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Abstract

We study Schur algebras of classical groups over an algebraically closed field

of characteristic not 2. We prove that Schur algebras are generalized Schur al-

gebras (in Donkin’s sense) in types A, C and D, while are not in type B.

Consequently Schur algebras of types A, C and D are integral quasi-hereditary

by Donkin [8, 10]. By using the coalgebra approach we put Schur algebras of a

fixed classical group into a certain inverse system. We find that the correspond-

ing hyperalgebra is contained in the inverse limit as a subalgebra. Moreover in

types A, C and D, the surjections in the inverse systems are compatible with

the integral quasi-hereditary structure of Schur algebras. Finally we calculate

some Schur algebras with small parameters and prove Schur–Weyl duality in

types B, C and D in a special case.

Key words: Schur algebra, Classical group, Generalized Schur algebra, Inverse

system, Hyperalgebra.

1 Introduction

Throughout the paper K is an algebraically closed field of characteristic not 2, G a classical

group and G0 the corresponding group of similitudes defined over K. Let E be the standard

representation of G and G0, and E⊗r (r > 1) the r-fold tensor space on which G and G0

act diagonally. Doty [11] has defined the corresponding Schur algebra to be the image of the

representation map KG −→ EndK(E⊗r), which equals that of KG0 −→ EndK(E⊗r). Results

in this paper generalize those in [22], where the base field is the complex number field C. We

will prove results for both classical groups and their similitudes.

The main results are the following. Firstly we compare these Schur algebras to Donkin’s

generalized Schur algebras [8], and prove that for both G and G0, Schur algebras are generalized
1The author acknowledges support by the AsiaLink network Algebras and Representations in China and

Europe, ASI/B7-301/98/679-11, and by the Leverhulme Trust through the Academic Interchange Network

Algebras, Representations and Applications.
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Schur algebras in types A, C and D, see Theorem 3.11, while are not in type B, see Remark

3.12. Consequently by Donkin [8, 10], Schur algebras of types A, C and D are integral quasi-

hereditary, with respect to the index sets given in Proposition 3.5 and Corollary 3.6 under the

usual dominance order. This extends and reproves in a uniform way results of Green [16] in

type A and of Donkin [9] in type C.

Secondly by using the coalgebra approach, we put Schur algebras of a fixed classical group

into a certain inverse system to recover information of the classical group. We find that the

corresponding hyperalgebra is contained in the inverse limit as a subalgebra, see Theorem

4.8. This is motivated by earlier results in type A (in quantum case) by Beilinson, Lusztig

and MacPherson [1]. Moreover in types A, C and D, the maps in the inverse systems are

compatible with the integral quasi-hereditary structure of Schur algebras, see Proposition 4.10.

Thirdly we calculate and compare some Schur algebras when the parameter n or r is

small. We also prove by explicit computation the Schur–Weyl duality for (special) orthogonal

and symplectic groups with Brauer algebras when the parameter r = 2, see Theorem 5.2.

The paper is organized as follows. Section 2 recalls the coordinate rings and polynomial

representations of classical groups and their similitudes. Section 3, 4 and 5 are devoted to

the three parts of our main results respectively. Section 3 determines when Schur algebras of

classical groups are generalized Schur algebras. Section 4 recovers the hyperalgebra from the

inverse limit of Schur algebras. Section 5 calculates some examples of Schur algebras.

The results in the paper were reported at the International Asialink Conference on Alge-

bras and Representation Theory in Beijing Normal University in 2005. They are part of my

PhD thesis Schur Algebras of Classical Groups (written in Chinese, defended in May 2007).

2 Classical groups and their similitudes

This section recalls the coordinate rings and the polynomial representations of the classical

groups and their similitudes. The main references are Green [16] and Doty [11]. All represen-

tations, modules and comodules appearing in the paper are finite dimensional.

2.1 Notations

For a fixed integer n > 1, the full matrix algebra Mn(K) is an n2-dimensional affine algebraic

variety over K. Following Green [16], we write cij : Mn(K) −→ K for the coordinate function

which sends an n × n matrix to its (i, j)-th entry (1 6 i, j 6 n). The polynomial algebra

K[cij ], in n2 variables, is a bialgebra with comultiplication and counit defined on generators
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by

∆(cij) = Σn
k=1cik ⊗ ckj , ε(cij) = δij , ∀ i, j = 1, . . . , n.

It is naturally graded by the degree of polynomials. Each homogeneous part K[cij ]r (r > 0)

is a subcoalgebra. An ideal I of K[cij ] is said to be homogeneous if I =
⊕

r>0(I ∩K[cij ]r).

We set det =
∑

σ∈Σn
sgn(σ)

∏n
i=1 ci,σ(i) in K[cij ]n. It sends a matrix to its determi-

nant. For i, j = 1, 2, . . . , n, set c1(i, j) =
∑n

k=1 ckick′j , c2(i, j) =
∑n

k=1 cikcjk′ , and c′1(i, j) =
∑n

k=1 ε(k)ckick′j , c′2(i, j) =
∑n

k=1 ε(k)cikcjk′ in K[cij ]2, where k′ = n + 1− k, ε(k) = 1 if n is

odd, ε(k) = 1 and ε(k′) = −1 if n is even and k 6 n
2 .

We write Xm for one of the following classical types: Am (m > 1), Bm (m > 2), Cm (m >

2), and Dm (m > 4). Let n be m+1 in type Am, 2m+1 in type Bm, and 2m in type Cm and

Dm. Write c0 for the polynomial c1(1, n) in type Bm and Dm, and for c′1(1, n) in type Cm.

Our study of the polynomial c0 is motivated by [17] and [23].

2.2 Classical groups and their coordinate rings

The classical groups of type Am, Bm, Cm and Dm are respectively the special linear group

SLm+1 = {M ∈ Mm+1(K) : det(M) = 1}, the special orthogonal group SO2m+1 = {M ∈
M2m+1(K) : det(M) = 1, M trJM = J = MJM tr}, the symplectic group SP2m = {M ∈
M2m(K) : M trJ ′M = J ′ = MJ ′M tr} and the special orthogonal group SO2m = {M ∈
M2m(K) : det(M) = 1, M trJM = J = MJM tr}, where J is any symmetric invertible

matrix and J ′ is any anti-symmetric invertible matrix. By the convention in the previous

subsection, n is the size of matrices in the classical group of type Xm.

Remark 2.1. Since K is algebraically closed of characteristic not 2, the classical groups SOn

and SPn are independent of the choice of the matrices J and J ′. We take J to be the matrix

with 1’s on all (k, k′)-th entries (k = 1, 2, . . . , n) and zero elsewhere (except in §5.2), and J ′

with ε(k) on (k, k′)-th entries (k = 1, 2, . . . , n) and zero elsewhere.

For a matrix M = (mij), the condition M trJM = J = MJM tr is equivalent to that

δj,i′ = cij(M trJM) = c1(i, j)(M) =
∑n

k=1 mkimk′j and δj,i′ = cij(MJM tr) = c2(i, j)(M) =
∑n

k=1 mikmjk′ . The condition M trJ ′M = J ′ = MJ ′M tr is equivalent to that δj,i′ = cij(M trJ ′M) =

c′1(i, j)(M) =
∑n

k=1 ε(k)mkimk′j and δj,i′ = cij(MJ ′M tr) = c′2(i, j)(M) =
∑n

k=1 ε(k)mikmjk′ .

By definition the classical group G is an affine algebraic subvariety of Mn(K). The

coordinate ring K[G] is the restriction of K[cij ] to G. Namely, it is the quotient of K[cij ]

factoring out the ideal I(G) generated by the defining relations of G. This is a bialgebra with
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comultiplication ∆ and counit ε inherited from those of K[cij ]. Unfortunately I(G) is not

homogenous. But the intersection I(G)0 :=
⊕

r>0(I(G) ∩ K[cij ]r) is and its homogeneous

part I(G)0r := I(G) ∩ K[cij ]r is a coideal of K[cij ]r. Hence the quotient K[cij ]r/I(G)0r is a

coalgebra, denoted by K[G]0r.

In type Am, the ideal I(SLn) is generated by det − 1. In type Bm and Dm, the ideal

I(SOn) is generated by {det− 1} ∪ {c1(i, i′)− 1, c2(i, i′)− 1 : 1 6 i 6 n} ∪ {c1(i, j), c2(i, j) :

1 6 j 6= i′ 6 n}. In type Cm, the ideal I(SPn) is generated by {c′1(i, i′)− 1, c′2(i, i
′)− 1 : 1 6

i 6 n} ∪ {c′1(i, j), c′2(i, j) : 1 6 j 6= i′ 6 n}.

Remark 2.2. As functions over G, polynomials in K[G]0r1
and K[G]0r2

(r1 6= r2) could co-

incide. For example, the determinant polynomial det in K[G]0n equals 1 in K[G]00. In type

Bm and Dm, polynomials c1(i, i′) and c2(i, i′) in K[SOn]02 equal 1. In type Cm, polynomials

c′1(i, i
′) and c′2(i, i

′) in K[SPn]02 equal 1.

2.3 Groups of similitudes and their coordinate rings

We denote by G0 the group of similitudes of a classical group G. The groups of similitudes of

type Am, Bm, Cm and Dm are

(SLm+1)0 = {M ∈Mm+1(K) : det(M) 6= 0} = GLm+1(K)

(SO2m+1)0 = {M ∈M2m+1(K) : M trJM = MJM tr = sJ, det(M) = t, t, s ∈ K×}

(SP2m)0 = {M ∈M2m(K) : M trJ ′M = MJ ′M tr = sJ ′, s ∈ K×}

(SO2m)0 = {M ∈M2m(K) : M trJM = MJM tr = sJ, det(M) = t, t = sm ∈ K×}

respectively, where J and J ′ are defined in Remark 2.1 and K× = K \ {0}.
For a matrix M = (mij), the condition M trJM = MJM tr = sJ is equivalent to that

sδj,i′ = cij(M trJM) = c1(i, j)(M) =
∑n

k=1 mkimk′j and sδj,i′ = cij(MJM tr) = c2(i, j)(M) =
∑n

k=1 mikmjk′ . The condition M trJ ′M = MJ ′M tr = sJ ′ is equivalent to that sδj,i′ =

cij(M trJ ′M) = c′1(i, j)(M) =
∑n

k=1 ε(k)mkimk′j and sδj,i′ = cij(MJ ′M tr) = c′2(i, j) =
∑n

k=1 ε(k)mikmjk′ .

Remark 2.3. As functions over G0, it holds in type Bm that (det)2 = (c0)n and in type Cm

and Dm that det = (c0)m.

Write K〈G0〉 for the subalgebra of the coordinate ring K[G0] generated by cij ’s. It is the

quotient of K[cij ] factoring out the ideal I〈G0〉 = {c ∈ K[cij ] : c(g) = 0, ∀ g ∈ G0}. This

is a homogeneous ideal and each homogeneous part I〈G0〉r = I(G0) ∩K[cij ]r is a coideal of
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K[cij ]r. Hence K〈G0〉 =
⊕

r>0 K[cij ]r/I〈G0〉r is a graded algebra, and each homogeneous

component K〈G0〉r is a coalgebra.

In type Am, the ideal I〈GLm+1〉 = 0. In type Bm, the ideal I〈SO0
2m+1〉 is generated by

{c1(i, i′) − c1(1, n), c2(i, i′) − c1(1, n) : 1 6 i 6 n} ∪ {c1(i, j), c2(i, j) : 1 6 j 6= i′ 6 n}. In

type Cm, the ideal I〈SP 0
2m〉 is generated by {c′1(i, i′) − c′1(1, n), c′2(i, i

′) − c′1(1, n) : 1 6 i 6

n} ∪ {c′1(i, j), c′2(i, j) : 1 6 j 6= i′ 6 n}. In type Dm, the ideal I〈SO0
2m〉 is generated by

{det− c1(i, i′)m, c2(i, i′)− c1(1, n) : 1 6 i 6 n} ∪ {c1(i, j), c2(i, j) : 1 6 j 6= i′ 6 n}. The next

lemma follows directly from the definitions of I(G)0r and I〈G0〉r.

Lemma 2.4. For each non-negative integer r > 0, the coideals I(G)0r and I〈G0〉r coincide.

Hence the coalgebras K[G]0r and K〈G0〉r coincide.

2.4 Rational representations

Let H be a group with identity 1H . Write KH for the K-space of all functions from H to K.

The group structure of H gives rise to K-liner maps: ∆ : KH −→ KH×H and ε : KH −→ K

defined by ∆(f)(g, h) = f(g · h) and ε(f) = f(1H), for any f ∈ KH and g, h ∈ H. Linear

representations of H are identified with modules over the group algebra KH.

Let V be a KH-module with basis {v1, v2, . . . , vl}. There exist rij ∈ KH (1 6 i, j 6 l)

such that h · vj =
∑l

i=1 rij(h)vi for all h ∈ H. Following [16], we call rij ’s the coefficient

functions of V , and call the subspace of KH spanned by rij ’s the coefficient space of V ,

denoted by cf(V ). Write F (KH) for the subspace of KH spanned by the coefficient functions

of all KH-modules. It is a coalgeba with comultiplication ∆ and counit ε restricted from

KH . The coefficient space cf(V ) is a finite dimensional subcoalgebra of F (KH) with ∆(rij) =
∑l

k=1 rik ⊗ rkj and ε(rij) = δij . The following Lemma is standard.

Lemma 2.5. Let C be a finite dimensional coalgebra over K. Then the linear dual C∗ is nat-

urally an algebra, and the module category mod(C∗) can be identified with the right comodule

category comod(C).

Let H and V be as above. Then V is a natural right cf(V )-comodule via ρ∗ : V −→
V ⊗ cf(V ) and ρ∗(vj) =

∑n
i=1 vi⊗ rij . By Lemma 2.5, V admits a cf(V )∗-module structure as

follows: an element f ∈ cf(V )∗ acts on V by the composition

V -ρ∗
V ⊗ cf(V ) - V ⊗K1⊗ f - V .'

Clearly V is faithful over cf(V )∗. Namely the representation map, denoted by τ : cf(V )∗ −→
EndK(V ), is injective.
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Lemma 2.6. (c.f. Lemma 1.2, [4]) Let H and V be as above. Then cf(V )∗ equals the image

of the representation map ρ : KH −→ EndK(V ).

Proof . Note that the representation map ρ factors through cf(V )∗. More precisely, there

exists an algebra map α : KH −→ cf(V )∗ such that ρ = τ ◦ α. In fact, for any a ∈ KH and

any c ∈ cf(V ) ⊂ F (KH), view c as a linear function over KH and α(a)(c) is defined by the

action of c on a. Now it suffices to show the surjectivity of α. Equivalently, for any c ∈ cf(V ),

if α(a)(c) = 0 for all a ∈ KH, then c = 0. But this is clear.

When H is an algebraic group over K, the coordinate ring K[H] is a subcoalgebra of

F (KH). A representation V of H is said to be rational if the coefficient space cf(V ) is

contained in K[H]. By Chapter 1 in [16], rational representations of H are identified with

right K[H]-comodules. In fact the right K[H]-comodule structure is induced by the right

cf(V )-comodule structure on V .

For a classical group G (and its similitude G0), a rational representation V is called

polynomial if the coefficient functions are polynomials in cij ’s, or equivalently the coefficient

space cf(V ) is contained in K[G] (and in K〈G0〉 respectively). A polynomial representation of

G0 is called homogeneous of degree r, if the coefficient functions are homogeneous of degree r,

or equivalently the coefficient space cf(V ) is contained in K〈G0〉r. By definition, all rational

representations of G are polynomial representations. But ’homogeneous representations’ of G

are not well-defined by Remark 2.2.

We write MX(n) for the category of polynomial representations of G0, and MX(n, r)

the full subcategory of homogeneous ones of degree r. There are equivalences of categories

MX(n) ∼= comod(K〈G0〉), and MX(n, r) ∼= comod(K〈G0〉r).

Lemma 2.7. The category MX(n) is decomposed into
⊕

r>0 MX(n, r). That is, any polyno-

mial representation of G0 is a direct sum of homogeneous ones, and there are no nontrivial

homomorphisms or extensions between homogeneous representations of different degrees.

Proof . Since K〈G0〉 =
⊕

r>0 K〈G0〉r is a direct sum of subcoalgebras, by [15] (1.6c), any

polynomial representation is decomposed into a direct sum of homogeneous ones. In particular,

indecomposable polynomial representations are homogeneous.

Note that subrepresentations of a homogeneous representation are homogeneous of the

same degree, and so are the quotients. Suppose f : V −→ V ′ is nonzero, where V and V ′ are

homogeneous of degree r and r′ respectively. Then Im(f) is nonzero of degree both r and r′,

which implies r = r′.
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Now let V1 and V2 be homogeneous representations of degree r1 and r2 respectively (r1 6=
r2). Suppose we have a short exact sequence of the form

0 V1 V3 V2 0- - - -f g
·

Write V3 = W1⊕W2⊕W3, where W1 and W2 are homogeneous of degree r1 and r2 respectively,

and W3 contains no summand which is homogeneous of degree r1 or r2. Then the nonzero

map f maps V1 into W1, and W1⊕W3 lies in the kernel of g. Hence the exact sequence splits

and Ext1(V2, V1) = 0.

Lemma 2.8. Let V be a homogeneous polynomial representation of G0. Then V is polynomial

over G by restriction, and the image of the representation map ρ0 : KG0 −→ EndK(V ) equals

that of ρ : KG −→ EndK(V ), where ρ is the restriction of ρ0 to KG.

Proof . The restriction to G of elements in K〈G0〉 belong to K[G]. Hence the homogeneous

representation V of G0 is polynomial over G. Since KG is a subalgebra of KG0, Im(ρ) is

contained in Im(ρ0) as a subalgebra.

On the other hand, given any matrix g0 ∈ G0, write d (6= 0) for the determinant. Since

K is algebraically closed, there exists λ ∈ K such that λn = d, where n is the size of the

matrices in G0. Then g := λ−1g0 belongs to G since det(g) = 1. Suppose V is of degree r.

Thus f(g0) = λrf(g) for any homogeneous polynomial f in K[cij ]r. It follows that ρ0(g0) =

ρ0(λ · g) = λrρ0(g) = λrρ(g) belongs to Im(ρ). Thus ρ0(G0), and hence Im(ρ0) = ρ0(KG0),

are contained in Im(ρ). We have shown that Im(ρ0) equals Im(ρ) as algebras.

3 Schur algebras and generalized Schur algebras

The main result in this section is Theorem 3.11 and Remark 3.12. Namely in contrast to

type B, Schur algebras of type A, C and D are generalized Schur algebras associated to the

saturated weight sets given in §3.2.

3.1 Schur algebras of classical groups

Recall that Xm indicates a classical type (§2.1), G the classical group of type Xm, G0 the

corresponding group of similitudes, and n the size of matrices in G and G0. Let E be the

standard representation of G and G0. Namely E is an n-dimensional column vector space

over K on which groups G and G0 act by matrix multiplication. For any integer r > 1, the

groups G and G0 act diagonally on the r-fold tensor space E⊗r.
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Definition 3.1. (Doty [11]) For any integer r > 1, the Schur algebra of type Xm, denoted by

SX(n, r), is defined to be the image of the representation map

ρr : KG −→ EndK(E⊗r),

which equals that of

ρr
0 : KG0 −→ EndK(E⊗r).

For r = 0, we define SX(n, 0) = K.

Note that the coefficient spaces of E⊗r over G and G0 are the coalgebras K[G]0r and

K〈G0〉r respectively (for definition see §2.2 and §2.3). Hence E⊗r is a homogeneous polynomial

representation of G0 of degree r. By Lemma 2.8 the two images in the definition coincide.

Although we require m > 2 in type Bm and Cm, and m > 4 in type Dm, it is actually

unnecessary for the definition. For smaller positive integer m, the Lie group still exists as a

linear subgroup of GLn. So the corresponding Schur algebra can be defined in the same way.

The case when m = 1 will be discussed in §5.

Corollary 3.2. For any integer r > 0, there are algebra isomorphisms from SX(n, r) to the

linear dual of the coalgebra K[G]0r, and to the linear dual of K〈G0〉r.

It follows from Lemma 2.4 and Lemma 2.6 directly. In type Am, the coalgebra K〈GLn〉r =

K[cij ]r. Hence the Schur algebra SA(n, r) coincides with SK(n, r) defined by Green [16].

By Lemma 2.5 and Corollary 3.2, the module category mod(SX(n, r)) is equivalent to the

right comodule category comod(K〈G0〉r). The latter is equivalent to MX(n, r), the category of

r-homogeneous polynomial representations of G0. Indeed since SX(n, r) is a quotient algebra

of KG0, any SX(n, r)-module is naturally a representation of G0. It is in fact homogeneous

of degree r. Conversely any such representation of G0 arises in this way.

Corollary 3.3. There is a natural equivalence of categories between mod(SX(n, r)) and

MX(n, r).

A representation U of G0 is said to be a sub-quotient of another representation V , if U is

isomorphic to a quotient of some submodule of V . By Lemma 2.7, sub-quotients of E⊗r lie in

MX(n, r) since E⊗r does itself.

Proposition 3.4. Any homogeneous polynomial representation of G0 of degree r is a sub-

quotient of (E⊗r)⊕l for some l > 1.
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Proof . By definition 3.1, E⊗r is faithful over the Schur algebra SX(n, r). Hence SX(n, r) as

the regular module is a submodule of the direct sum of several copies of E⊗r, and so is every

projective module. Take any homogeneous polynomial representation V of G0 of degree r.

View it as an SX(n, r)-module. Then the projective cover of V is a submodule of (E⊗r)⊕l for

some l > 1. Since V is a quotient of its projective cover, it is a sub-quotient of (E⊗r)⊕l.

3.2 Dominant weights of Schur algebras

Note that E is a simple Weyl module. By [7], the tensor product of Weyl modules over an

algebraic group has a filtration with sections being Weyl modules. Let πX(n, r) and πX
0 (n, r)

be the sets of highest weights of the Weyl modules occurred in E⊗r over G and G0 respectively.

They are independent of the field K as Weyl modules are integrally defined. When K = C,

Weyl modules are simple and E⊗r is semisimple. Hence πX(n, r) and πX
0 (n, r) consist of

highest weights of simple direct summands in E⊗r. By using Littelmann’s path model to

decompose E⊗r, the set πX(n, r) has been determined in [22].

Roots and dominant weights of an algebraic group can be calculated from its Lie algebra.

Refer to [18] or [22] for the calculation of G, which can be carried over to G0. Write λ0 =

ε1 + ε2 + . . . + εn and ε0 = εi + εi′ , where i′ = n + 1− i. Thus in types Cm and Dm, n = 2m

is even and ε0 = ε1 + εn = . . . = εm + εm+1, λ0 = mε0. In type Bm, n = 2m + 1 is odd and

ε0 = ε1 + εn = . . . = εm + εm+2 = 2εm+1, 2λ0 = nε0.

Let us denote by respectively Φ+(Xm) and Λ+(Xm) the sets of positive roots and dominant

weights of G in type Xm; Φ+
0 (Xm) and Λ+

0 (Xm) those of G0 in type Xm. By [22], dominant

weights in Λ+(Bm) and Λ+(Dm) may have fractional coefficients, while πX(n, r) only involves

integral coefficients. Hence we will only consider the set Λ+(Xm)int of dominant weights with

integral coefficients instead of Λ+(Xm), and similarly Λ+
0 (Xm)int instead of Λ+

0 (Xm). When

X = A or C, we have Λ+(Xm)int = Λ+(Xm) and Λ+
0 (Xm)int = Λ+

0 (Xm).

We write N0 for the set of non-negative integers. In type Am (m > 1):

Φ+(Am) = Φ+
0 (Am) = {εi − εj : 1 6 i < j 6 n},

Λ+(Am) = {
m∑

i=1

aiεi : a1 > a2 > . . . > am, a1, . . . , am ∈ N0},

Λ+
0 (Am) = {

m+1∑

i=1

aiεi : a1 > a2 > . . . > am+1, a1, . . . , am+1 ∈ Z}

= {
m∑

i=1

aiεi + a0λ0 : a1 > . . . > am, a1, . . . , am ∈ N0, a0 ∈ Z}.
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In type Bm (m > 2):

Φ+(Bm) = {εi ± εj : 1 6 i < j 6 m; εi : 1 6 i 6 m},

Φ+
0 (Bm) = {εi − εj , εi + εj − ε0 : 1 6 i < j 6 m; εi − εm+1 : 1 6 i 6 m},

Λ+(Bm)int = {
m∑

i=1

aiεi : a1 > a2 > . . . > am, a1, . . . , am ∈ N0},

Λ+
0 (Bm)int = {

m∑

i=1

aiεi + a0εm+1 : a1 > a2 > . . . > am, a1, . . . , am ∈ N0, a0 ∈ Z}.

In type Cm (m > 2):

Φ+(Cm) = {εi ± εj : 1 6 i < j 6 m; 2εi : 1 6 i 6 m},

Φ+
0 (Cm) = {εi − εj , εi + εj − ε0 : 1 6 i < j 6 m; εi − εi′ : 1 6 i 6 m},

Λ+(Cm) = {
m∑

i=1

aiεi : a1 > a2 > . . . > am, a1, . . . , am ∈ N0},

Λ+
0 (Cm) = {

m∑

i=1

aiεi + a0ε0 : a1 > a2 > . . . > am, a1, . . . , am ∈ N0, a0 ∈ Z}.

In type Dm (m > 4):

Φ+(Dm) = {εi ± εj : 1 6 i < j 6 m},

Φ+
0 (Dm) = {εi − εj , εi + εj − ε0 : 1 6 i < j 6 m},

Λ+(Dm)int = {
m∑

i=1

aiεi : a1 > . . . > am−1 > |am|, a1, . . . , am ∈ Z},

Λ+
0 (Dm)int = {

m∑

i=1

aiεi + a0ε0 : a1 > . . . > am−1 > |am|, a0, a1, . . . , am ∈ Z}.

Note that the integers a1, . . . , am−1 in Λ+(Dm)int and Λ+
0 (Dm)int are actually non-negative.

For n, r and i in N0, let Λ+(n, r) = {(a1, a2, . . . , an) : a1 > a2 > . . . > an,
∑n

i=1 ai =

r, a1, a2, . . . , an ∈ N0} be the set of partitions. Define Λ+
i (n, r) = {(a1, a2, . . . , an) ∈ Λ+(n, r) :

a1, . . . , an−i 6= 0}, and Λ±(n, r) = {(a1, a2 . . . , an) : (a1, . . . , an−1, |an|) ∈ Λ+(n, r)}. By

convention Λ+(n, r) = ∅ if r < 0. As in [22], a dominant weight
∑m

i=1 aiεi ∈ Λ+(Xm)int is

identified with a partition (a1, a2, . . . , am).

Proposition 3.5. (Theorem 4.5, [22]) The weight sets which describe the Schur algebras of
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classical groups are:

πA(n, r) =
⋃

i>0

Λ+(m, r − ni),

πB(n, r) =
⋃

i>0

Λ+(m, r − 2i) ∪
⋃

i>0

Λ+
i (m, r − (2i + 1)),

πC(n, r) =
⋃

i>0

Λ+(m, r − 2i),

πD(n, r) =
⋃

i>0

Λ±(m, r − 2i).

By sending λ0 to zero (note that ε0 is sent to zero too in types B, C and D), we ob-

tain a surjection Λ+
0 (Xm)int −→ Λ+(Xm)int, and two bijection Φ+

0 (Xm) −→ Φ+(Xm) and

πX
0 (n, r) −→ πX(n, r). Define the degree of a dominant weight λ = a1ε1 + . . . + anεn to

be deg(λ) = a1 + . . . + an. For example deg(λ0) = n and deg(ε0) = 2. Then πX
0 (n, r) =

Λ+
0 (Xm)int ∩ {λ + a0λ0 : λ ∈ πX(n, r), a0 ∈ Q0, deg(λ) + na0 = r}, where Q0 is the set of

non-negative rational numbers.

Corollary 3.6. The weight sets which describe the Schur algebras of classical similitudes are:

πA
0 (n, r) = {

n∑

i=1

aiεi : a1 > a2 > . . . > an, a1, . . . , an ∈ N0,

n∑

i=1

ai = r},

πB
0 (n, r) =

⋃

i>0

{
m∑

i=1

aiεi + (2i)εm+1 : (a1, . . . , am) ∈ Λ+(m, r − 2i)} ∪

⋃

i>0

{
m∑

i=1

aiεi + (2i + 1)εm+1 : (a1, . . . , am) ∈ Λ+
i (m, r − (2i + 1))},

πC
0 (n, r) = {

m∑

i=1

aiεi + a0ε0 : a1 > a2 > . . . > am, a0, a1, . . . , am ∈ N0,
m∑

i=1

ai + 2a0 = r},

πD
0 (n, r) = {

m∑

i=1

aiεi + a0ε0 : a1 > . . . > am−1 > |am|,
m∑

i=1

ai + 2a0 = r,

a0, a1, . . . , am−1 ∈ N0, am ∈ Z}.

Under the assumption on K, the coalgebras K[G]0r and K〈G0〉r are integral (See Oehms

[23] for the symplectic bideterminant basis over Z, and Doty and Hu [13] for the orthogonal

bideterminant basis over Z[12 ]). Hence the Schur algebra SX(n, r) is integral by Corollary

3.2. In particular the dimension of SX(n, r) is independent of the field K. For a dominant

weight λ of G or G0, write dλ for the dimension of the Weyl module W (λ) with highest weight

λ. By the comparison of πX(n, r) and πX
0 (n, r), there exists for each λ ∈ πX(n, r) a unique

λ′ ∈ πX
0 (n, r) with λ′ − λ ∈ Q0λ0. The restriction of the Weyl module W (λ′) over G0 to G is

just the Weyl module W (λ) over G, and hence dλ = dλ′ . By Corollary 4.4 and Proposition

5.2 in [22] we have the following.
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Corollary 3.7. The dimension of the Schur algebra SX(n, r) is
∑

λ∈πX(n,r) d2
λ, which equals

∑
µ∈πX

0 (n,r) d2
µ. In particular, when r = 2, dimSA(n, 2) =

(
n2+1

2

)
, dimSB(n, 2) = dimSD(n, 2) =

(
n2+1

2

)− (n + 2)(n− 1), and dimSC(n, 2) =
(
n2+1

2

)− (n− 2)(n + 1).

Let λ and µ be two dominant weights of G or G0. We say λ is dominance bigger than

µ, denoted by λ D µ, if the difference λ − µ is a linear combination of positive roots with

non-negative integer coefficients. A subset π of Λ+(Xm) or Λ+
0 (Xm) is said to be saturated,

if λ D µ and λ ∈ π imply µ ∈ π. For example Λ+(Xm)int and Λ+
0 (Xm)int are saturated in

Λ+(Xm) and Λ+
0 (Xm) respectively. Given dominant weights λ and µ in πX(n, r), let λ′ and

µ′ be the corresponding dominant weights in πX
0 (n, r). It is clear that λ D µ if and only if

λ′ D µ′. The next Lemma follows from this fact and Corollary 4.7 in [22].

Lemma 3.8. The following are equivalent for any integer r > 1: (1) πX(n, r) ⊂ Λ+(Xm) is

saturated; (2) πX
0 (n, r) ⊂ Λ+

0 (Xm) is saturated; (3) X = A, C, or D.

Take Xm = B2 and r = 3 for example. We have that πB(5, 3) = {(30), (21), (11), (10)} =

{3ε1, 2ε1 + ε2, ε1 + ε2, ε1}. Notice that 3ε1 D 2ε1 because the difference ε1 is a positive root.

But 3ε1 belongs to πB(5, 3), while 2ε1 does not. Hence πB(5, 3) is not saturated in Λ+(B2)int.

Similarly πB
0 (5, 3) = {3ε1, 2ε1 + ε2, ε1 + ε2 + ε3, ε1 + 2ε3} is not saturated in Λ+

0 (B2)int.

3.3 Generalized Schur algebras

Generalized Schur algebras were introduced by Donkin [8]. Let H be a reductive algebraic

group over K, and Λ+(H) the set of dominant weights of H. The coordinate ring K[H] has

a natural left H-module structure given by (g · c)(h) = c(hg), for g, h ∈ H and c ∈ K[H].

Given a finite saturated subset π of Λ+(H), a rational KH-module V belongs to π if

every composition factor of V has highest weight in π. Let Oπ(K[H]) be the biggest KH-

submodule of K[H] which belongs to π. This is a finite dimensional coalgebra. The generalized

Schur algebra associated to π is by definition the linear dual of Oπ(K[H]), denoted by S(π).

Recall that dλ denotes the dimension of the Weyl module of H with highest weight λ. Write

rmod(KH) for the category of rational KH-modules.

Proposition 3.9. (Donkin [8]) Let π be a finite saturated subset of Λ+(H).

(1) The generalized Schur algebra S(π) is finite dimensional with dimS(π) =
∑

λ∈π d2
λ.

(2) The module category mod(S(π)) is an extension-closed full subcategory of rmod(KH),

consisting of those H-modules which belong to π.

The following lemma follows from (1.2e) and (1.2g) of [15].
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Lemma 3.10. Let H be as above and V a rational KH-module. Then the coefficient space

cf(V ) is a KH-submodule of K[H]. Moreover V and cf(V ) share the same set of composition

factors as KH-modules.

Theorem 3.11. In types Am (m > 1), Cm (m > 2) and Dm (m > 4), for any integer r > 1,

the Schur algebra SX(n, r) is isomorphic to the generalized Schur algebra of the classical group

G associated to πX(n, r), and to the generalized Schur algebra of G0 associated to πX
0 (n, r).

Proof . Fix a type Xm as required and an integer r > 1. Write π for πX(n, r) in the proof. We

will show that K[G]0r and Oπ(K[G]) coincide as subcoalgebras of K[G]. Consequently their

linear dual, the Schur algebra SX(n, r) and the generalized Schur algebra S(π), are isomorphic

as algebras. Similar arguments work for G0.

By Corollary 3.7 and Proposition 3.9, the two algebras have the same dimension, and so

do the two coalgebras. Thus it suffices to show that K[G]0r is contained in Oπ(K[G]) as a

subcoalgebra. By definition, Oπ(K[G]) is the sum of all KG-submodules of K[G] belonging

to π. Since π = πX(n, r) is saturated, it is the set of highest weights of simple composition

factors of E⊗r over G. That means E⊗r belongs to π as a KG-module. By Lemma 3.10, the

coefficient space K[G]0r of E⊗r also belongs to π. Hence K[G]0r is contained in Oπ(K[G]). Since

the coalgebra structure of both coalgebras comes from that of K[G], the inclusion preserves

their coalgebra structure.

Remark 3.12. When r = 0, πX(n, 0) = {0} = πX
0 (n, 0) is always saturated, and the Schur

algebra SX(n, 0) = K is a generalized Schur algebra in any type.

When r > 1, the weight sets πB(n, r) and πB
0 (n, r) of type Bm (m > 2) are not saturated

by Lemma 3.8. By comparing the dimension of the Schur algebra SB(n, r) and a generalized

Schur algebra, it is clear that SB(n, r) has no chance to be a generalized Schur algebra over

SOn or SO0
n.

In type A the result is actually due to Green [16]. Donkin defined generalized Schur

algebras in such a way that Schur algebras of type A provided important examples. Donkin

proved the statement for Schur algebras of type C in [9], in a different way. Recently Doty

and Hu [13] provided a different proof of the result in type D.

We say an algebra is indecomposable if it cannot be expressed as a direct sum of two

proper subalgebras.

Corollary 3.13. In types Am (m > 1), Cm (m > 2) and Dm (m > 4), any indecomposable

generalized Schur algebra S(π) of the classical group G is a quotient of SX(n, r) for some
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integer r > 0.

Proof . Let π1 ⊆ π2 be two finite saturated subsets of Λ+(Xm)int. Then by definition

Oπ1(K[G]) is a subcoalgebra of Oπ2(K[G]). Dually S(π1) is a quotient of S(π2).

Notice that Λ+(Xm)int =
⋃

r>0 πX(n, r). In type A, we have πX(n, r) ⊆ πX(n, r + n) and

dominant weights of different degrees are not compatible with respect to the dominance order.

In types C and D, we have πX(n, r) ⊆ πX(n, r + 2) and dominant weights of even degrees are

not compatible with those of odd degrees. Therefore in types A, C and D, a finite saturated

subset π ⊆ Λ+(Xm)int such that S(π) is indecomposable must be contained in some πX(n, r).

So S(π) is a quotient of S(πX(n, r)), which is isomorphic to SX(n, r) by Theorem 3.11.

However the proof is not valid for G0. Since there are more dominant weights in Λ+
0 (Xm)int

than
⋃

r>0 πX
0 (n, r), there exists π ⊆ Λ+

0 (Xm)int which cannot be contained in any πX(n, r).

4 Schur algebras and hyperalgebras

In §4.1 we construct inverse systems from Schur algebras of a fixed type by using the coalgebra

approach. In §4.2 we prove that the corresponding hyperalgebra is contained in the inverse

limit integrally as a subalgebra, see Theorem 4.8. In §4.3 we discuss the quasi-heredity of

Schur algebras.

4.1 Construction of inverse systems

Let us fix a classical type Xm and the corresponding group of similitudes G0. Take a 1-

dimensional polynomial representation of G0 with representation map ρ : KG0 −→ K. It is

irreducible, and hence homogeneous. Let r0 be the degree, and µ the highest weight. Write

Kµ for the representation space. The coefficient function of Kµ, denoted by f0, is a polynomial

in K〈G0〉r0 such that ρ(g) = f0(g) ∈ K ∼= End(Kµ) for any group element g ∈ G0. Recall

that K〈G0〉r0 = K[cij ]r0/I〈G0〉r0 is a coalgebra with coalgebra structure inherited from that

of K[cij ]r0 (see §2.3), where I〈G0〉r0 = {c ∈ K[cij ]r0 : c(g) = 0, ∀g ∈ G0}.

Lemma 4.1. (1) The comultiplication ∆ of K〈G0〉r0 sends f0 to f0 ⊗ f0.

(2) For any integer r > 0, multiplying f0 gives rise to a coalgebra injection (·f0) :

K〈G0〉r −→ K〈G0〉r+r0.

Proof . (1) By §2.4, the coefficient space cf(Kµ) is a subcoalgebra of K〈G0〉r0 . For any

elements g and h in G0, ∆(f0)(g ⊗ h) = f0(g · h) = ρ(g · h) = ρ(g) · ρ(h) = f0(g) · f0(h). That

means ∆(f0) = f0 ⊗ f0.
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(2) By (1) multiplying f0 induces a coalgebra map from K[cij ]r to K[cij ]r+r0 . This map is

injective because there is no zero divisor in the polynomial ring. Note that the product of f0

and I〈G0〉r lies inside I〈G0〉r+r0 . Hence multiplying f0 induces a well-defined coalgebra map

(·f0) : K〈G0〉r −→ K〈G0〉r+r0 . Let c be a polynomial in K[cij ]r such that the product c·f0 = 0

in K〈G0〉r+r0 . Namely c · f0 ∈ I〈G0〉r+r0 . Thus 0 = (c · f0)(g) = c(g) · f0(g) for any g ∈ G0.

But ρ(g) = f0(g) 6= 0 since ρ : KG0 −→ K is a representation. Then c(g) = 0 for any g ∈ G0.

That is, the polynomial c belongs to I〈G0〉r. Therefore the map (·f0) : K〈G0〉r −→ K〈G0〉r+r0

is injective.

By taking the linear dual one obtains a surjection between Schur algebras (·f0)∗ : SX(n, r+

r0) −→ SX(n, r) (due to Corollary 3.2). The surjection gives rise to the inverse system of Schur

algebras as follows.

Proposition 4.2. (1) For each r = 0, 1, . . . , r0 − 1, {SX(n, r + r0k) : k > 0} is an inverse

system. We write lim←−k>0S
X(n, r + r0k) for the inverse limit.

(2) The surjection (·f0)∗ induces a full embedding of the category MX(n, r) ' mod(SX(n, r))

into the category MX(n, r+r0) ' mod(SX(n, r+r0)), which sends V in MX(n, r) to V ⊗K Kµ.

We denote this functor by (·f0)∗ too.

Proof . (1) For 0 6 r 6 r0 − 1, whenever 0 6 k1 6 k2 there exists a surjection SX(n, r +

r0k2) −→ SX(n, r + r0k1) by a (k2 − k1)-fold composition of (·f0)∗. Hence {SX(n, r + r0k) :

k > 0} is an inverse system indexed by non-negative integers with respect to the natural order.

(2) As an algebra surjection, (·f0)∗ naturally induces a full embedding between their

module categories (in the opposite direction). Take any V in MX(n, r) with K-basis {vi} and

coefficient functions {rij} ∈ K〈G0〉r, so that s · vj =
∑

i rij(s)vi for any s ∈ SX(n, r). Then

(·f0)∗(V ), the image of V in MX(n, r + r0), has the same K-basis {vi} as V and coefficient

functions rij · f0 ∈ K〈G0〉r+r0 . By identifying vi of (·f0)∗(V ) with vi ⊗ 1 of V ⊗K Kµ, it is

clear that (·f0)∗(V ) ∼= V ⊗K Kµ in MX(n, r + r0).

We have two examples for the above procedure. Firstly, consider the representation

of G0 sending a group element to its determinant. This is a n-homogeneous polynomial

representation with coefficient function det =
∑

σ∈Pn
sgn(σ)

∏n
i=1 ci,σ(i) and highest weight

λ0 = ε1 + ε2 + . . . + εn. We have surjections (·det)∗ : SX(n, r + n) −→ SX(n, r) for r > 0. On

the dominant weight level, adding λ0 provides an injection from πX
0 (n, r) to πX

0 (n, r +n). For

0 6 r 6 n− 1, the set of Schur algebras {SX(n, r + nk) : k > 0} forms an inverse system.

In types B, C and D, consider the representation of G0 sending a group element g to c0(g),

where c0 is the polynomial of degree 2 defined in §2. This is a 2-homogeneous polynomial
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representation with coefficient function c0 and highest weight ε0 = ε1+εn. We have surjections

(·c0)∗ : SX(n, r+2) −→ SX(n, r) for r > 0. And adding ε0 provides an injection from πX
0 (n, r)

to πX
0 (n, r + 2). The set {SX(n, r + 2k) : k > 0} forms an inverse system for r = 0 and r = 1.

Lemma 4.3. Let f0 be the polynomial det (in types A,B, C, D), or c0 (in types B, C,D). For

λ ∈ πX
0 (n, r), the functor (·f0)∗ : MX(n, r) −→ MX(n, r + r0) sends the Weyl module W (λ)

and the simple module L(λ) to W (λ + µ) and L(λ + µ) respectively.

Proof . We prove the case of Weyl modules when f0 = det, r0 = n and µ = λ0. The other

cases follows by similar arguments. By [7], any tensor product of Weyl modules of G0 has

a filtration with sections being Weyl modules. Now Kλ0 is a simple Weyl module, hence

W (λ) ⊗K Kλ0 is filtered by Weyl modules. Since λ + λ0 is a highest weight in the tensor

product, the Weyl module W (λ + λ0) occurs as a quotient of W (λ)⊗K Kλ0 . Note that W (λ)

and W (λ + λ0) restrict to the same Weyl module on G (see the argument before Corollary

3.7). In particular dimW (λ) = dimW (λ+λ0). But dimW (λ) = dim(W (λ)⊗K Kλ0). It follows

that W (λ)⊗K Kλ0
∼= W (λ + λ0).

By Remark 2.3, we have (det)2 = (c0)n in type Bm and hence ((·det)∗)2 = ((·c0)∗)n. In

type Cm and Dm, we have det = (c0)m and hence (·det)∗ = ((·c0)∗)m. So the two kinds of

inverse systems introduced above are compatible (compare Theorem 6.3 in [22]).

Proposition 4.4. In type Bm (m > 2), for any i = 0, 1, . . . , n−1 and j = 0, 1, lim←−k>0S
X(n, i+

kn) = lim←−k>0S
X(n, j + 2k). In type Cm (m > 2) and Dm (m > 4), for any i = 0, 1, . . . , n− 1

and j = 0, 1, lim←−k>0S
X(n, i + kn) = lim←−k>0S

X(n, j + 2k) for i ≡ j (mod 2).

We set IL(Am) =
⊕n−1

i=0 lim←−k>0S
A(n, i + kn), IL(Bm) = lim←−k>0S

B(n, i + kn) (for any i),

and IL(Xm) =
⊕1

r=0 lim←−k>0S
X(n, i+2k) in types Cm and Dm. Since the injections (·det) and

(·c0) between coalgebras are defined integrally, the inverse systems and inverse limits of Schur

algebras are also defined integrally.

4.2 Recovering Hyperalgebras from Schur algebras

We refer to [20] for the definition of hyperalgebra, where it is called the algebra of distributions.

Take an algebraic group H over K. Let I be the argumentation ideal of the coordinate ring

K[H] as a Hopf algebra. Namely I consists of the rational functions on H which annihilate

the unit of H. The hyperalgebra hy(H) is by definition the union
⋃

k>0(K[H]/Ik+1)∗. This is a

subalgebra of K[H]∗. When K = C, the hyperalgebra coincides with the universal enveloping

algebra U(h) of the Lie algebra h of H.
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Let V be a rational KH-module with representation map ρ : KH −→ EndK(V ). Let {vi}
be a basis of V , and {rij} the coefficient functions so that ρ(h) · vj =

∑
i rij(h)vi for h ∈ H.

By §2.4, the right K[H]-comodule on V is given by ρ∗ : V −→ V ⊗ cf(V ) ↪→ V ⊗K[H] and

ρ∗(vj) =
∑

i vi ⊗ rij . By §7.11 in [20], an element u of hy(H) acts on V by composing

V -ρ∗
V ⊗K[H] - V ⊗K1⊗ u - V .'

In this way V becomes an hy(H)-module. Write ρ̃ : hy(H) −→ EndK(V ) for the representation

map. We have that ρ̃(u)(vj) =
∑

i u(rij)vi.

Lemma 4.5. The representation map ρ has the same image as the representation map ρ̃.

Proof . The proof is similar to Lemma 2.6. Note that the representation map ρ̃ factors through

cf(V )∗. That is, there exists an algebra map β : hy(H) −→ cf(V )∗ such that ρ̃ = τ ◦ β, where

τ : cf(V )∗ −→ EndK(V ) is the structure map of V as a faithful cf(V )∗-module. In fact, any

u ∈ hy(H) ⊂ K[H]∗ is a linear function on K[H], and hence a linear function on cf(V ). And

this defines the map β. Now it suffices to show the surjectivity of β. Equivalently, for any

c ∈ cf(V ), if β(u)(c) = 0 for all u ∈ hy(H), then c = 0. If c does not belong to I and

is nonzero, then the counit of the Hopf algebra K[H] acts on c nontrivially. If c ∈ I and is

nonzero, say c ∈ Ik\Ik+1 for some k > 1, then there exists an element in (K[H]/Ik+1)∗ acting

on c nontrivially.

When considering the classical group G and the polynomial representation E⊗r (r > 1),

we have representation maps ρr : KG −→ EndK(E⊗r) and ρ̃r : hy(G) −→ EndK(E⊗r). By

Lemma 4.5, ρ̃r factors through the Schur algebra SX(n, r) = Im(ρr).

The next lemma shows that the surjections (·det)∗ and (·c0)∗ between Schur algebra,

constructed in the previous subsection, are compatible with ρr and ρ̃r.

Lemma 4.6. The following diagrams are commutative (where (·det)∗ is defined for all types

and (·c0)∗ defined for types B, C, D):

KG

SX(n, r) SX(n, n + r)¾ (·det)∗""""ρr

HHHHH ρr+n

KG

SX(n, r) SX(n, r + 2)¾ (·c0)∗""""ρr

HHHHH ρr+2

hy(G)

SX(n, r) SX(n, n + r)¾ (·det)∗""""ρ̃r

HHHHH ρ̃r+n

hy(G)

SX(n, r) SX(n, r + 2)¾ (·c0)∗""""ρ̃r

HHHHH ρ̃r+2

17



Proof . For the first diagram, one has to show that ρr(g) and (·det)∗ ◦ ρr+n(g) are equal in

SX(n, r) for any g ∈ G. That is, they have the same evaluation on the coalgebra K[G]0r . By

definition (·det)∗ is the dual of (·det) : K[G]0r = K〈G0〉r −→ K〈G0〉r+n = K[G]0r+n. For any

c ∈ K[G]0r, we have that ((·det)∗◦ρr+n(g))(c) = (ρr+n(g))(c·det) = (c·det)(g) = c(g)·det(g) =

c(g) = (ρr(g))(c). The other diagrams follow similarly by using the equalities det = 1 (in all

types) and c0 = 1 (in types B, C and D) on G and hy(G).

Remark 4.7. The Schur algebra can also be defined as the image of the hyperalgebra hy(G0) of

G0. However, the diagrams in Lemma 4.6 are not commutative for KG0 or hy(G0). Because

both equalities det = 1 and c0 = 1 fail on G0 and hy(G0).

By the universal property of inverse limit, there exists an algebra homomorphism from

the hyperalgebra hy(G) to the inverse limit IL(Xm) of Schur algebras. Write τ for this map.

Theorem 4.8. The hyperalgebra is contained in the inverse limit of Schur algebras, i.e. τ :

hyK(G) −→ IL(Xm) is an injection.

Proof . First we will show that the representation ⊕r>0E
⊗r over hy(G) is faithful. The coeffi-

cient space of ⊕r>0E
⊗r over G is K[G]. By definition the hyperalgebra hy(G) is contained in

the dual of K[G]. So for any nonzero element u in hy(G), there exist some c in K[G] such that

c(u) 6= 0. This means that the kernel of the representation map hy(G) −→ EndK(⊕r>0E
⊗r)

is trivial. Namely ⊕r>0E
⊗r is faithful over hy(G).

Notice that hy(G) sends E⊗r to E⊗r. Therefore for any nonzero element u in hy(G),

there exists a non-negative integer N such that u acts nontrivially on E⊗N . Namely the

representation map ρ̃N : hy(G) −→ EndK(E⊗N ) sends u to a nonzero element in SX(n,N).

Note that in type B, the integer N can always be chosen to be even. This implies that τ sends

u to a nonzero element in IL(Xm), i.e. τ : hy(G) −→ IL(Xm) is injective.

In the quantum case, this embedding was developed by Beilinson, Lusztig and MacPher-

son [1] in type A and was conjectured by Oehms [23] in type C. Recently Doty [12] studied

the inverse system of generalized Schur algebras of linear algebraic groups and recovered the

corresponding quantized enveloping algebra.

4.3 Quasi-heredity of Schur algebras

(Integral) quasi-hereditary algebras were introduced in [2, 3], see also [21]. Let S be a finite

dimensional quasi-hereditary algebra over K, and π the index set of isomorphism classes of

simple S-modules. Suppose π = {λ1, λ2, . . . , λm} with the partial order ′ >′ satisfying that
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λi > λj implies i < j. For 1 6 i 6 m, write eλi
for a primitive idempotent of S corresponding

to λi. Then

0 ⊂ Seλ1S ⊂ S(eλ1 + eλ2)S ⊂ . . . ⊂ S(eλ1 + eλ2 + . . . + eλm)S = S

provides a socalled heredity chain of S. Each section S(eλ1 + . . . + eλi)S/S(eλ1 + . . . + eλi−1)S

is actually a direct sum of copies of the standard module ∆(λi). The heredity chain shows

that S has a filtration of standard modules, and that Ext1(∆(λi), ∆(λj)) 6= 0 implies i > j.

Moreover, the algebra S is called integral quasi-hereditary if it is integrally defined and if the

heredity chain is integrally defined as well.

Recall that Theorem 3.11 shows Schur algebras of types A, C and D are generalized Schur

algebras. Since generalized Schur algebras are integral quasi-hereditary by [8, 10], we have the

following.

Corollary 4.9. In types Am (m > 1), Cm (m > 2) and Dm (m > 4), for any integer r > 0,

Schur algebras SX(n, r) is integral quasi-hereditary with index set πX(n, r) with respect to the

dominance order.

The standard module ∆(λ) of SX(n, r), for λ ∈ πX(n, r) (and πX
0 (n, r)), is the Weyl

module W (λ) for G (and G0 respectively).

Proposition 4.10. In types Am (m > 1), C (m > 2) and Dm (m > 4), the surjections (·det)∗

and (·c0)∗ between Schur algebras are compatible with the integral quasi-hereditary structure.

That is, the kernels of (·det)∗ and (·c0)∗ are ideals in their heredity chains.

Proof . We only prove the statement for the surjection (·det)∗ : SX(n, r + n) −→ SX(n, r).

The proof for (·c0)∗ is similar. As a rational KG-module, also as its own regular module,

SX(n, r) has composition factors belonging to πX(n, r). By the first commutative diagram in

Lemma 4.6, SX(n, r) is a quotient KG-module of SX(n, r + n) belonging to πX(n, r).

We view the module category mod(SX(n, r)) as a full subcategory of the category of

rational representations of G. By Proposition 4.2 (2), (·det)∗ induces a full embedding of

mod(SX(n, r)) into mod(SX(n, r+n)). The one-dimensional representation Kdet is the trivial

representation over G. Hence by Lemma 4.3, (·det)∗ sends the standard module ∆(λ) of

SX(n, r), for λ ∈ πX(n, r), to the standard module ∆(λ) of SX(n, r + n). Moreover, it sends

the regular module SX(n, r) ∈ mod(SX(n, r)) to SX(n, r) ∈ mod(SX(n, r + n)), which has a

filtration of the standard modules ∆(λ) for λ ∈ πX(n, r).

Note that the index set πX(n, r) is a saturated subset of πX(n, r+n). For S := SX(n, r+n)

for short, write e for the sum of the eλ’s with λ running through πX(n, r + n)\πX(n, r). By
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the hereditary structure of S, the ideal SeS generated by e lies in the kernel of (·det)∗ :

S −→ SX(n, r). Note that when K = C, the Schur algebras are semisimple (Corollary

4.3 [22]), and each section of the hereditary chain is just ∆(λ)⊕dλ , where dλ = dimC∆(λ). So

dimC(S/SeS) =
∑

λ∈πX(n,r) d2
λ. Since Schur algebras are integral quasi-hereditary, dimK(S/SeS)

is independent of the field K, and it equals dimK(SX(n, r)) by Corollary 3.7. Therefore

Ker((·det)∗) = SeS, which is an ideal in the heredity chain of S.

For dominant weights λ and µ of G0, let [λ : µ] be the multiplicity of the simple module

L(µ) in the Weyl module W (λ) of G0. We have the following analogue of James’ column

removal Theorem [19], and an even stronger version in types C, D. Recall that λ0 = ε1 + ε2 +

. . . + εn, and ε0 = ε1 + εn.

Corollary 4.11. Let λ and µ be dominant weights in πX
0 (n, r). In types A, C and D, we have

that [λ : µ] = [λ+λ0 : µ+λ0]. Moreover in types C and D, we have that [λ : µ] = [λ+ε0 : µ+ε0].

Proof . The multiplicity of L(µ) in W (λ) over G0 equals the multiplicity of L(µ) in ∆(λ)

over SX(n, r). By Corollary 4.10, the full embedding of categories (·det)∗ : MX(n, r) −→
MX(n, r + n) and (·c0)∗ : MX(n, r) −→ MX(n, r + 2) preserve the multiplicity.

We would like to mention that this is a special case of Corollary 2 in [6, page 232], where

Donkin considers all reductive algebraic groups.

5 Examples of Schur algebras

In §5.1 we calculate the Schur algebras of SO2 and O2, and compare the Schur algebras of

SP2 and SO3 with SL2. In §5.2 we show the Schur–Weyl duality in types B, C and D

when the parameter r = 2, and obtain as byproducts the algebra structure of SX(n, 2) and

some information on decomposition numbers. The symplectic Schur–Weyl duality for arbitrary

parameter has been proved by Dipper, Doty and Hu [5], while the orthogonal version is proved

now by Doty and Hu [13].

5.1 Calculation and comparison of some Schur algebras

Recall that the base field K is algebraically closed of characteristic not 2. These examples

generalize those in [22] where K = C.

Example. The classical group of type C1 is the symplectic group SP2 = {M ∈ M2(K) :

M trJ ′M = J ′}, where J ′ =
(

0 1

−1 0

)
. Notice that M trJ ′M = J ′ if and only if det(M) = 1.

Hence SP2 = SL2 the special linear group, and SC(2, r) = SA(2, r) for any r > 0.

20



Example. The classical group of type D1 is the special orthogonal group

SO2 = {M ∈M2(K) : M trJM = J = MJM tr, det(M) = 1},

where J =
(

0 1

1 0

)
. The coordinate ring K[SO2] = K[cij ]/I(SO2), where I(SO2) is generated

by {c11c22 − c12c21 − 1, c11c22 + c12c21 − 1, 2c11c12, 2c21c22, 2c11c21, 2c12c22}. It follows

that I(SO2)0 = 〈c12, c21〉 and K[SO2]0 = K[cij ]/〈c12, c21〉 ∼= K[c11, c22]. For r > 0, the

homogeneous part K[SO2]0r has a basis {ci
11c

r−i
22 : i = 0, 1, . . . , r}. Hence SD(2, r), isomorphic

to (K[SO2]0r)
∗, has an integral dual basis {ξ1i2r−i,1i2r−i = (ci

11c
r−i
22 )∗ : i = 0, 1, . . . , r} (Green’s

notation in [16]). It is a subalgebra of SA(2, r) isomorphic to K⊕(r+1).

Example. The classical group of type B1 is the algebraic group SO3. We will show that the

Schur algebra SB(3, r) is isomorphic to SA(2, 2r) when r > 2. By [22], the two algebras are

isomorphic over C and hence have the same dimension. So it suffices to construct a surjective

coalgebra map between their linear dual K〈SO0
3〉r and K〈GL2〉2r.

By definition

SO0
3 = {M ∈M3(K) : M trJM = MJM tr = sJ, det(M) = t, t, s ∈ K∗},

where J =

(
0 0 1

0 1 0

1 0 0

)
. The coalgebra K〈SO0

3〉 = K[cij ]/I〈SO0
3〉, and the ideal I〈SO0

3〉 is

generated by quadratic relations {c1(i, j), c2(i, j) : ∀ j 6= i′} ∪ {c1(i, i′) − c1(1, 3), c2(j, j′) −
c1(1, 3) : ∀ i, j}, where i′ = 4 − i. For example c1(1, 1) = 2c31c11 + c2

21, c1(1, 2) = c31c12 +

c21c22 + c11c32, c1(2, 2) − c1(1, 3) = c12c32 + c22c22 + c32c12 − c11c33 − c21c23 − c31c13. To

distinguish from SO0
3, we write {dij}i,j=1,2 for the coordinate functions of GL2. Recall that

K〈GL2〉 = K[dij ] (see §2.3).

Sending entries to the corresponding entries:
(

c11 c12 c13

c21 c22 c23

c31 c32 c33

)
−→

(
d2
11 −√2d11d12 −d2

12

−√2d11d21 d11d22 + d12d21
√

2d12d22

−d2
21

√
2d21d22 d2

22

)

we obtain a linear map from K[cij ]1 to K[dij ]2, denoted by φ. It is actually a coalgebra map,

i.e. ∆(φ(cij)) = φ(∆(cij)), for any i, j = 1, 2, 3. For instance when i = j = 1,

∆(φ(c11)) = ∆(d2
11) = (∆(d11))2 = (d11 ⊗ d11 + d12 ⊗ d21)2

= d2
11 ⊗ d2

11 + 2d11d12 ⊗ d11d21 + d2
12 ⊗ d2

21,

φ(∆(c11)) = φ(c11 ⊗ c11 + c12 ⊗ c21 + c13 ⊗ c31)

= φ(c11)⊗ φ(c11) + φ(c12)⊗ φ(c21) + φ(c13)⊗ φ(c31)

= d2
11 ⊗ d2

11 + (−
√

2d11c12)⊗ (−
√

2d11d21) + d2
12 ⊗ d2

21

= d2
11 ⊗ d2

11 + 2d11d12 ⊗ d11d21 + d2
12 ⊗ d2

21.
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Extending φ by φ2(c1c2) = φ(c1)φ(c2), for any c1, c2 ∈ K[cij ]1, we obtain a coalgebra map

φ2 : K[cij ]2 −→ K[dij ]4. We claim that φ2 is surjective.

Any monomial d in K[dij ]4 is a product d1d2 with d1 and d2 having degree 2. If d1 = d11d22

and d2 = d2
11, then d1d2 = φ2(c11c22 − 1

2c12c21) lies in Im(φ2). If d1 = d11d22 and d2 = d2
22,

then d1d2 = φ2(c22c33 − 1
2c23c32) lies in Im(φ2). If d1 = d11d22 and d2 6= d2

11 or d2
22, write

d2 = dk1l1dk2l2 (where k1, k2, l1, l2 ∈ {1, 2}). Then either both d11dk1l1 and d22dk2l2 or both

d11dk2l2 and d22dk1l1 lie in Im(φ), and hence the product d1d2 lies in Im(φ2). Similarly if

d1 = d12d21, then d1d
2
12 = φ2(−c22c13 + 1

2c12c23) and d1d
2
21 = φ2(−c22c31 + 1

2c21c32) lie in

Im(φ2). If d1 = d12d21 and d2 6= d2
12 or d2

21, then by rearranging the order in the product, it is

not hard to see that d1d2 lies in Im(φ2). Finally if neither d1 nor d2 belongs to {d11d22, d12d21},
then the product naturally lies in Im(φ2). In this way we have shown that φ2 is surjective.

Extending φ inductively we have surjective coalgebra maps φr : K[cij ]r −→ K[dij ]2r for

r > 2. Now it is straightforward to check all quadratic relations in I〈SO0
3〉 belong to the kernel

of φ2. For instance,

φ2(2c31c11 + c2
21) = −2d2

21d
2
11 + (−

√
2d11d21)2 = 0,

φ2(c31c12 + c21c22 + c11c32) = (−d2
21)(−

√
2d11d12) + (−

√
2d11d21)(d11d22 + d12d21) + d2

11(
√

2d21d22)

= 0.

Since φr is defined to preserve product, I〈SO0
3〉r lies in the kernel of φr (r > 2). So we have

obtained a surjective coalgebra map K〈SO0
3〉r −→ K〈GL2〉2r for any r > 2.

Let us define Schur algebras for the orthogonal group On = {M ∈ Mn(K) : M trJM =

J = MJM tr}, where J is any symmetric invertible matrix and n > 2. The special orthogonal

group SOn is the subgroup of On with determinant 1. The group of orthogonal similitudes

is O0
n = {M ∈ Mn(K) : M trJM = sJ = MJM tr, 0 6= s ∈ K}. As subgroups of GLn, the

algebraic groups On and O0
n act on E and on the tensor space E⊗r (r > 1). The corresponding

Schur algebra, denoted by So(n, r), is defined to be the image of the representation map

KOn −→ EndK(E⊗r), which equals the image of KO0
n −→ EndK(E⊗r). By convention

So(n, 0) = K. Write K[On]0r (and K〈O0
n〉r) for the coefficient space of E⊗r over On (and O0

n

respectively). It is in fact the restriction of K[cij ]r to On (and O0
n respectively). By Lemma

2.6, the orthogonal Schur algebra So(n, r) is isomorphic to the dual of the coalgebras K[On]0r

and K〈O0
n〉r. Take J as in Remark 2.1.

Proposition 5.1. When n is odd, we have So(n, r) = SB(n, r) for r > 0. When n is even,

we have So(n, r) = SD(n, r) for r < n/2.
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Proof . Write I(O0
n) for the ideal of K[cij ] generated by {c1(i, i′) − c2(j, j′) : ∀ i, j} and

{c1(i, j), c2(i, j) : ∀ j 6= i′}. This is a homogeneous ideal. The coalgebra K〈O0
n〉r is the

quotient of K[cij ]r factoring out the homogeneous part I(O0
n)r = I(O0

n) ∩K[cij ]r. It is clear

that when n is odd, I(O0
n)r = I(SO0

n)r for all non-negative integer r, and when n is even,

I(O0
n)r = I(SO0

n)r for r < n/2. The statement follows.

Example. When n = 2, I(O0
2) = 〈c11, c22〉 · 〈c12, c21〉, and K[O0

2] ∼= K[cij ]/〈c11, c22〉 ⊕
K[cij ]/〈c12, c21〉 ∼= K[c12, c21] ⊕K[c11, c22]. For r > 1, K[O0

2]r has a basis {ci
12c

r−i
21 , ci

11c
r−i
22 :

i = 0, 1, . . . , r}. Hence So(2, r) has an integral dual basis {ξ1i2r−i,2i1r−i , ξ1i2r−i,1i2r−i : i =

0, 1, . . . , r}. This is a subalgebra of SA(2, r) of dimension 2(r + 1) and

So(2, r) ∼=





(M2(K))⊕
r+1
2 if r is odd

(M2(K))⊕
r
2 ⊕K⊕2 if r is even.

5.2 Schur–Weyl duality

We take J to be the identity matrix to define the orthogonal group, and J ′ the same as in

Remark 2.1 to define the symplectic groups. Let {vi : i = 1, 2, . . . , n} be the natural basis of

E. Then {vi ⊗ vj : i, j = 1, 2, . . . , n} is a basis of E ⊗ E. We write vij = vi ⊗ vj for short.

The Brauer algebra B2(δ), δ ∈ K \ {0}, is a three-dimensional commutative K-algebra

with basis {∆0(unit), ∆1, ∆2} and multiplications

∆2
1 = ∆0, ∆2

2 = δ∆2, ∆1∆2 = ∆2∆1 = ∆2.

In type Bm and Dm, the parameter δ = n. The Brauer algebra B2(n) acts on E ⊗ E on the

right with ∆0 acting as identity, ∆1 sending vij to vji, and ∆2 sending vij to δij
∑n

k=1 vkk.

In type Cm, δ = −n. The Brauer algebra B2(−n) acts on E ⊗ E on the right with ∆0

acting as identity, ∆1 sending vij to −vji, and ∆2 sending vij to ε(i)δji′
∑n

k=1 ε(k′)vkk′ , where

i′ = n + 1− i.

The main result in this subsection is the following.

Theorem 5.2. Let G be a classical group of type Bm (m > 2), Cm (m > 2) or Dm (m > 4).

Then the actions on E ⊗ E by G on the left and by B2(δ) on the right commute with each

other, where δ = n in type B, D, and −n in type C. Moreover the double centralizer property

(i.e. the Schur–Weyl duality) holds:

SX(n, 2) = EndB2(δ)(E ⊗ E),

B2(δ) = EndKG(E ⊗ E) = EndSX(n,2)(E ⊗E).
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By Proposition 5.1, in type B and D, Theorem 5.2 remains true if the special orthogonal

group is replaced by the corresponding orthogonal group. Let us prove the result in this case

by a series of Lemmas 5.3 – 5.8. Write p (6= 2) for the characteristic of K.

Lemma 5.3. (Theorem 1.7.7 [14]) Let B be a K-algebra, and 1 = e1 + e2 + . . . + el be a

primitive central decomposition of the identity. Namely ei’s are primitive central and pairwise

orthogonal idempotents. Then B has a block decomposition B = B1 ⊕ B2 ⊕ . . . ⊕ Bl where

Bi = Bei = eiB for each 1 6 i 6 l. That is, every right B-module V is isomorphic to

V1 ⊕ V2 ⊕ . . . ⊕ Vl, where Vi = V ei and Bi acts on Vj non-trivially if and only if i = j.

Moreover EndB(V ) ∼= ⊕l
i=1 EndBi(Vi).

Lemma 5.4. (1) Suppose p does not divide n, and write e1 = 1
2∆0 + 1

2∆1 − 1
n∆2, e2 = 1

n∆2

and e3 = 1
2∆0 − 1

2∆1. Then ∆0 = e1 + e2 + e3 is a primitive central decomposition, and the

Brauer algebra B2(n) is isomorphic to K ⊕ K ⊕ K. We write L(1), L(2) and L(3) for the

simple projective right B2(n)-modules corresponding to e1, e2 and e3 respectively.

(2) Suppose p divides n, and write ẽ1 = 1
2∆0 + 1

2∆1 and ẽ2 = 1
2∆0 − 1

2∆1. Then ∆0 =

ẽ1 + ẽ2 is a primitive central decomposition, and B2(n) is isomorphic to K[X]/(X2) ⊕ K.

We write L̃(1) and L̃(2) for the simple modules corresponding to ẽ1 and ẽ2 respectively, and

P̃ (1) = B2(n)ẽ1 the projective cover of L̃(1).

Note that B2(n)ẽ1 has K-basis {1
2∆0 + 1

2∆1, ∆2} and is isomorphic to K[X]/(X2) by

identifying ∆2 with X.

Lemma 5.5. (1) When p does not divide n, as a right B2(n)-module E ⊗E is isomorphic to

L(1)⊕(n2+n
2

−1) ⊕ L(2)⊕ L(3)⊕
n2−n

2 .

(2) When p divides n, as a right B2(n)-module E ⊗ E is isomorphic to L̃(1)⊕(n2+n
2

−2) ⊕
P̃ (1)⊕ L̃(2)⊕

n2−n
2 .

Proof . (1) By direct calculation, (E ⊗ E)e1 has K-dimension n2+n
2 − 1 with basis {vii −

1
n

∑n
k=1 vkk′ : 1 6 i 6 n}∪{1

2(vij +vji) : 1 6 j < i 6 n}, (E⊗E)e2 is 1-dimensional with basis

{ 1
n

∑n
k=1 vkk′}, and (E⊗E)e3 has K-dimension n2−n

2 with basis {1
2(vij−vji) : 1 6 j < i 6 n}.

The result follows from Lemma 5.3 and Lemma 5.4(1).

(2) By direct calculation, (E ⊗ E)ẽ1 has K-dimension n2+n
2 with basis {1

2(vij + vji) :

1 6 j 6 i 6 n}. It has n2+n
2 − 2 direct summands isomorphic to L̃(1), with basis {1

2(vij +

vji) : 1 6 i < j 6 n} ∪ {vii − vnn : 1 6 i 6 n − 2}. Their complement is isomorphic

to P̃ (1) with basis {vnn,
∑n

k=1 vkk′}. Similarly (E ⊗ E)ẽ2 has dimension n2−n
2 with basis

{1
2(vij − vji) : 1 6 j < i 6 n}. The result follows from Lemma 5.3 and Lemma 5.4(2).
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Lemma 5.6. (1) When p does not divide n, the algebra EndB2(n)(E ⊗ E) is semisimple and

isomorphic to Mn2+n
2

−1
(K)⊕K ⊕Mn2−n

2

(K).

(2) When p divides n, the algebra EndB2(n)(E ⊗E) is quasi-hereditary with quiver

•
1

•
2

-
¾

α

β
•
3

[β ◦ α = 0]

and the partial order 1 > 2. The corresponding simple modules S(1), S(2) and S(3) have

dimensions n2+n
2 − 2, 1 and n2−n

2 respectively.

(3) In any case the dimension of the endomorphism algebra is

(
n2 + n

2
− 1)2 + 1 + (

n2 − n

2
)2 =

(
n2 + 1

2

)
− (n + 2)(n− 1).

Proof . Follows from Lemma 5.5.

Lemma 5.7. The actions on E ⊗ E, by On on the left and by B2(n) on the right, commute.

Proof . It suffices to check that (gvij)∆2 = g(vij∆2), for any g in On and any i, j. Recall

that g = (aij) ∈ On if and only if gtrg = I = ggtr. That is,
∑n

k=1 aikajk = δij =
∑n

k=1 akiakj .

Therefore

(gvij)∆2 = (g · (vi ⊗ vj))∆2 = (gvi ⊗ gvj)∆2 = (
n∑

k,l=1

akialjvkl)∆2

=
n∑

k,l=1

akialj(vkl∆2) =
n∑

k=1

akiakj(vkk∆2)

=
n∑

k=1

akiakj(
n∑

l=1

vll) = δij

n∑

l=1

vll,

g(vij∆2) = g(δij

n∑

k=1

vkk) = δij

n∑

k=1

gvk ⊗ gvk = δij

n∑

k=1

n∑

p,q=1

apkaqkvpq

= δij

n∑

p,q=1

(
n∑

k=1

apkaqk)vpq = δij

n∑

p=1

vpp = (gvij)∆2.

Lemma 5.8. In types Bm and Dm, we have the following:

(1) SX(n, 2) = EndB2(n)(E ⊗E),

(2) B2(n) = EndSX(n,2)(E ⊗ E).

Proof . (1) By Lemma 5.7, the Schur algebra SX(n, 2), which is the image of the representation

map KOn −→ EndK(E⊗E), becomes a subalgebra of the endomorphism algebra. They must

coincide because they have the same dimension by Lemma 5.6 and Corollary 3.7.
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(2) When p does not divide n, the endomorphism algebra is isomorphic to K ⊕K ⊕K by

(1) and Lemma 5.6(1). When p divides n, E ⊗ E has the module structure

S(2)

S(1)
L

S(3)

S(2)

over SX(n, 2). So the endomorphism algebra is isomorphic to K[X]/(X2)⊕K. In both cases,

the endomorphism algebra is isomorphic to B2(n) by Lemma 5.4. But B2(n) is a subalgebra

of EndSX(n,2)(E ⊗E) = EndOn(E ⊗E) by Lemma 5.7. So they are equal.

The proof for symplectic type is similar. Let us list the process by Lemma 5.9 – 5.12

without giving proofs.

Lemma 5.9. Suppose p does not divide n.

(1) The Brauer algebra B2(−n) is semisimple and isomorphic to K ⊕K ⊕K with three

primitive central idempotents: e1 = 1
2∆0 − 1

2∆1, e2 = − 1
n∆2 and e3 = 1

2∆0 + 1
2∆1 + 1

n∆2.

(2) Write L(1), L(2) and L(3) for the simple projective right B2(−n)-modules corre-

sponding to e1, e2 and e3 respectively. As a right B2(−n)-module E ⊗ E is isomorphic to

L(1)⊕(n2+n
2

) ⊕ L(2)⊕ L(3)⊕
n2−n

2
−1.

(3) The endomorphism algebra EndB2(−n)(E⊗E) is semisimple and isomorphic toMn2+n
2

(K)⊕
K ⊕Mn2−n

2
−1

(K).

Lemma 5.10. Suppose p divides n.

(1) The Brauer algebra B2(−n) is isomorphic to K[X]/(X2)⊕K with two primitive central

idempotents: ẽ1 = 1
2∆0 − 1

2∆1 and ẽ2 = 1
2∆0 + 1

2∆1.

(2) Write L̃(1) and L̃(2) for the simple right B2(−n)-modules corresponding to ẽ1 and

ẽ2 respectively, and P̃ (2) for B2(−n)ẽ2 the projective cover of L̃(2). Note that L̃(1) is both

simple and projective. As a right B2(−n)-module, E⊗E is isomorphic to L̃(1)⊕
n2+n

2 ⊕ P̃ (2)⊕
L̃(2)

n2−n
2

−2.

(3) The endomorphism algebra EndB2(−n)(E ⊗ E) is quasi-hereditary with quiver

•
2

•
3

-
¾

α

β
•
1

[α ◦ β = 0]

and the partial order 3 > 2. The corresponding simple modules S(1), S(2) and S(3) have

dimensions n2+n
2 , 1 and n2−n

2 − 2 respectively.

Lemma 5.11. The dimension of the endomorphism algebra EndB2(−n)(E ⊗ E) is (n2+n
2 )2 +

1 + (n2−n
2 − 1)2 =

(
n2+1

2

)− (n− 2)(n + 1).
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Lemma 5.12. (1) The actions on E⊗E, by SPn on the left and by B2(−n) on the right, are

commutative.

(2) As algebras over K, SC(n, 2) = EndB2(−n)(E⊗E) and EndSC(n,2)(E⊗E) = B2(−n).

In types B, C and D, the weight set πX(n, 2) = {2ε1, ε1 + ε2, 0} by Proposition 3.5, and

2ε1 D ε1 + ε2 D 0 under the dominance order. By the dimension formula of Weyl modules

given in Lemma 5.1 [22], the vertices 1, 2 and 3 in the quiver of SX(n, 2) correspond to the

dominant weights 2ε1, 0 and ε1 +ε2 respectively. Since modules of the Schur algebra SX(n, 2)

is naturally viewed as polynomial representations of the corresponding classical group, we have

the following.

Corollary 5.13. Suppose p 6= 2. For groups SOn and On (n = 5 or n > 7), the decomposition

number [2ε1 : ε1 + ε2] = 0, [ε1 + ε2 : 0] = 0. And [2ε1 : 0] = 0 when p does not divide n, and

1 when p divides n. For groups SPn (n > 4, even), we have [2ε1 : ε1 + ε2] = 0, [2ε1 : 0] = 0.

And [ε1 + ε2 : 0] = 0 when p is does not divide n, and 1 when p divides n.

Equivalently, for (special) orthogonal similitudes, we have [2ε1 : ε1 + ε2] = 0, [ε1 + ε2 :

ε0] = 0. And [2ε1 : ε0] = 0 when p does no divide n, and 1 when p divides n. For symplectic

similitudes, we have [2ε1 : ε1 + ε2] = 0, [2ε1 : ε0] = 0. And [ε1 + ε2 : ε0] = 0 when p does not

divide n, and 1 when p divides n.

Combining Corollary 5.13 with Corollary 4.11, we hope it provides some interesting in-

formation on decomposition numbers of classical groups.
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