphism π : Hv(Bn) −→ Hv2(An).

Lemma 4.3. The image of the root vectors Eα of Hv(Bn) under π are

π(Eα) = Eα, if α ∈ Φ+
1 ,

π(Eβ) =
(v2 − 1)
(v + v−1)

Eγ1Eγ2 , if β ∈ Φ+
2 ,

where γ1, γ2 ∈ Φ+
1 are uniquely determined by β ∈ Φ+

2 by Lemma 2.2 (2).

Proof. Suppose α ∈ Φ+
1 . By Lemma 4.1 and induction on α, it is clear that the expression

of Eα ∈ Hv(Bn) into Ei is the same as the expression of Eα ∈ Hv2(An) into Ei. Then

π(Eα) = Eα follows from that π(Ei) = Ei.

Suppose β ∈ Φ+
2 . By Lemma 4.2 and the relation we obtained just now, we have

π(Eβ) = π(
1

v + v−1
(Eγ2Eγ1 − Eγ1Eγ2)) =

1
v + v−1

(Eγ2Eγ1 − Eγ1Eγ2)

=
(v2 − 1)
(v + v−1)

Eγ1Eγ2 .

We are now prepared for the proof of our main results.

Proof. (Proof of Theorem 2.3) Note that

E3
nEn−1 − (v2 + 1 + v−2)E2

nEn−1En + (v2 + 1 + v−2)EnEn−1E
2
n − En−1E

3
n

= En(E2
nEn−1 − (v2 + v−2)EnEn−1En + En−1E

2
n)

− (E2
nEn−1 − (v2 + v−2)EnEn−1En + En−1E

2
n)En.

So the kernel of π is generated by

E2
nEn−1 − (v2 + v−2)EnEn−1En + En−1E2

n.

We write I3(Bn) for the ideal of Hv(Bn) generated by

{Eβ − v2 − 1
v + v−1

Eγ1Eγ2 : ∀ β ∈ Φ+
2 },

where γ1, γ2 ∈ Φ+
1 are determined by β by Lemma 2.2 (2). By Lemma 4.3, the ideal I3(Bn)

is contained in the kernel of π.

Consider β = 0n−21121 = αn−1 + 2αn ∈ Φ+
2 . It uniquely determines γ1 = αn, γ2 =

αn−1 + αn ∈ Φ+
1 . We have in Hv(Bn)

Eβ =
1

v + v−1
(Eγ2Eγ1 − Eγ1Eγ2)
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by Lemma 4.2, and

Eγ2 = En−1En − v−2EnEn−1

by Lemma 4.1. Therefore in I3(Bn)

Eβ − v2 − 1
v + v−1

Eγ1Eγ2 =
1

v + v−1
(Eγ2Eγ1 − Eγ1Eγ2)−

v2 − 1
v + v−1

Eγ1Eγ2

=
Eγ2Eγ1 − v2Eγ1Eγ2

v + v−1
=
Eγ2En − v2EnEγ2

v + v−1

=
En−1E2

n − (v2 + v−2)EnEn−1En + E2
nEn−1

v + v−1
.

It follows that En−1E2
n − (v2 + v−2)EnEn−1En + E2

nEn−1, and hence Ker(π), lie in I3(Bn).

Hence Ker(π) = I3(Bn).

Proof. (Proof of Theorem 2.4) Define the degree function on the root vectors and on

the PBW-basis of Hv(Bn) as follows:

deg(Eγ) =





1 if γ ∈ Φ+
1

2 if γ ∈ Φ+
2

and for γ1, γ2 ∈ Φ+(Bn) with γ1 4 γ2

deg(Eγ1Eγ2) = deg(Eγ1) + deg(Eγ2).

For any element E ∈ Hv(Bn), define the degree deg(E) to be the minimal degree of the

PBW-basis elements which have non-zero coefficients in E .

For a positive integer r, let Vr be the subspace of Hv(Bn) with a Q(v)-basis

{
∏

α∈Φ+
1 , β∈Φ+

2

E(nα)
α E(nβ)

β :
∑
nα

nα + 2
∑
nβ

nβ > r}.

To see that Vr is an ideal, it suffices to show that for any positive root α ∈ Φ+(Bn) and

any word Eγ1Eγ2 · · · Eγm in the PBW-basis of Hv(Bn), i.e. γ1 4 γ2 4 . . . 4 γm, we have

deg(EαEγ1 · · · Eγm
) > deg(Eγ1Eγ2 · · · Eγm

),

deg(Eγ1 · · · Eγm
) 6 deg(Eγ1Eγ2 · · · Eγm

Eα).

We shall prove the first inequality only.

If α 4 γ1, it is well ordered already and

deg(EαEγ1 · · · Eγm) = deg(Eα) + deg(Eγ1Eγ2 · · · Eγm)

6 deg(Eγ1Eγ2 · · · Eγm
).

If γ1 ≺ α and 〈α, γ1〉 = 0, then Ext(Mα,Mγ1) = 0 and EαEγ1 = v−〈γ1,α〉Eγ1Eα. Degree

is preserved in this order-changing.
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If γ1 ≺ α and 〈α, γ1〉 6= 0, then Ext(Mα, Mγ1) 6= 0 and there exists a short exact

sequence of the form

0 −→ Mγ1 −→ X −→ Mα −→ 0

where X is of dimension vector γ1 + α.

If X is decomposable, say X =
⊕

i Mβi
with βi ∈ Φ+(Bn) satisfying that

∑
i βi = γ1+α

and γ1 ≺ βi ≺ α. We have

EαEγ1 = c1Eγ1Eα + c2

∏

i

Eβi

with the coefficients c1, c2 ∈ Q(v). From the Auslander-Reiten quiver of Bn, one sees that

deg(
∏

i Eβi
) = deg(EαEγ1), and that for any βi, there is no γ ∈ Φ+(Bn) with γ1 4 γ and

Ext(Mβi ,Mγ) 6= 0.

If X is indecomposable, suppose X = Mβ with β = γ1 + α. We have

EαEγ1 = d1Eγ1Eα + d2Eβ

with the coefficients d1, d2 ∈ Q(v). Since Mγ1 is a submodule of Mβ , we have deg(Eβ) ≥
Eγ1 . There is at most one positive root γ ∈ Φ+(Bn) with γ1 4 γ such that Ext(Mβ ,Mγ) 6=
0, which happens only when γ = γ1 and β = 0a1b ∈ Φ+

1 with a > 0, a + b = n. In this

case we have short exact sequences

0 −→ Mγ1 −→ Mβ −→ Mα −→ 0,

0 −→ Mγ1 −→ Mβ+γ1 −→ Mβ −→ 0.

And

deg(Eβ) = deg(Eγ1) = 1,

deg(Eβ+γ1) = 2 = deg(Eγ1Eγ2) = deg(E2
γ1

).

With these facts, doing induction on the length m of the word Eγ1Eγ2 · · · Eγm
completes

the proof.

Now Theorem 2.5 is just a direct corollary.

Proof. (Proof of Theorem 2.5) Recall that the algebra map ψ : Hv(Bn) −→ Sv2(n+1, r)

is the composition of π : Hv(Bn) −→ Hv2(An) and ϕ̃ : Hv2(An) −→ Sv2(n + 1, r). We

know from Section 2 that Ker(ϕ̃) = I2(An). By Lemma 4.3 the map π sends the ideal

I2(Bn) of Hv(Bn) to the ideal I2(An) of Hv2(An). Therefore

Ker(ψ) = Ker(ϕ̃ ◦ π) = π−1(Ker(ϕ̃))

= π−1(I2(An)) = I2(Bn) + Ker(π).

Note that although I1(Bn) is not an ideal of the Hall algebra Hv(Bn), the image of I1(Bn)

under π is exactly I2(An) and they have the same dimension over Q(v). Hence Ker(ψ)

decomposes into the direct sum of I1(Bn) with Ker(π) as a Q(v)-vector space.

13



References

[1] A.A. Belinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum

deformation of GLn, Duke Math. J. Vol. 61 (1990), No.2, 655-677.

[2] W. Crawley-Boevey, Lectures on representations of quivers,

http://www.amsta.leeds.ac.uk/∼pmtwc/#Archive.

[3] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.

[4] R.M. Green, q-Schur algebras as quotients of quantized enveloping algebras, Journal

of algebra 185 (1996), 660-687.

[5] C.M. Ringel, PBW-bases of Quantum Groups, J. reine angew. Math. 470 (1996),

51-88.

[6] C.M. Ringel, Hall polynomials for the representation-finite hereditary algebras, Adv.

Math. 84 (1990), 137-178.

[7] C.M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), 583-592.

14


