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Einleitung und Zusammenfassung
der Ergebnisse

Die Theorie der Partitionen ist ein faszinierendes Beispiel für das Zusammenspiel zwis-
chen analytischen Methoden und Zahlentheorie. Ein schwierige, aber nichtsdestotrotz
grundlegende Frage ist, wie viele Partitionen eine ganze Zahl zulässt. Genauer gesagt,
wie oft kann man eine ganze positive Zahl inäquivalent in kleinere Summanden zerlegen?
Hardy und Ramanujan fanden auf diese Frage eine asymptotische Antwort. Dies bedeutet,
sie konnten diese Anzahl für große Zahlen angeben [13]. Die von ihnen benutzte ”Hardy-
Ramanujan”- Methode, oder auch üblicherweise Kreismethode genannt, konnte von Hans
Rademacher weiter verfeinert werden, so dass es ihm möglich war auch für endliche Zahlen
eine exakte Antwort auf die Frage zu geben [17]. Das Zusammenspiel zwischen arithmetis-
chen und analytischen Methoden erfolgt durch die Definition einer - sogenannten - erzeu-
genden Funktion. Dabei nimmt man eine Folge von Zahlen, die z.B. ein arithmetisches
Problem kodiert und definiert aus diesen Koeffizienten eine Fourier Reihe, also eine kom-
plexe Funktion. Viele dieser erzeugenden Funktionen sind holomorph. Dies ermöglicht die
Analyse solcher Funktionen mit Sätzen aus der Funktionentheorie, wie Cauchys Theorem.
Darüber hinaus zeigen viele dieser erzeugenden Funktionen ein interessantes Transforma-
tionsverhalten unter Möbiustransformationen. Dies vereinfacht die Analyse dieser Klasse
von Funktionen, bzw. ermöglicht viele Aussagen erst. Dieses Transformationsverhalten
nennt man Modularität. Diese Modularität ermöglicht in vielen Fällen die Berechnung
der Koeffizienten einer Fourier Reihe, was bei bestimmten erzeugenden Funktionen gle-
ichbedeutend ist mit der Berechnung arithmetischer Informationen. Diese Eigenschaft
ist entscheidend zur Berechnung von p(n), der Anzahl möglicher Partitionen einer ganzen
nicht negativen Zahl n. Ramanujan entdeckte, dass p(n) interessante Kongruenzen erfüllt.
Er vermutete, dass für jedes n ∈ N0 folgende Gleichungen gelten [19]:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Er konnte die ersten beiden Gleichungen sogar beweisen, in dem er zeigte, dass die erzeu-
gende Funktion dieser Werte das 5-fache einer Fourier Reihe ist, die nur ganzzahlige
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Koeffizienten hat. Die Kongruenzen sollten aber auch eine kombinatorische Erklärung
haben. Das heißt, dass man einer möglichen Partition eine Zahl zuordnen können sollte,
genannt der Rank (der von Dyson definiert wurde [10]), so dass die Anzahl der Partitionen
mit Rank modulo 5 (resp. 7, 11) immer gleich groß sind. Das sollte also eine Aufteilung
in gleichmächtige Gruppen ermöglichen und damit die - so genannten - Ramanujankon-
gruenzen auf kombinatorische Weise erklären [5]. Die Definition des Ranks konnte die
ersten beiden Ramanujankongruenzen erklären, aber keine Erklärung für die letzte der
drei Kongruenzen liefern. Daher vermutete Dyson [10], dass es noch eine andere - soge-
nannte - Partitionsstatistik gibt, die auch diese Kongruenz erklärt und sogar alle bis dahin
observierten Kongruenzen für p(n). In Analogie zum Rank nannte er diese Funktion den
Crank. Es stellte sich jedoch heraus, dass die Konstruktion dieser Funktion schwierig ist
und erst 40 Jahre später konnte eine Definition gegeben werden, die das Problem löste
[3]. In der folgenden Diplomarbeit wollen wir die Fourier Koeffizienten einer unendlichen
Familie von ”Crank” erzeugenden Funktionen bestimmen und daraus bestimmte Ungle-
ichungen zwischen bestimmten Crank-Funktionen1 beweisen. Um dorthin zu gelangen
geben wir zunächst eine kurze Einführung in die Theorie der Modulformen und in Theo-
rie der Partitionen. Die Beweise der Hauptaussagen erfolgen in Kapitel 4.
Es folgt eine kurze Zusammenfassung der Aussagen, die im Rahmen dieser Diplomarbeit
bewiesen wurden. Um die Kreismethode anwenden zu können, ist es nötig ein bestimmtes
Transformationsgesetz für die erzeugende Funktion des Cranks zu beweisen.

Proposition 0.1. Sei C(x; q) die erzeugende Funktion des Cranks. Sei q1 := e
2πi
k (h′+ i

z ),
wobei h′ eine Lösung der Kongruenzgleichung hh′ ≡ −1 (mod k) ist. Dann gilt:
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Die Funktion C(a, b, c; q) ist definiert wie folgt:

i
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Die ωh,k sind definiert in (2.5).

1Das sind Funktionen, die aus der erzeugenden Funktion des Cranks gebildet werden.
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Mit der Kreismethode und dem Transformationsgesetz ist es nun möglich folgendes
Theorem zu beweisen:

Theorem 0.2. Sei C(e
2πj
c ; q) = 1 +

∑∞
n=1 Ã

(
j
c
;n
)
qn. Seien 0 < a < c koprime Zahlen,
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Die B̃j,c,k(n,m) sind definiert in (4.5), die Dj,c,k(n,m) in (4.6), die δij,c,k,r in (4.9) und
die mi

j,c,k,r in (4.10). Das Theorem ermöglicht nun die Berechnung der asymptotischen
Werte von M(a, c;n), wobei M(a, c;n) die Anzahl der Partitionen einer Zahl n mit Crank
kongruent zu a modulo c ist.

Theorem 0.3. Sei 0 ≤ a < c mit c einer ungeraden Zahl. Dann haben wir:
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wobei Ak(n) die Kloostermannsumme ist, die in der exakten Formel Radermach-
ers für p(n) aufkommt. Nun sind wir in der Lage die Hauptaussage der Diplomarbeit
zu beweisen. Grob gesprochen sagt dieses Theorem aus, dass die Crank-Differenzen
M(a, c, n)−M(b, c, n), wenn c groß genug ist, nur noch von den Residuenklassen modulo
c abhängen. Exakt bedeutet das:

Theorem 0.4. Sei 0 ≤ a < b ≤ c−1
2

und sei c > 11 eine ungerade ganze Zahl, dann haben
für n > Na,b,c, wobei Na,b,c eine explizite Konstante ist, die folgende Ungleichung:

M(a, c;n)−M(b, c;n) > 0.
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Aus diesem Theorem lässt sich auch eine Aussage treffen für c < 13. Für c < 13
ist der Hauptterm, also der Term der für große n den entscheidenden Beitrag für die
Fourier Koeffizienten liefert, ein anderer als für c ≥ 13. In dem Fall c < 13 osszilliert
der Hauptterm stark und damit wechselt das Vorzeichen der entscheiden Größen je nach
Wahl von a, b und somit ergeben sich andere Ungleichungen als im Fall c ≥ 13. Die
verschiedenen Möglichkeiten sind zusammen gefasst im folgenden Theorem.

Theorem 0.5. Sei 0 ≤ a < b ≤ c−1
2

. Für n > Ña,b,c, wobei Ña,b,c eine explizite Konstante
ist, haben wir:

1. Die Crank-Differenzen erfüllen folgende Ungleichung M(a, 5, 5n+d)−M(b, 5, 5n+d){
< 0 wenn (a, b, d) ∈ {(0, b, 1), (0, 2, 2), (1, 2, 2), (1, 2, 3)} ,
> 0 wenn (a, b, d) ∈ {(0, b, 0), (1, 2, 1), (0, 1, 3)} .

2. Die Crank-Differenzen erfüllen folgende Ungleichung M(a, 7, 7n+d)−M(b, 7, 7n+d)
< 0 wenn (a, b, d) ∈ {(0, 1, 1), (0, 1, 6), (0, 2, 1), (0, 2, 2), (0, 3, 1), (0, 3, 6),

(1, 2, 2), (1, 2, 4), (1, 3, 3), (1, 3, 4), (2, 3, 3), (2, 3, 6)}
> 0 wenn (a, b, d) ∈ {(0, 1, 0), (0, 1, 3), (0, 1, 4), (0, 2, 0), (0, 2, 3), (0, 3, 0),

(1, 2, 1), (1, 2, 6), (1, 3, 1), (2, 3, 2)} .

3. Die Crank-Differenzen erfüllen folgende Ungleichung M(a, 9, 3n+d)−M(b, 9, 3n+d)

< 0 wenn (a, b, d) ∈ {(0, 1, 1), (0, 1, 6), (0, 1, 8), (0, 2, 1), (0, 2, 2), (0, 2, 6)} ,
(0, 3, 1), (0, 3, 3), (0, 3, 6), (0, 4, 1), (0, 4, 6), (0, 4, 8)

(1, 2, 2), (1, 2, 4), (1, 2, 7), (1, 3, 2), (1, 3, 3), (1, 3, 4)

(1, 3, 5), (1, 3, 7), (1, 4, 4), (1, 4, 7), (2, 3, 1), (2, 3, 3)

(2, 3, 5), (2, 3, 7), (2, 3, 8), (2, 4, 5), (2, 4, 8), (3, 4, 0)

(3, 4, 4), (3, 4, 6), (3, 4, 8)} ,
> 0 wenn (a, b, d) ∈ {(0, 1, 0), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5), (0, 1, 7),

(0, 2, 0), (0, 2, 3), (0, 2, 4), (0, 2, 5), (0, 2, 7), (0, 2, 8),

(0, 3, 0), (0, 3, 4), (0, 3, 7), (0, 4, 0), (0, 4, 2), (0, 4, 3),

(0, 4, 4), (0, 4, 5), (0, 4, 7), (1, 2, 1), (1, 2, 5), (1, 2, 8),

(1, 3, 0), (1, 3, 1), (1, 3, 6), (1, 3, 8), (1, 4, 1), (2, 3, 0),

(2, 3, 2), (2, 3, 4), (2, 3, 6), (2, 4, 2), (3, 4, 1), (3, 4, 2),

(3, 4, 3), (3, 4, 5), (3, 4, 7)} .
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4. Die Crank-Differenzen erfüllen folgende Ungleichung M(a, 11, 11n+d)−M(b, 11, 11n+
d) 

< 0 wenn (a, b, d) ∈ {(0, 1, 1), (0, 1, 7), (0, 1, 8), (0, 1, 9), (0, 2, 1), (0, 2, 2),

(0, 2, 9), (0, 3, 1), (0, 3, 8), (0, 3, 9), (0, 4, 1), (0, 4, 7),

(0, 4, 8), (0, 5, 1), (0, 5, 9), (1, 2, 2), (1, 2, 4), (1, 3, 3),

(1, 4, 4), (2, 3, 3), (2, 3, 5), (2, 3, 8), (2, 4, 8), (3, 4, 4),

(3, 4, 7), (3, 4, 10), (3, 5, 10), (4, 5, 5), (4, 5, 9)} ,
> 0 wenn (a, b, d) ∈ {(0, b, 0), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 5), (0, 3, 4),

(0, 3, 10), (0, 4, 3), (0, 4, 5), (0, 5, 3), (0, 5, 4), (1, 2, 1),

(1, 2, 5), (1, 2, 7), (1, 2, 8), (1, 3, 1), (1, 3, 7), (1, 3, 10),

(1, 4, 1), (1, 4, 5), (1, 4, 9), (1, 5, 1), (1, 5, 7), (1, 5, 8),

(2, 3, 2), (2, 3, 4), (2, 3, 10), (2, 4, 2), (2, 4, 9), (2, 5, 2), (2, 5, 4),

(3, 4, 3), (3, 4, 5), (3, 4, 9), (3, 5, 3), (3, 5, 8), (4, 5, 4), (4, 5, 7),

(4, 5, 8)} .
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Chapter 1

Introduction

The theory of partitions is an intriguing example for the interplay between number
theory and analytic methods. A complicated but nevertheless basic question is: how many
partitions does a non-negative integer have. Hardy and Ramanujan found an asymptotic
answer to this question [13] using the so-called Circle Method and Hans Rademacher
refined the method of Ramanujan and Hardy to give an exact answer [17]. The connec-
tion between the analytic and arithmetic methods comes from building up a generating
function that admits certain transformation properties when changing the argument of
the function. This behavior under linear fractional transformations is called modular-
ity and admits a deep analysis of the coefficients of the generating function that might
have arithmetical information. Ramanujan found that the partition function fulfills some
interesting congruence conditions and gave explanations for his observation by some in-
teresting q-series identities [19]. In fact, there is also a combinatorical explanation for the
Ramanujan congruence. In 1947, Dyson conjectured that that these observed properties
could be explained by the existence of a function on the set of possible partitions - the
so-called rank - which groups the partitions into equally sized congruence classes of rank
values [10]. But nevertheless the rank could not explain all mentioned congruences. That
was the reason that Dyson conjectured that there is another partition statistic that ex-
plain all of the congruences. He called this statistic the crank. It turned out to be difficult
to find this partition statistic. Forty years after the conjecture the crank was constructed
and it was shown that it explains all Ramanujan congruences simultaneously [3]. In this
thesis we want to show certain inequalities of certain functions coming from the crank
generating function by computing the asymptotic values of the Fourier coefficients of an
infinite family of crank generating functions and by carefully bounding the corresponding
error terms occurring in the Circle Method. We will use the theory of modular forms
and the transformation rules of certain half-integral weight modular forms to deduce a
transformation formula for the crank generating function. In Chapter 2, we will intro-
duce the concept of modularity and explain why it is helpful for arithmetical problems.
In Chapter 3, we introduce partitions, and partition statistics. In Chapter 4 we compute
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the asymptotics of the Fourier coefficients of the crank generating function and especially
of the so-called Crank differences. With that we can prove the following main theorem:

Theorem 1.1. Let M(a, c;n) be the number of partitions of n with crank equal to a
modulo c. Let 0 ≤ a < b ≤ c−1

2
and let c > 11 be an odd integer, then for n > Na,b,c,

where Na,b,c is an explicit constant, we have the inequality:

M(a, c;n) > M(b, c;n).

We outline the tour we have to take to prove this theorem. Firstly, we establish with
classical results of modular forms of half-integral weight a transformation formula for
the crank generating function. This allows one to detect the asymptotics of the Fourier
coefficients of this function by using the Circle Method. From this we can compute the
asymptotic value of M(a, c;n) and from that we can prove the main theorem by bounding
the error in the circle method explicitly. This theorem is analogous to the main result in
[6], where a similar inequality was shown for the rank.



Chapter 2

Theory of modular forms

In the following chapter we want to give some basic definitions around the theory of
modular forms and present some transformation formulas which we need to prove our
transformation rule for the crank generating function.

2.1 Basic definitions

Let H := {τ ∈ C |Im(τ) > 0} be the upper half-plane and SL2(Z) be the full modular
group consisting of 2 × 2 matrices with integer entries and determinant equal to 1. The
index of a subgroup Γ is the number of cosets of Γ in SL2(Z). For N ∈ N, we further
define:

Γ0(4N) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod 4N)

}
.

A (weakly) holomorphic modular form is a holomorphic function on the upper half-plane
H that transforms in certain way under the action of the modular group or some subgroup
of the modular group with finite index. It is holomorphic (meromorphic) at the cusps
of the modular curve. By this curve we mean the quotient of the upper half-plane with
the corresponding transformation group. One could postulate that it transforms again to
itself, but this condition is too restrictive to obtain interesting general results, so one allows
certain correction factors that make the space of all such forms into a finite dimensional
C-vector space. Before starting with the formal definitions we want to define certain slash
operators. Therefore we need some notation. For d an odd integer we define

(
c
d

)
to be

the usual Jacobi symbol. For d a negative odd integer, we define

( c
d

)
:=


(
c
|d|

)
if d < 0 and c > 0,

−
(
c
|d|

)
if d < 0 and c < 0.
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We further define

εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

A Dirichlet character modulo 4N is a function χ : (Z/4NZ)∗ 7→ C∗ such that

χ(xy) = χ(x)χ(y).

Let f be a complex-valued function on the upper half-plane, λ be any integer and define

f(τ)|λ+ 1
2
A :=

( c
d

)−2λ−1

ε2λ+1
d (cτ + d)−λ−

1
2f

(
aτ + b

cτ + d

)
∀A =

(
a b
c d

)
∈ Γ0(4N). (2.1)

We take the principal branch of the square root. For charcters χ modulo 4N we can now
give the definition of a half-integral weight modular form.

Definition 2.1 (Modular form of half-integral weight). A (weakly) modular form of half-
integral weight λ + 1

2
with Nebentypus χ is a function f : H → C with the following

properties:

1. f is holomorphic on the upper half-plane.

2. f |λ+ 1
2
A = χ(d)f for all A ∈ Γ0(4N).

3. f is (meromorphic) holomorphic at the cusps.

If in addition f vanishes at all the cusps, then we say that f is a cusp form.

Next we want to define a modular form of integral weight. Therefore let g be a
complex-valued function on the upper half-plane, let k be any integer and define

g(τ)|kA = (cτ + d)−kg

(
aτ + b

cτ + d

)
∀A =

(
a b
c d

)
∈ SL2(Z). (2.2)

Now we can give the following definition

Definition 2.2 (Modular form of integral weight). A (weakly) holomorphic modular form
g with multiplier ε : Z4 7→ C is a function g : H→ C with the following properties:

1. g is holomorphic on the upper half-plane.

2. g|kA = ε(a, b, c, d)g for all A ∈ SL2(Z), where |ε(a, b, c, d)| = 1 is called a multiplier
system.

3. g is (meromorphic) holomorphic at the cusps.
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If in addition g vanishes at all the cusps, then we say that g is a cusp form.

Remark 2.3. It is possible to also allow (in condition 2 of both definitions) transforma-
tions coming from other finite index subgroups of the modular group or Γ0(4N). That
means that condition 2 is only fulfilled for elements of a subgroup and not for all elements
of the modular group (resp. Γ0(4N)). For every subgroup with finite index we have f
f(τ + m) = f(τ) for some m ∈ N, because for every group Γ with [SL2(Z) : Γ] < ∞ we
have some

(
1 m
0 1

)
∈ Γ. So it is possible to expand f in a Fourier series:

f(τ) =
∞∑
n=0

ane
2πinτ
m =

∞∑
n=0

anq
n
m , q := e2πiτ .

It is also possible to expand every half-integral weight modular form in a Fourier series.

The space of all modular forms of a fixed weight is denoted by Mk where k is even,
since for k odd all modular forms vanish identically, due to the transformation rule for
modular forms. Strictly speaking this is only true for certain finite index subgroups and
the full modular group. The space of all cusp forms is denoted by Sk. From the Fourier
expansions (also called q-series) at every cusp of the transformation group it is easy to
see, if a weakly holomorphic modular form g(τ) is modular or even a cusp form. In order
to be modular the Fourier coefficients of g(τ) have to vanish for negative n and to be a
cusp form the extra condition a0 = 0 should hold at every cusp. Note that SL2(Z) has
only one cusp. Similar definitions can be made for the half-integral case.

Theorem 2.4. Let Mλ+ 1
2

(Γ0(4N), χ) be the vector space of weight λ+ 1
2

modular forms.
Then we have:

dimCMλ+ 1
2

(Γ0(4N), χ) <∞

Proof. See [16] Theorem 1.56. The right hand side of the equation is finite.

The importance of this theorem can not be stressed enough. Let d be the dimension of
a certain space of modular forms. If there are d+ 1 modular forms which are elements of
this space, then we know that there are linear relations between these functions, because
of the vector space structure. That also implies relations among their Fourier coefficients
which might be highly non-trivial by direct computations. Next we want to present
some examples of modular forms to demonstrate the interplay of arithmetic functions
and modular forms. Very important examples are the Eisenstein series:

Example 2.5 (Eisenstein series). First of all, we define series and show that we can gain
arithmetic information from their Fourier coefficients.
Let k > 2 be an integer, τ ∈ H and

Gk(τ) :=
1

2

∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ + n)k
.
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We call Gk the Eisenstein series of weight k. The following theorem explains the signifi-
cance of these series.

Theorem 2.6. Let q := e2πiτ . Then we have the following facts:

(i) The Eisenstein series converge absolutely on the upper half-plane and are there an-
alytic functions.

(ii) The Eisenstein series are modular forms.

(iii) We have:

Gk(τ)(k − 1)!

(2πi)k
= −Bk

2k
+
∞∑
n=1

σk−1(n)qn, (2.3)

where Bk are the Bernoulli numbers, σk−1(n) is the divisor function.

(iv) For k = 2 we define

G2(τ) := B2π
2 −

∞∑
n=1

4π2σ1(n)qn

. Then the so-called Eisenstein series of weight 2 obeys the following equation:

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− πic(cτ + d).

Proof. See [9] (Chapter 1, Proposition 5 and Proposition 6).

Thus, the Fourier coefficients of the Eisenstein series encode the divisor functions for
different weight, giving an example of a modular form having arithmetic information
coming from the Fourier expansion at a cusp.

Example 2.7 (discriminant function). We introduce the discriminant function, which is
related to Dedekind’s η-function. Define q := e2πiτ and

η(τ) :=q
1
24

∞∏
n=1

(1− qn)

∆(τ) :=q
∞∏
n=0

(1− qn)24 = η(τ)24.

We show that this is a cusp form of weight 12 on the full modular group, giving a hint
that the function η(τ) is a modular form of weight 1

2
, with a certain multiplier system

that is a 24-th root of unity.
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Lemma 2.8. The discriminant function ∆ (τ) is a cusp form of weight 12 on the full
modular group.

Proof. From the product expansion it is clear that ∆ (τ) 6= 0. So we can look at the
logarithmic derivative of the function and it is possible to deduce [9]:

1

2πi

d

dτ
log ∆ (τ) = E2 (τ) .

From the transformation rule of E2 it is possible to see that (∆|12λ)(τ) = C(λ)∆(τ).
Evaluating the constant C(λ) on the generators of Sl2(Z) shows that the constant is equal
to one and this is sufficient because C : SL2(Z) → C? is a homomorphism. By the
dimension formula we see that ∆(τ) is a linear combination of G6(τ)2 and G4(τ)3. It is
obvious that the q-expansion of the function ∆(τ) starts with q and hence is a cusp form.
This finishes the proof.

Example 2.9 (Jacobi ϑ-function). The Jacobi theta function is defined in the following
way:

ϑ(u; τ) :=
∑
ν∈Z+ 1

2

eπiν
2τ+2πiν(u+ 1

2).

Here τ ∈ H and u ∈ C. We say that τ is the modular variable and u is the elliptic variable.
Such a function obeys a modular transformation property and an elliptic transformation
property. Functions of this type are called Jacobi forms (there are more restrictions, but
that is not important here), which were introduced in [11]. One easy observation will be
important later on.

Lemma 2.10. Let B be a positive integer: Then the Jacobi theta function obeys the
following equation:

ϑ (u+Bτ ; τ) = (−1)Be−πiB
2τ−2πiBuϑ (u; τ)

Proof. The proof is done by induction. For B = 1 we see by the definition of ϑ that

ϑ (u+ τ ; τ) = −e−πiτ−2πiuϑ (u; τ)

Now assuming that the formula is true for B we can proceed by firstly using the formula
for B:

ϑ (u+ (B + 1)τ ; τ) = ϑ (u+ τ +Bτ ; τ) = (−1)Be−πiB
2τ−2πiB(u+τ)ϑ (u+ τ ; τ) .

We now use the formula for B = 1 to obtain

ϑ (u+ (B + 1)τ ; τ) =(−1)B+1e−πiB
2τ−2πiB(τ+u)−πiτ−2πiuϑ(u; τ)

=(−1)B+1e−πi(B+1)2−2πi(B+1)ϑ(u; θ)

by completing the square. Thus, the formula is true for B + 1 and so by induction for
every B ∈ N.
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2.2 Transformation formulas for η and ϑ

One key step in the proof of Theorem 1.1 is to deduce the transformation law for the
crank generating function under the action of the modular group. One way is to show
that the crank generating function is proportional to the quotient of the square of the
η-function and Jacobi’s ϑ-function. Therefore we need the transformation laws of these
two functions to deduce the transformation properties of the crank. We skip the proof of
the transformation formula for η and refer to [15] and [4] for the details. We introduce
the needed quantities to state the transformation rule. Therefore define

χ(h, h′, k) := i−
1
2ω−1

h,ke
− πi

12k
(h′−h). (2.4)

Here h′ is a solution to hh′ ≡ −1 (mod k) and

ωh,k := exp (πis (h, k)) , (2.5)

where the Dedekind sums s(h, k) are explicitly given by

s(h, k) :=
∑

µ (mod k)

((µ
k

))((hµ
k

))
.

In the above, the saw tooth function is defined by

((x)) :=

x− bxc −
1
2

if x ∈ R \ Z,

0 if x ∈ Z.

Theorem 2.11. For z ∈ C with Re(z) > 0 we have

η

(
h+ iz

k

)
=

√
i

z
χ (h, h′, k) η

(
h′ + i

z

k

)
,

where we take the principal branch of the square root. Moreover, η is a modular form of
weight 1

2
with multiplier system.

Next we want to give an important definition that makes notation much easier.

Definition 2.12. The q-Pochhammer symbol is given for n ∈ N ∪ {∞} by:

(a)n := (a, q)n :=
n−1∏
i=0

(
1− aqi

)
Now we can also state the transformation formula for the Jacobi ϑ-function. For

completeness, we give the following theorem ([21] Prop 1.3 and [8]);
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Theorem 2.13. Define x := e2πiω and q := e2πiτ where ω ∈ C and τ ∈ H. Let h, k be
coprime integer with h′ like above. Then ϑ satisfies:

1. ϑ(ω + 1; τ) = −ϑ(ω; τ).

2. ϑ(ω + τ ; τ) = −e−πiτ−2πiωϑ(ω; τ),

3. Up to a multiplicative constant, ω 7→ ϑ(ω; τ) is the unique holomorphic function
satisfying (1), (2).

4. ϑ(−ω; τ) = −ϑ(ω; τ).

5. The zeros of ϑ are the points ω = nτ + m, with m,n ∈ Z. These are all simple
zeros.

6. ϑ(ω; τ + 1) = e
πi
4 ϑ(ω; τ),

7. ϑ
(
ω
τ
;− 1

τ

)
= −i

√
−iτeπiω

2

τ ϑ(ω; τ),

8. (Jacobi triple product identity) ϑ(ω; τ) = −2 sin(πω)q
1
8 (q)∞(xq)∞(x−1q)∞.

9. If Re(z) > 0, then ϑ
(
ω; h+iz

k

)
= χ3

√
i
z
e−

πkω2

z ϑ
(
iω
z

;
h′+ i

z

k

)
.



Chapter 3

Partitions

3.1 Basic definitions

In the next section we define partitions and we state the Rademacher formula.

Definition 3.1 (Partitions). A partition of an non-negative integer n is a finite series of
non-increasing positive integers λi with i ∈ {1, . . . , k}, such that

∑k
i=1 λi = n. Obviously,

such a partition is not unique.

Example 3.2. It is easy to see that the number 3 has three different partitions, which
are 3, 2 + 1 and 1 + 1 + 1.

After this example we want to ask for the number of partitions of every positive integer.
We are hence interested in the following definition.

Definition 3.3 (Partition function). Let n be a non-negative integer and (λi)i=1,...,k a
partition of n. Then we let p(n) denote the number of partitions of n. By convention,
p(0) := 1.

From Example 3.2, we can see that we have p(3) = 3. It is easy to see that p(n) is
strictly increasing and that p(n) increases rapidly. So it is interesting to see, if there is any
closed expression to deduce the value of p(n). To compute p(n) we define the partition
generating function by

P (q) :=
∞∑
n=0

p(n)qn,

It is possible to show (using |q| < 1):

P (q) = q
1
24η(τ)−1 =

∞∏
n=0

1

1− qn
.
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So the generating function is almost a modular form and we may use the transformation
rule of η(τ) to get a transformation rule of the generating function. Before stating the
theorem, we give the following definition.

Definition 3.4. Let h, k be positive integers and ωh,k be the exponentials of Dedekind
sums defined in Chapter 2.2. We then call the following function

Ak(n) :=
∑

0≤h<k
(h,k)=1

ωh,ke
2πihn
k

a Kloostermann sum.

Now we can state the famous Rademacher expansion:

Theorem 3.5 (Rademacher). Let n be a positive integer. The following equality is true:

p(n) =
1√
2π

∞∑
k=1

Ak(n)
√
k
d

dn

sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24


=

2π

(24n− 1)
3
4

∞∑
k=1

Ak(n)

k
I 3

2

(
π
√

24n− 1

6k

)
.

where I 3
2

(x) is the Bessel function of order 3
2
.

Remark 3.6. The Rademacher formula is astonishing since the left hand side of the
equation is an arithmetical function while the right hand side is an analytic expression
containing π, square root, Kloostermann sums and Bessel function. However, the impor-
tance of the proof does not only rely on the fact that it is one of the biggest achievements
in analytic number theory and forms a link between analytic and arithmetic expressions.
The theorem is also important because it explains one of the most important techniques
in analytic number theory, namely the Circle Method. The Circle Method is a way to
obtain statements about Fourier coefficients that encode a generating function which also
encodes arithmetical information and will be used later on. We skip the proof of the
Rademacher formula and refer for more details to [15] and [4].
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3.2 Congruences of p(n), Crank, Rank

The partition function has an interesting congruence property that was observed by Ra-
manujan [18]. He calculated many values of p(n) and saw that there are certain patterns
if the values are sorted in the appropriate ways. More precisely, he noticed:

Theorem 3.7 (Ramanujan). For every n ∈ N0 we have

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

The first proof of this statement excludes the results for the modulus 11. Ramanujan
used some complicated manipulations to show that the generating function for p(5n+ 4)
(resp. p(7n + 5)) is a q-series with integer coefficients times 5 (resp. 7) [19]. This tells
us that the reduction modulo 5 (resp. 7) is zero. However this yields no combinatorial
proof. In order to obtain a combinatorial proof, Dyson [10] conjectured that there is a
certain partition statistic, a function that gives a value to every partition, explaining the
Ramanujan congruences. Unfortunately, the so-called rank which was conjectured to be
the right function could not explain the congruences for the modulus 11. That was the
reason Dyson conjectured that there should be yet another statistic, which he called the
crank, that simultaneously explains the Ramanujan congruences for all moduli 5, 7 and
11. We now give the combinatorial definitions of the crank and rank before we investigate
their generating functions. Before continuing we fix notation. We mean by λ1 the largest
part of a partition, o(λ) the number of ones in a partition and by µ(λ) the number of
parts larger than o(λ).

Definition 3.8. The rank of a partition λ = (λi)i∈{1,...,k} is defined as:

rankλ := λ1 − k.

As an example, we show how the rank explains the Ramanujan congruence for the
modulus 5 in the case of partitions of 4.

Partition Rank Rank mod 5
4 4− 1 = 3 3
3 + 1 3− 2 = 1 1
2 + 2 0 0
1 + 1 + 2 −1 4
1 + 1 + 1 + 1 −3 2

We denote the number of partitions of a number n with rank m by N(m,n) and the
number of partitions of a number n with rank congruent to a modulo c by N(a, c, n).
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With this numbers we can define the rank generating function as

R(x; q) :=
∑
m∈Z

∑
n≥0

N(m,n)qnxm.

Next we define the crank.

Definition 3.9. The crank of a partition λ = (λi)i∈{1,...,k} is defined as:

crankλ :=

{
λ1 if o(λ) = 0,

µ(λ)− o(λ) if o(λ) 6= 0 .

As an example, we show how the crank explains the Ramanujan congruence for the
modulus 11 in the case of partitions of 6.

Partition Crank Crank mod 11
6 6 6
5 + 1 1− 1 = 0 0
4 + 2 4 4
3 + 3 3 3
4 + 1 + 1 1− 2 = −1 10
3 + 2 + 1 2− 1 = 1 1
2 + 2 + 1 + 1 0− 2 = −2 9
2 + 1 + 1 + 1 + 1 0− 4 = −4 7
1 + 1 + 1 + 1 + 1 + 1 0− 6 = −6 5
2 + 2 + 2 2 2
3 + 1 + 1 + 1 0− 3 = −3 8

We denote the number of partitions of a number n with crank m by M(m,n) and the
number of partitions of a number n with crank congruent to a modulo c by M(a, c, n).
We define further the crank generating function by summing over all possible partitions
and over all possible cranks. To do so, we have to redefine the following crank values of
the partition of 1 and the empty partition. We hence set:

M(−1, 1) = M(0, 0) = M(1, 1) = 1 , M(0, 1) = −1 , M(m, 1) = 0 ∀m, |m| ≥ 2.

Hence the crank generating function is

C(x; q) :=
∑
m∈Z

∑
n≥0

M(m,n)qnxm.

This is the important technique that allows to translate arithmetical and combinatorial
problems into the world of analytic methods, because this function admits certain trans-
formations if we make Möbius transformations on the variable q. To see this behavior,
we show that this function has another representation that is useful for the analytic ma-
chinery.
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3.3 Generating functions of partitions statistics

It is more useful to work with the generating functions of the crank and the rank than
with the combinatorial definitions. Next we show:

Theorem 3.10 (Andrews-Garvan). The generating function of the crank has the following
two variable q-series expansion [3], [12]:

C(x; q) =
∑
m∈Z

∞∑
n=0

M(n,m)xmqn =
1− x
(q)∞

∑
n∈Z

(−1)nq
n(n+1)

2

1− xqn
. (3.1)

Proof. Firstly, we define Nv(m,n) to be the coefficients of the generating function∑
m∈Z

∞∑
n=0

Nv(m,n)xmqn =
(q)∞

(xq)∞(x−1q)∞
.

We show that Nv(m,n) = M(n,m):∑
m∈Z

∞∑
n=0

Nv(m,n)xmqn =
(q)∞

(xq)∞(x−1q)∞
=

1− q
(xq)∞

(q2; q)∞
(q/x)∞

=
1− q
(xq)∞

∞∑
j=0

(xq)j(q/x)j
(q)j

=
1− q
(xq)∞

+
∞∑
j=1

qjx−j

(q2; q)j−1(xqj+1)∞
.

In the second step we used the Fine identity (see [2], p. 7). Now using techniques of [2]
it is possible to relate the first summand to the partitions with no 1 and the exponent
of x counting the largest part λ1 and for j > 0 the second summand generates partitions
with o(λ) = j and with the exponent of x equal to µ(λ) − o(λ). To complete the proof,
we have to show the following identity:

(q)∞
(xq)∞(x−1q)∞

=
1− x
(q)∞

∑
n∈Z

(−1)nq
n(n+1)

2

1− xqn
.

This can be deduced directly from Lemma 3.1 of [14] using hypergeometric series.

For completeness, we now quote the analog of this result for the rank.

Theorem 3.11. The generating function of the rank has the following two variable q-
series expansion [10]

R(x; q) =
∑
m∈Z

∑
n≥0

N(m,n)xmqn =
1− x
(q)∞

∑
n∈Z

(−1)nq
n(3n+1)

2

1− xqn
.
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Remark 3.12. It is impressive to see that the rank and crank generating function are
related. In the next chapter we will see that although they have the same shape and are
motivated by the same fact, it will become clear that in the world of modular forms they
are completely different objects.



Chapter 4

Asymptotic formula for crank
differences

4.1 Transformation of the crank generating function

In this section, we prove how the crank generating function transforms under the ac-
tion of SL2(Z). As noted above, we only need the transformation formulas of η and ϑ.
Throughout, let z ∈ C with Re(z) > 0 and 0 ≤ h < k with (h, k) = 1. Let x = e2πiu

and q = e−2πz. Let h′ be a solution to the congruence hh′ ≡ −1 (mod k) if k is odd and
let h′ be a solution to the congruence hh′ ≡ −1 (mod 2k) if k is even. Let 0 < l < c1,
be the unique solution to l ≡ ak1 (mod c1), where k1 := k

(k,c)
and c1 := c

(c,k)
. Finally let

0 < a < c be coprime integers with c odd.

Remark 4.1. Firstly, we want to explain why it is possible to deduce the transformation
properties of the crank generating functions with the transformation formulas of η and ϑ.
Therefore we use (3.1):

C(x; q) =
(q)2
∞

(xq)∞(x−1q)∞(q)∞
.

The Jacobi theta function obeys the Jacobi triple product identity (see Theorem 2.13)

ϑ(u; iz) = −2 sin(πu)q
1
8 (q)∞(xq)∞(x−1q)∞,

and the Dedekind η-function can be expressed in the following way

η(iz) = q
1
24 (q)∞.

Plugging in the η2 and the Jacobi tripel product identity we arrive at:

C
(
e2πiu; e−2πz

)
=
−2 sin(πu)q

1
24η2(iz)

ϑ(u; iz)
. (4.1)



4.1 Transformation of the crank generating function 17

From this we notice that it is sufficient to know the transformation properties of η and
ϑ. Using these transformation formulas and properties of the Jacobi ϑ function to shift
arguments we obtain:

Proposition 4.2. We define q1 := e
2πi
k (h′+ i

z ). Then the following is true:

(1) For c | k we have

C
(
e

2πia
c ; e

2πi
k

(h+iz)
)

=
i sin

(
πa
c

)
z

1
2 sin

(
πah′

c

)(−1)ak+1ωh,ke
π

12k(z−1−z)−πia
2k1h

′
c

× C
(
e

2πiah′
c ; e

2πi
k (h′+ i

z )
)
.

(2) For c - k we have

C
(
e

2πia
c ; e

2πi
k

(h+iz)
)

=
4i sin(πa

c
)ωh,k(−1)ak+l+1

z
1
2

e
−πa

2h′k1
cc1

+ 2πih′la
cc1

× q
− l2

2c21
1 e

π
12k

(z−1−z)C

(
ah′,

lc

c1

, c; q1

)
,

where the function C(a, b, c; q) is defined as follows

i

2(q)∞

(
∞∑
m=0

(−1)me−
πia
c q

m(m+1)
2

+ b
2c

1− e− 2πia
c qm+ b

c

−
∞∑
m=1

(−1)me
πia
c q

m(m+1)
2

− b
2c

1− e 2πia
c qm−

b
c

)
.

Proof. (1). Using Theorem 2.11 and Theorem 2.13, we obtain

C
(
e2πiu; e

2πi
k

(h+iz)
)

= −2 sin(πu)i

z
1
2

ωh,ke
πi
12k

(h′−h)e
πi
12k

(h+iz) η2
(

1
k

(
h′ + i

z

))
ϑ
(
iu
z

; 1
k

(
h′ + i

z

))eπku2z ,

where the ωh,k were defined in (2.5). We now assume that c | k, define A := ak
c
∈ Z and

write u = a
c
. First of all we replace η2 in the numerator by rewriting (4.1) such that it is

possible to identify the crank at two different positions in H× C:

C
(
e2πia

c ; e
2πi
k

(h+iz)
)

= i
sin(πa

c
)

sin(πah
′

c
)
ωh,ke

π
12k

(z−1−z)+πa2k
zc2 C

(
e

2πiah′
c ; e

2πi
k (h′+ i

z )
)

×
ϑ
(
ah′

c
; 1
k

(
h′ + i

z

))
ϑ
(
ia
zc

; 1
k

(
h′ + i

z

)) . (4.2)

The fraction of theta functions can be simplified by noting that the elliptic variable of the
numerator function can be seen as a shift of the elliptic variable of denominator function
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by A · τ where τ is the modular variable defined as τ := 1
k
(h′+ i

z
). This allows to simplify

the quotient of ϑ-functions:

ϑ(ah
′

c
; 1
k
(h′ + i

z
))

ϑ( ia
zc

; 1
k
(h′ + i

z
))

= −
ϑ(ah

′

c
; 1
k
(h′ + i

z
))

ϑ(− ia
zc

; 1
k
(h′ + i

z
))

= −
ϑ(− ia

zc
+ ak

c
( 1
k
(h′ + i

z
)); 1

k
(h′ + i

z
))

ϑ(− ia
zc

; 1
k
(h′ + i

z
))

=
ϑ(− ia

zc
; 1
k
(h′ + i

z
))

ϑ(− ia
zc

; 1
k
(h′ + i

z
))

(−1)
ak
c e−

πia2k2

c2
( 1
k

(h′+ i
z

))+−2πa2k

zc2

= (−1)ak+1e−
πia2kh′
c2 e

πa2k
zc2 e−

2πa2k
zc2 .

Inserting this expression into the equation (4.2) yields the transformation formula for the
case c | k.
(2). The case c - k is more difficult, because in general we have ak

c
/∈ Z. Again using the

transformation rules of ϑ and η, we obtain:

C
(
e

2πia
c ; e

2πi
k

(h+iz)
)

= −2 sin(πu)i

z
1
2

ωh,ke
πi
12k

(h′+iz) η2
(

1
k

(
h′ + i

z

))
ϑ
(
ia
zc

; 1
k

(
h′ + i

z

))eπka2zc2 . (4.3)

Since we defined l to be the solution to the congruence condition l ≡ ak1 (mod c1) by
definition it is clear that B := l−ak1

c1
∈ Z. We may shift the theta function in the elliptic

variable by the modular variable multiplied by B, where the modular variable is given
above. We compute the shifted theta function using Lemma 2.10 and obtain

ϑ

(
−ah′

c
+

l

c1

τ ; τ

)
= ϑ

(
ia

zc
+
B

k

(
h′ +

i

z

)
; τ

)
= (−1)ak+le−πiB

2τe−2πiB ia
zcϑ

(
ia

zc
; τ

)
.

This is equivalent to the following equation:

ϑ

(
ia

zc
; τ

)
= (−1)ak+le

πi(l−ak1)
2

c21
τ
e

2πi
(
l−ak1
c1

)
ia
zcϑ

(
−ah′

c
+

l

c1

τ ; τ

)
.

Inserting this expression for theta function into (4.3) yields:

C
(
e2πia

c ; e
2πi
k

(h+iz)
)

(−1)ak+l+1
= 2

sin(πa
c

)

z
1
2

iωh,ke
π

12k(h′+
i
z )q
− l2

2c21
1 e

2πilah′
cc1

−πia
2k1h

′
cc1

η2(τ)

ϑ
(
−ah′

c
+ l

c1
τ ; τ
) .

Now replacing the quotient η2

ϑ
by the Crank generating function we get:

C
(
e2πia

c ; e
2πi
k

(h+iz)
)

(−1)ak+l
=

sin(πa
c

)

z
1
2

iωh,ke
π

12k(z−1−z)q
− l2

2c21
1 e

2πilah′
cc1

−πia
2k1h

′
cc1

C

(
e
− 2πiah′

c
+ 2πil

c1
τ
; e2πiτ

)
sin
(
−πah′

c
+ πl

c1
τ
) .

(4.4)
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We define x := e
− 2πiah′

c
+ 2lπi

c1
τ
, and use the exponential representation of the sine to deduce

C

(
e
− 2πiah′

c
+ 2πil

c1
τ
; e2πiτ

)
sin
(
−πah′

c
+ πl

c1
τ
) =

2i (1− x)

(q1)∞

(
x

1
2 − x− 1

2

) ∑
m∈Z

(−1)mq
m(m+1)

2
1

1− xqm1

=
−2ix

1
2

(q1)∞

∑
m∈Z

(−1)mq
m(m+1)

2
1

1− xqm1
.

Inserting this expression into (4.4), we arrive at

C
(
e2πia

c ; e
2πi
k

(h+iz)
)

=
(−1)ak+l+1 sin

(
πa
c

)
z

1
2

iωh,ke
π

12k(z−1−z)q
− l2

2c21
1 e

2πilah′
c1

−πia
2k1h

′
c1c

× 2i

(q1)∞x
− 1

2

∑
m∈Z

(−1)mq
m(m+1)

2
1

1− xqm1

=
(−1)ak+l+1 sin

(
πa
c

)
z

1
2

iωh,ke
π

12k(z−1−z)q
− l2

2c21
1 e

2πilah′
c1

−πia
2k1h

′
c1c

× 2i

(q1)∞

∑
m∈Z

(−1)me−
πiah′
c q

l
2c1

+
m(m+1)

2

1

1− e− 2πiah′
c q

m+ l
2c1

1

=
(−1)ak+l+1 sin

(
πa
c

)
z

1
2

iωh,ke
π

12k(z−1−z)q
− l2

2c21
1 e

2πilah′
c1

−πia
2k1h

′
c1c C

(
ah′,

lc

c1

, c; q1

)
.

This completes the proof of the transformation formula.

Remark 4.3. It is interesting to see that the transformation formula is similar to the
rank case. The main and important difference is that we have no mock part and that
that the step function s does not appear (see [7]). This reveals the fact that the rank and
the crank generating functions look very similar but have completely different behavior
under the action of the modular group.
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4.2 Circle method and asymptotic formula

In this section we give an asymptotic formula for the coefficients of the crank generating
function. To state the theorem, we have to fix notation and define the following sum for
m,n ∈ Z:

B̃a,c,k (n,m) := (−1)ak+1 sin
(πa
c

) ∑
h (mod k)∗

ωh,k

sin
(
πah′

c

) · e−πia2k1h′c · e
2πi
k

(nh+mh′). (4.5)

Here the sum runs over all primitive residue classes modulo k and this summation is
denoted by h (mod k)∗. For the case c - k we define

Da,c,k (m,n) = (−1)ak+l
∑

h (mod k)∗

ωh,ke
2πi
k

(nh+mh′), (4.6)

where l is defined above. Firstly, an important lemma (compare Lemma 3.2 in [7]) is
established that is needed to bound certain terms:

Lemma 4.4. Let n,m, k,D ∈ Z with (D, k) = 1, 0 ≤ σ1 < σ2 ≤ k. Then there are
constants C1 and C2 such that:

(1) We have ∣∣∣∣∣∣∣
∑

h(mod k)∗
σ1≤Dh′≤σ2

ωh,ke
2πi
k

(hn+h′m)

∣∣∣∣∣∣∣ ≤ C1 · gcd (24n+ 1, k)
1
2 k

1
2

+ε; (4.7)

(2) We have∣∣∣∣∣∣∣
sin
(
πa
c

)
(−1)ak+1

∑
h (mod k)?

σ1≤Dh′≤σ2

ωh,k

sin
(
πah′

c

)e−πia2k1h′c e
2πi
k

(hn+h′m)

∣∣∣∣∣∣∣ ≤ C2 · gcd(24n+ 1, k)
1
2k

1
2

+ε.

(4.8)

The constants C1 and C2 are independent of a and k.

Proof. In [2] part one is proven and part two follows from part one and the proof of
Lemma 3.2 in [7] after defining c̃ := c if k is odd and c̃ = 2c if k is even and checking that

e−
πia2k1h

′
c sin−1

(
πah′

c

)
only depends on h′ modulo c̃. To show this, we insert an explicit

representative of the equivalence class and show that all of the terms that do not depend
on h′ cancel. This establishes Lemma 4.4.
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In the following theorem, we investigate the main contributions to the Fourier coef-
ficients of the crank generating function using the circle method and the proven trans-
formation formula. In addition, we give a rough bound of the error term. To state the
theorem we need some notation. We define:

δia,c,k,r :=


−
(

1
2

+ r
)

l
c1

+ 1
2

(
l
c1

)2

+ 1
24

if i = +,

l
2c1

+ 1
2

(
l
c1

)2

− 23
24
− r

(
1− l

c1

)
if i = −,

(4.9)

and

m+
a,c,k,r :=

1

2c2
1

(
−a2k2

1 + 2lak1 − ak1c1 − l2 + lc1 − 2ark1c1 + 2lc1r
)
, (4.10)

m−a,c,k,r :=
1

2c2
1

(
−a2k2

1 + 2lak1 − ak1c1 − l2 + 2c2
1r − 2lrc1 + 2ark1c1 + 2lc1 + 2c2

1 − ak1c1

)
.

Then we have the following theorem.

Theorem 4.5. Let C
(
e

2πia
c ; q

)
=: 1 +

∑∞
n=1 Ã

(
a
c
;n
)
qn. If 0 < a < c are co-prime

integers, c is odd and n is a positive integer, then we have

Ã
(a
c

;n
)

=
4
√

3i√
24n− 1

∑
1≤k≤

√
n

c|k

B̃a,c,k(−n, 0)√
k

sinh

(
π
√

24n− 1

6k

)
+

8
√

3 · sin
(
πa
c

)
√

24n− 1

×
∑

1≤k≤
√
n

c-k
r≥0

δi
a,c,k,r

>0

i∈{+,−}

Da,c,k(−n,mi
a,c,k,r)√

k
sinh

π
√

2δia,c,k,r(24n− 1)
√

3k

+O (nε) .

Proof. To prove our asymptotic formula for the crank coefficients we use the Hardy-
Ramanujan method(also called Circle Method): By Cauchy’s theorem we have for n > 0

Ã
(a
c

;n
)

=
1

2πi

∫
C

C
(
e

2πia
c ; q

)
qn+1

dq,

where C is an arbitrary path inside the unit circle surrounding 0 counterclockwise. Choos-
ing a circle with radius e−

2π
n and as a parametrisation q = e−

2π
n

+2πit with 0 ≤ t ≤ 1 gives

Ã
(a
c

;n
)

=

∫ 1

0

C
(
e

2πia
c ; e−

2π
n

+2πit
)
e2π−2πintdt.
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We define

ϑ′h,k :=
1

k
(
k̃1 + k

) , ϑ′′h,k :=
1

k
(
k̃2 + k

) ,
where h1

k̃1
< h

k
< h2

k̃2
are adjacent Farey fractions in the Farey sequence of orderN := bn1/2c.

For more on Farey fractions see [4]. We know that

1

k + k̃j
≤ 1

N + 1
(j = 1, 2).

Now we decompose the path of integration along Farey arcs −ϑ′h,k ≤ Φ ≤ ϑ′′h,k, where

Φ = t − h
k

and 0 ≤ h < k ≤ N with (h, k) = 1. From this decomposition of the path we
can rewrite the integral along these arcs:

Ã
(a
c

;n
)

=
∑
h,k

e−
2πihn
k

∫ ϑ′′h,k

−ϑ′h,k

C
(
e2πia

c ; e
2πi
k

(h+iz)
)
e

2πnz
k dΦ,

where z = k
n
− kΦi. We insert our transformation formula into the integral and obtain

Ã
(a
c

;n
)

= i sin
(πa
c

)∑
h,k
c|k

ωh,k
(−1)ak+1

sin(πah
′

c
)
e−

πia2k1h
′

c
− 2πihn

k

×
∫ ϑ′′h,k

−ϑ′h,k

z−
1
2 e

2πz
k (n− 1

24)+ π
12kzC

(
e

2πiah′
c ; q1

)
dΦ

− 4i sin
(πa
c

)∑
h,k
c-k

ωh,k(−1)ak+le
−πia

2h′k1
cc1

+ 2πih′la
cc1

− 2πihn
k

×
∫ ϑ′′h,k

−ϑ′h,k

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz q

− l2

2c21
1 C

(
ah′,

lc

c1

, c; q1

)
dΦ

=: Σ1 + Σ2.

To deduce the main contribution of Σ1 we note that the principal part of C
(
e

2πiah′
c ; q1

)
in the q1 variable in the limit z → 0 is 1 and from that it is possible to write

C
(
e

2πiah′
c ; q1

)
=: 1 +

∑
r∈N

∑
s (mod c)

a(r, s)e
2πih′
k

mr,sqr1

where mr,s takes values in Z and
∑

s (mod c) a(r, s) = p(r) for r > 1. Only the constant
term will contribute to the main term while the other terms will contribute to the error,
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because for large n these terms are suppressed exponentially. So from that the Σ1 part
can be written as:

Σ1 = S1 + S2.

Here

S1 := i sin
(πa
c

)∑
h,k
c|k

ωh,k
(−1)ak+1

sin(πah
′

c
)
e−

πia2k1h
′

c
− 2πihn

k

∫ ϑ′′h,k

−ϑ′h,k

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz dΦ

and

S2 := i sin
(πa
c

)∑
h,k
c|k

ωh,k
(−1)ak+1

sin(πah
′

c
)
e−

πia2k1h
′

c e−
2πihn
k

×
∫ ϑ′′h,k

−ϑ′h,k

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz

∑
r∈N

∑
s (mod c)

a(r, s)e
2πih′
k

mr,sqr1dΦ.

To bound the error term S2 it is helpful to recall some easy facts:

(i) z = k
n
− iΦk;

(ii) −ϑ′h,k ≤ Φ ≤ ϑ′′h,k;

(iii) Re(z) = k
n
;

(iv) |z|2 = k2

n2 + k2Φ2 ≥ k2

n2 ;

(v) |z|− 1
2 ≤ k−

1
2n

1
2 ;

(vi) |z|2 ≤ k2

n2 + k2

k2(k+k̃2)2
≤ 2

n
;

(vii) Re(z−1) = Re(z)
|z|2 ≥

k
2
;

(viii) ϑ′h,k + ϑ′′h,k ≤ 2
k
√
n
.

We split the integral in the following way (this is possible because k̃1, k̃2 ≤ N):∫ ϑ′′h,k

−ϑ′h,k

=

∫ 1
k(N+k)

− 1
k(N+k)

+

∫ 1

k(k̃2+k)

1
k(N+k)

+

∫ − 1
k(N+k)

− 1

k(k̃1+k)

. (4.11)

Then S2 can be rewritten into three sums each sum corresponding to one of the three
integrations (4.11):

S2 = S21 + S22 + S23.
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For example

S21 = i sin
(πa
c

)∑
h,k
c|k

ωh,k
(−1)ak+1

sin(πah
′

c
)
e−

πia2k1h
′

c
− 2πihn

k

×
∫ 1

k(N+k)

− 1
k(N+k)

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz

∑
r∈N

∑
s (mod c)

a(r, s)e
2πih′mr,s

k qr1dΦ.

Taking the absolute value of this it is possible to bound the term. Before doing that we
define

a(r) :=
∑

s (mod c)

|a(r, s)|,

where the a(r) are exactly p(r) except from some constant term ambiguity. We proceed:

|S21| ≤
∞∑
r=1

∑
c|k

∑
s (mod c)

|a(r, s)|

∣∣∣∣∣(−1)ak+1 sin
(πa
c

)∑
h

ωh,k

sin(πah
′

c
)
e−

πia2k1h
′

c
− 2πihn

k
+

2πimr,sh
′

k

∣∣∣∣∣
× k−

1
2n

1
2

∫ 1
k(N+k)

− 1
k(N+k)

∣∣∣e 2πz
k (n− 1

24)+ π
12kz qr1

∣∣∣ dΦ

≤
∞∑
r=1

∑
c|k

∑
s (mod c)

|a(r, s)|
∣∣∣(−1)ak+1 sin

(πa
c

) ∑
h

ωh,k

sin(πah
′

c
)
e−

πia2k1h
′

c
− 2πihn

k
+

2πimr,sh
′

k

∣∣∣∣∣
× k−

1
2n

1
2 e2π+ π

12n e−πr
∫ 1

k(N+k)

− 1
k(N+k)

dΦ

Using Lemma 4.4 (2) we may bound this by

C

∞∑
r=1

∑
k

∑
s (mod c)

|a(r, s)|e−πr (24n− 1, k)
1
2 n

1
2k−

1
2k

1
2

+εk−1n−
1
2

= C
∞∑
r=1

|a(r)|e−πr
∑
k

k−1+ε (24n− 1, k)
1
2 ≤ C1

∑
k

k−1+ε (24n− 1, k)
1
2

≤ C1

∑
k≤N

k−1+ε
∑
d|k

d|24n−1

d
1
2 ≤ C1

∑
d|24n−1
d≤N

d
1
2

∑
k≤N/d

(kd)−1+ε

≤ C1

∑
d|24n−1
d≤N

d−
1
2

∑
k≤N/d

k−1N ε ≤ C2n
ε
∑

d|24n−1
d≤N

d−
1
2 ≤ C3n

ε.

where C1, C2 and C3 are constants. We conclude that S21 = O(nε). S22 and S23 are
bounded in the same way and so we just consider S22. We can rewrite the integral in the
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following way ∫ − 1
k(N+k)

− 1

k(k̃1+k)

=
N+k−1∑
`=k̃1+k

∫ − 1
k(`+1)

− 1
k`

. (4.12)

Plugging in this splitting of the integral we obtain the bound

|S22| ≤

∣∣∣∣∣∣
∞∑
r=0

∑
c|k

∑
s (mod c)

a(r, s)
N+k−1∑
`=k̃1+k

∫ − 1
k(`+1)

− 1
k`

z−
1
2 qr1e

2π
12kz

+ 2πz
k (n− 1

24)dΦ

(−1)ak+1 sin
(πa
c

)∑
h

ωh,k

sin
(
πah′

c

)e−πia2k1h′c e−
2πihn
k e

2πimr,sh
′

k

∣∣∣∣∣ =: A.

We use the condition N < k + k̃1 ≤ ` and so we can rearrange the summation from∑N+k−1

`=k̃1+k
to
∑N+k−1

`=N+1 , but we also have to rewrite the sum over h to count all the terms
that contribute:

A =

∣∣∣∣∣∣
∞∑
r=0

∑
c|k

∑
s (mod c)

a(r, s)
N+k−1∑
`=N+1

∫ − 1
k(`+1)

− 1
k`

z−
1
2 qr1e

2π
12kz

+ 2πz
k (n− 1

24)dΦ

(−1)ak+1 sin
(πa
c

) ∑
h

N<k+k̃1≤`

ωh,k

sin(πah
′

c
)
e−

πia2k1h
′

c e−
2πihn
k e

2πimr,sh
′

k

∣∣∣∣∣∣∣ . (4.13)

Now by the theory of Farey fractions we have

k̃1 ≡ −h′ (mod k) , k̃2 ≡ h′ (mod k) , N − k ≤ k̃i ≤ N,

for i = 1, 2. This can be seen by [4], Theorem 5.4 where it is proven that adjacent Farey
fractions fulfill some unimodular relations that are equivalent to the above statement. We
see that it is possible to use Lemma 4.4(2) to bound contributions of (4.13) and with that
also S22. This is done like in the S21 case by using the facts listed above and using the
same bounds. The only difference is that we need to be careful about the bound of the
sum over the different integrals. An easy calculation shows that the following bound can
be obtained:

N+k−1∑
`=N+1

∫ − 1
k(`+1)

− 1
k`

dΦ ≤ 2

k
√
n

So all the terms can be bounded the same way. Thus, we obtain the same result:

S21 = O(nε); S22 = O(nε); S23 = O(nε).
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So Σ1 is equal to:

i sin
(πa
c

)∑
h,k
c|k

ωh,k
(−1)ak+1

sin(πah
′

c
)
e−

πia2k1h
′

c
− 2πihn

k

∫ ϑ′′h,k

−ϑ′h,k

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz dΦ +O(nε).

Next we want to analyze S1. Therefore we use a similar trick like (4.12) to split the
integral: ∫ ϑ′′h,k

−ϑ′h,k

=

∫ 1
kN

− 1
kN

−
∫ − 1

k(k+k̃1)

− 1
kN

−
∫ 1

kN

1

k(k+k̃2)

.

and denote by S11, S12, S13 the corresponding sums. It is possible to show that S12 and
S13 contribute to the error term. We begin with S12. Similar to the analysis of the error
terms of S2 we write for the integral:

∫ − 1

k(k+k̃1)

− 1
kN

=

k+k̃1−1∑
`=N

∫ − 1
k(`+1)

− 1
k`

.

Plugging into S12 gives:

S12 =
∑
c|k

k+k̃1−1∑
`=N

∫ − 1
k(`+1)

− 1
k`

z−
1
2 e

π
12kz

+ 2πz
k (n− 1

24)dΦ
sin
(
πa
c

)
(−1)ak+1

∑
h

ωh,k

sin
(
πah′

c

)e−πia2h′k1c
− 2πhn

k .

Now due to the condition k̃1 ≤ N we have that ` ≤ k+ k̃1− 1 ≤ N +k− 1 which restricts
the summation over h. We can now bound S12 by summing over more integrals:

|S12| ≤
∑
c|k

k+N−1∑
`=N

∫ − 1
k(`+1)

− 1
k`

∣∣∣z− 1
2 e

π
12kz

+ 2πz
k (n− 1

24)
∣∣∣ dΦ

×

∣∣∣∣∣∣∣sin
(πa
c

)
(−1)ak+1

∑
h

`≤k+k̃1−1≤N−k−1

ωh,k

sin
(
πah′

c

)e−πia2h′k1c e
2πhn
k

∣∣∣∣∣∣∣ = O(nε),

using again Lemma 4.4 and the facts listed at the beginning of the proof. In the next
step we detect the main contributions from the second sum Σ2 in the Circle Method. We
rewrite Σ2 in such a way that it is easy to see if certain terms contribute to the main part
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using geometric series, which is possible because |q1| < 1:

C

(
ah′,

lc

c1

, c; q1

)
=

i

2(q1)∞

∑
m=0

(−1)me−
πiah′
c q

m2+m
2

+ l
2c1

1

1− e− 2πiah′
c q

m+ l
c1

1

−
∑
m=1

(−1)me
πiah′
c q

m2+m
2
− l

2c1
1

1− e 2πiah′
c q

m− l
c1

1


=

i

2(q1)∞

(∑
m=0

(−1)m
∑
r=0

e−
πiah′
c
− 2πirah′

c q
m
2

(m+1)+ l
2c1

+rm+ rl
c1

1

−
∑
m=1

(−1)m
∑
r=0

e
πiah′
c

+ 2πiarh′
c q

m
2

(m+1)− l
2c1

+rm− rl
c1

1

)
.

From this expression and the following explanation it is possible to see that we can write

e
−πia

2h′k1
cc1

+ 2πih′la
cc1

+ π
12kz q

−l2

2c21
1 C

(
ah′,

lc

c1

, c; q1

)
=:
∑
r≥r0

∑
s (mod c)

b(r, s)e
2πimr,sh

′

k qr1. (4.14)

We next explain that mr,s ∈ Z and r0 is possibly negative. The part with negative r
contributes to the main part. We rewrite (4.14) further by using 1/(q1)∞ = 1 + O(q1)
inside of C(ah′, lc

c1
, c; q1). So, the main contribution of

e
−πia

2h′k1
cc1

+ 2πih′la
cc1

+ π
12kz q

−l2

2c21
1 C

(
ah′,

lc

c1

, c; q1

)
comes from the following expression:

± i
2
e
−πia

2h′k1
cc1

+ 2πih′la
cc1

+ π
12kz q

−l2

2c21
1 (−1)mq

m
2

(m+1)± l
2c1

+rm± rl
c1

1 e∓
πiah′
c
∓ 2πiah′r

c . (4.15)

From this is possible to split the expression into the roots of unity and to the part that
depends on the variable z. The roots of unity look like:

exp

(
2πih′

k

(
−a

2k1k

2cc1

+
lak

cc1

− l2

2c2
1

+ rm± rl

c1

∓ kra

c
+
m(m+ 1)

2
± l

2c1

∓ ak

2c

))
.

Rewriting the expression in the second bracket, using the congruence condition l ≡ ak1

(mod c1), l2 ± l is always even and rearranging the sum it is possible to show that the

contribution of the roots of unity looks like exp
(

2πih′mr,s
k

)
where mr,s is a sequence in Z.

The interesting part happens for exp
(
π
kz
T
)
, where T is defined in the following way:

T :=
l2

c2
1

+
1

12
− 2rm∓ 2r

l

c1

−m(m+ 1)∓ l

c1

.
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This part contributes to the circle method exactly if T > 0 which is equivalent to −T < 0.
Firstly we treat the case with the plus sign in (4.15). By multiplying by (-1) and assuming
m > 0 it is possible to show

−T = − l
2

c2
1

− 1

12
+ 2rm+ 2r

l

c1

+m(m+ 1) +
l

c1

> −1− 1

12
+ 2 + 1 > 1 > 0.

So, −T > 0 and this gives for all r no contribution to the Circle Method. For m = 0
define r to be a solution to the following inequality:

− l
2

c2
1

− 1

12
+ 2r

l

c1

+
l

c1

< 0.

This is equivalent to T > 0 and so this contributes to the main part in the Circle Method.
Now choosing the minus sign in the equation (4.15) that becomes

T = − l
2

c2
1

− 1

12
+ 2rm− 2r

l

c1

+m(m+ 1)− l

c1

.

Assuming that m ≥ 2, it is possible to show that −T > 3 > 0 and this gives no contribu-
tion. For m = 1 we define f : [0, 1]→ R by

f(x) := −x2 − x(1 + 2r)− 1

12
+ 2 + 2r.

Calculating the maximum and computing the values of the function we see that on the
boundary the function is negative, i.e., f(1) = − 1

12
< 0. Thus this contributes to the

main part in the Circle Method. So there are two contributions coming from each of the
two terms of C(ah′, lc

c1
, c; q1). The first one comes from the first sum, if m = 0, and this

contributes with

i

2
e
−πia

2h′k1
cc1

+ 2πih′la
cc1

−πih
′a
c

+ π
12kz q

−l2

2c21
+ l

2c1

1

∑
r≥0

δ+
a,c,k,r

>0

e−
2πih′ar

c q
rl
c1
1 ,

where δ+
a,c,k,r = l2

2c21
+ 1

24
− (r + 1/2) l

c1
. The second contribution comes from the second

sum, if m = 1, and this contributes with

e
−πia

2h′k1
cc1

+ 2πih′la
cc1

+πih′a
c

+ π
12kz q

−l2

2c21
+ l

2c1
+1

1

∑
r≥0

δ−
a,c,k,r

>0

e
2πih′ar

c q
r
(

1− l
c1

)
1 ,

where δ−a,c,k,r = l2

2c21
− 23

24
− r

(
1− l

c1

)
+ l

2c1
. Thus we have for the leading order of Σ2 the

following expression:

2 sin
(πa
c

) ∑
k,r
c-k

i∈{−,+}

(−1)ak+l
∑
h

ωh,ke
2πi
k (−nh+mia,c,k,rh

′)
∫ ϑ′′h,k

−ϑ′h,k

z−
1
2 e

2πz
k (n− 1

24)+ 2π
kz
δia,c,k,rdΦ.
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Now it is possible to rewrite the sum over k into the sum where the k’s have the same values
for c1 and l and thus the δia,c,k,r are constant in each class and the condition δia,c,k,r > 0
is independent of k in each class. Moreover it is clear as c1 and l are finite numbers and
for arbitrary large r there do not exist any solutions to δia,c,k,r > 0, so that there are only
finitely many solution to the inequality. That means it is possible to split the sum over r
into positive δia,c,k,r, which by the above argument is a finite sum and into negative δia,c,k,r,
where the part with negative δia,c,k,r contributes to the error. By symmetrizing the integral
and now using Lemma 4.4 (1) it is possible to bound all the terms exactly the same way
we did for Σ1:

Σ2 = 2 sin
(πa
c

) ∑
k,r
c-k

δi
a,c,k,r

>0

i∈{−,+}

(−1)ak+l
∑
h

ωh,ke
2πi
k (−nh+mia,c,k,rh

′)

×
∫ 1

kN

− 1
kN

z−
1
2 e

2πz
k (n− 1

24)+ 2π
kz
δia,c,k,rdΦ +O(nε).

Another way to argue is to plug in the expansion (4.14) directly and split the sum over
r into positive and non-positive powers. Then by our analysis above we see that the
coefficients of the expansion do not depend on a and k, because the roots of unity are all
expressions in l/c1. So we can bound all the terms with k by using Lemma 4.4 and as
the b(r, s) grow exactly like the partition function with r and so smaller than exp(− πr

12kz
)

the product of theses two quantities can also be bounded by a constant. So at the end
we have

Σ2 = 2 sin
(πa
c

) ∑
k,r
c-k

δi
a,c,k,r

>0

i∈{+,−}

Da,c,k(−n,mi
a,c,k,r)

∫ 1
kN

− 1
kN

z−
1
2 e

2πz
k (n− 1

24)+ 2π
kz
δia,c,k,rdΦ +O(nε)

(4.16)
and by the analysis before

Σ1 = i
∑
c|k

B̃a,c,k(−n, 0)

∫ 1
kN

− 1
kN

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz dΦ +O(nε). (4.17)

To finish the proof we have to evaluate integrals of the following form:

Ik,t :=

∫ 1
kN

− 1
kN

z−
1
2 e

2π
k (z(n− 1

24)+ t
z )dΦ.

Substituting z = k/n− ikΦ gives

Ik,t =
1

ki

∫ k/n+ i
N

k/n− i
N

z−
1
2 e

2π
k (z(n− 1

24)+ t
z )dz.
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We introduce the circle through the complex conjugated points k/n±i/N which is tangent
to the imaginary axis at 0 and denote this circle by Γ. Writing a complex number on the
circle by z = x+ iy we have as a circle equation x2 + y2 = αx with α = k

n
+ n

N2k
. On the

smaller arc that is the arc going from the two complex conjugated points through zero we
clearly have Re(z) ≤ k

n
, Re (z−1) < k and 2 > α > 1

k
. From evaluating the integral on

the smaller arc we get that the integral is bounded by O(n−
1
8 )1. So it possible to change

the path of integration to the larger arc because we have no singularities enclosed by the
larger arc anymore. So by Cauchys Theorem we obtain:

Ik,t =

∫
Γ

z−
1
2 e

2π
k (z(n− 1

24)+ t
z )dz +O(n−

1
8 ).

Transforming the circle to a straight line by s = 2πr
kz

gives:

Ik,t =
2π

k

(
2πt

k

)1/2
1

2πi

∫ γ+i∞

γ−i∞
s−

3
2 es+

β
s ds+O

(
n−

1
8

)
,

where γ ∈ R and β = π2t
6k2

(24n− 1). By the Hankel integral formula [7] we get

Ik,t =
4
√

3√
k(24n− 1)

sinh

(√
2t(24n− 1)

3

π

k

)
+O

(
n−

1
8

)
.

Now at the end we have

Σ2 + Σ1 = 2 sin
(πa
c

) ∑
k,r
c-k

δi
a,c,k,r

>0

i∈{+,−}

Da,c,k

(
−n,mi

a,c,k,r

) ∫ 1
kN

− 1
kN

z−
1
2 e

2πz
k (n− 1

24)+ 2π
kz
δia,c,k,rdΦ

+ i
∑
c|k

B̃a,c,k (−n, 0)

∫ 1
kN

− 1
kN

z−
1
2 e

2πz
k (n− 1

24)+ π
12kz dΦ +O(nε)

finishing the proof of Theorem 4.5 after inserting the expressions for Ik,t.

Now let M(a, c;n) be the number of partitions of n with crank equal to a modulo c.
From the Theorem 4.5 it is now easy to give asymptotics for the functions M(a, c;n):

1we will make this statement more precise in the next section, see (4.24)
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Corollary 4.6. Let 0 ≤ a < c with c and odd integer. Then we have:

M(a, c;n) =
2π

c
√

24n− 1

∞∑
k=1

Ak(n)

k
I 3

2

(
π
√

24n− 1

6k

)

+
1

c

c−1∑
j=1

ζ−ajc

(
4
√

3i√
24n− 1

∑
c|k

B̃j,c,k(−n, 0)√
k

sinh
( π

6k

√
24n− 1

)

+
8
√

3 sin
(
πj
c

)
√

24n− 1

∑
k,r
c-k

δi
j,c,k,r

>0

i∈{+,−}

Dj,c,k(−n,mi
j,c,k,r)√

k
sinh

√2δij,c,k,r(24n− 1)

3

π

k



+O(nε).

Proof. The proof follows easily from the following identity:

∞∑
n=0

M(a, c;n)qn =
1

c

∞∑
n=0

p(n)qn +
1

c

c−1∑
j=1

ζ−ajc C(ζjc ; q). (4.18)

Plugging in the coefficients for C(ζjc ; q), the Rademacher formula and comparing termwise
in the q-expansion shows the corollary. To prove (4.18) we notice that for the right hand
side of (4.18) the following holds

1

c

∞∑
n=0

p(n)qn +
1

c

c−1∑
j=1

ζ−ajc C(ζjc ; q) =
1

c

∑
j (mod c)

∑
n≥0

∑
m∈Z

M(m,n)ζmjc ζ−ajc qn

=
1

c

∑
n≥0

∑
m∈Z

M(m,n)

 ∑
j (mod c)

ζ(m−a)j
c

 qn,

where the first term on the left hand side of the first equation corresponds to the case
j = 0 on the right hand side. Using the orthogonality of the roots of unity∑

j (mod c)

ζrjc =

{
0 r 6≡ 0 (mod c),

c r ≡ 0 (mod c),

we obtain

1

c

∞∑
n=0

p(n)qn +
1

c

c−1∑
j=1

ζ−ajc C(ζjc ; q) =
∑
n≥0

∑
m∈Z

m≡a (mod c)

M(m,n)qn

=
∑
n≥0

M(a, c;n)qn,

and this finishes the proof of (4.18).
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4.3 Inequalities of crank differences

Now we can prove our Theorem 1.1 by bounding all the error terms that occur in the
circle method explicitly. To aid the reader, we repeat the statement.

Theorem 4.7. Let M(j, c;n) be the number of partitions of n with crank congruent to
j modulo c. Let 0 ≤ a < b ≤ c−1

2
and let c > 11 be an odd integer, then we have for

n > Na,b,c, where Na,b,c is an explicit constant, the inequality:

M(a, c;n) > M(b, c;n).

We use Theorem 4.5, with a change of variables that does not effect the theorem. For
completeness we repeat the needed quantities. If c - k we redefine 0 < l < c to be the
unique solution to the congruence l ≡ jk (mod c) and let h, k be coprime integers. Define
h′ by hh′ ≡ −1 (mod k) if k is odd and by hh′ ≡ −1 (mod 2k) if k is even. Let ωh,k be
the multiplier occurring in the transformation law of the partition function p(n) which
satisfies |ωh,k| = 1, see (2.5). We make a technical assumption throughout the proof, that
c is prime. The bounds for c non-prime would differ slightly, but for simplicity we restrict
to that case. Moreover, we have, for n,m ∈ Z, the following sums of Kloosterman type

B̃j,c,k(n,m) = (−1)jk+1 sin

(
πj

c

) ∑
h (mod k)∗

ωh,k

sin
(
πjh′

c

) · e−πij2h′c · e
2πi
k

(nh+mh′)

if c|k, and

Dj,c,k(n,m) = (−1)jk+l
∑

h (mod k)∗

ωh,k · e
2πi
k

(nh+mh′).

Here the sums run through all primitive residue classes modulo k. Moreover, for c - k, let

δij,c,k,r =

{
−
(

1
2

+ r
)
l
c

+ 1
2

(
l
c

)2
+ 1

24
if i = +,

l
2c

+ 1
2

(
l
c

)2 − 23
24
− r

(
1− l

c

)
if i = −,

and

mi
j,c,k,r =


1

2c2
(−j2k2 + 2ljk − jkc− l2 + lc− 2jrkc+ 2lcr) if i = +,

1
2c2

(−j2k2 + 2ljk − jkc− l2 + 2c2r if i = −.
−2lrc+ 2jrkc+ 2lc+ 2c2 − jkc)

Note that due to the redefinition the quantities have changed. So now we can give the
Proof of Theorem 4.7.

Proof. Firstly, we define

ρj(a, b, c) :=

(
cos

(
2πaj

c

)
− cos

(
2πbj

c

))
.
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It is possible to write the crank differences as (see (4.18))

∑
n

(M(a, c;n)−M(b, c;n)) qn =
2

c

c−1
2∑
j=1

ρj(a, b, c)C
(
ζjc ; q

)
, (4.19)

where we defined ζc = e
2πi
c . We deduce the asymptotic behavior of (4.19) using Theorem

4.5. So we insert Theorem 4.5 into the equation (4.19) and get directly

M(a, c;n)−M(b, c;n) =

c−1
2∑
j=1

Sj(a, b, c;n) +
∑

i∈{−,+}

T ij (a, b, c;n) +O (nε)

 (4.20)

where we have

Sj(a, b, c;n) := ρj(a, b, c)
8
√

3i

c
√

24n− 1

∑
1≤k≤

√
n

c|k

B̃j,c,k(−n, 0)√
k

sinh

(
π
√

24n− 1

6k

)
, (4.21)

T ij (a, b, c;n) := ρj(a, b, c)
16
√

3 · sin
(
πj
c

)
c
√

24n− 1

×
∑

1≤k≤
√
n

c-k
r≥0

δi
j,c,k,r

>0

Dj,c,k(−n,mi
j,c,k,r)√

k
sinh

π
√

2δij,c,k,r(24n− 1)
√

3k

 .

(4.22)

This looks similar to the rank case treated in [6]. Firstly, we detect the main contribution
coming from sinh. It is a strictly increasing function and so we have to detect the largest
argument. In Sj the condition c | k has to be fulfilled and so the largest argument occurs
if k = c. We show using δ+

j,c,k,r with k = 1, r = 0 and j = 1 that the argument of the

hyperbolic sine of Sj is always smaller then the argument of the hyperbolic sine of T ij . As
c | k we have to show that: √

1

3c2
− 1

3c
+

1

36
>

1

6c
.

By squaring both sides and solving a polynomial equation we see that this is equivalent
to c > 11. So, for c > 11 the main contribution to the crank differences comes from T ij ,
so we have to detect the largest argument occurring in the T ij . To see what is the largest
argument we compare δ+

j,c,k,r and δ−j,c,k,r. First of all it is clear that the largest argument

occurs if r = 0 for fixed j, k. So we set r = 0 and see that δ−j,c,k,0 < δ+
j,c,k,0, because
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0 < l < c. Assuming l
c
< 1

2
, which we may do by the symmetry of the parabola in the

argument l/c we see that δ+
j,c,k,0 ≤ δ0 := 1

2c2
+ 1

24
− 1

2c
. For k = 1 we get l = j and so

if j 6= 1 we have δij,c,1,0 < δ0 if j 6= 1. This implies that the biggest argument occurs for
k = 1, r = 0 and j = 1. So the main contribution is

T+
1 (a, b, c, n) =

2

c
ρ1(a, b; c)

8
√

3 sin
(
π
c

)
√

24n− 1
sinh

(
π
√

2δ0(24n− 1)√
3

)
.

From this it is already possible to deduce the theorem, because for sufficiently large n
the main contribution comes from T+

1 . The sign of T+
1 is determined by the sign of the

ρ1 which is positive since we have 0 < π
c
< π

11
< π

2
which implies that in this range the

cos(πx/c) is decreasing. Thus for 0 < a < b < c−1
2

we have that cos
(
πa
c

)
> cos

(
πb
c

)
and

that explains why ρ1 is positive. So for sufficiently large n we have N(a, c;n) > N(b, c;n).
The next step is to clarify what sufficiently large exactly means by bounding all the error
terms explicitly in terms of c and n, beginning with the contributions of Sj, T

i
j for j > 1

and T−1 .
Bounding the contributions of Sj:
For Sj it is easily seen:

|Sj(a, b, c)| ≤
8|ρj(a, b, c)|

√
3

c
√

24n− 1

∑
1≤k≤

√
n

c|k

|B̃j,c,k(−n, 0)|√
k

sinh

(
π
√

24n− 1

6k

)

≤8|ρj(a, b, c)|
√

3

c
√

24n− 1

∣∣∣∣sin(πjc
)∣∣∣∣ sinh

(
π
√

24n− 1

6c

) ∑
1≤k≤

√
n

c|k

1√
k

k∑
h=1

(h,k)=1

1

| sin(πh
c

)|
.

Here we used that the biggest argument in the hyperbolic sine occurs if c = k and that
h and h′ run over the same primitive residue classes modulo k and so we changed in the
summation the argument of the sine from jh′ → h and with that to another representative
of the equivalence class. Here it is important to note that we are using that c is prime.
We further used | exp(πix)| = 1 for x ∈ R. The inner sum can be further estimated by

k∑
h=1

(h,k)=1

1

| sin(πh
c

)|
≤ 2k

c

c−1
2∑

h=1

1

| sin(πh
c

)|
≤ 2k

π

c−1
2∑

h=1

1

h (1− π2/24)
≤

2k
(
1 + log

(
c−1

2

))
(1− π2/24)

. (4.23)

In the first inequality it used that the absolute value of the sine is not bigger than 1 and
that c is odd. In the second inequality it is used that sin(x) > x− x3/6 for x < 1 and we
used that the summation runs to (c− 1)/2 by bounding in the x3-term h by c/2. In the

last step we have used
∑ c−1

2
h=1 h

−1 = 1 +
∑ c−1

2
h=2 h

−1 and estimated the sum by an integral.
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We now have:

|Sj(a, b, c)| ≤
16|ρj(a, b, c)|

√
3

c
√

24n− 1

∣∣sin (πj
c

)∣∣ (1 + log
(
c−1

2

))
π
(
1− π2

24

) sinh

(
π
√

24n− 1

6c

) ∑
1≤k≤

√
n

c|k

k1/2

≤
64n3/4

(
1 + log

(
c−1

2

))
√

24n− 1c2
√

3π
(
1− π2

24

) sinh

(
π
√

24n− 1

6c

)
.

Here it is used that |ρj(a, b, c)| ≤ 2 and the following estimation of the sum:

∑
1≤k≤

√
n

c|k

k
1
2 ≤ c

1
2

∑
1≤j≤bN

c
c

j
1
2 ≤ c

1
2

∫ bN
c
c

1

x
1
2dx ≤ 2

3c
n

3
4 .

Next we want to bound the T ij for j ≥ 2 and T−1 . Firstly notice that is possible to bound
Dj,c,k(−n,mi

j,c,k,r) trivially by k. The reason is that we sum over roots of unity and the
sum runs over all primitive residue classes modulo k. That explains the bound. Moreover
we can bound the hyperbolic sine by the positive part because sinh(x) = (ex − e−x)/2.
Bounding the contributions of T ij for j ≥ 2
Using the exponential function we can bound the terms in the sum of T ij in the following
way (here for k ≥ 2):

Dj,c,k(−n,mi
j,c,k,r)√

k
sinh

π
√

2δij,c,k,r(24n− 1)
√

3k

 ≤ k
1
2

2
e
π
√

2δ0(24n−1)

2
√
3 .

The number of r satisfying the condition δij,c,k,r > 0 can be bounded in terms of c: First
of all we find the number of solutions to the equation as a function of l for fixed c. Now
define the function gc : [1, c−1]→ R by f(l) = l

2c
+ 1

2
+ c

24l
. We added one to the equation

to afterwards take the Gauss bracket. The largest values occur on the boundary of the
interval, namely l = 1 and l = c−1, as the function has its minimum in the interior of the
interval and is a continuous function. For c > 11 the function take its maximum for l = 1
and may be bounded by (c+18)

24
. For the other cases we checked by hand that the number

of solutions to the equation δ > 0, which is b l
2c

+ 1
2

+ c
24l
c, can be bound by (c+18)

24
, where

we inserted the maximizing l = c− 1. Thus we can bound T ij for k ≥ 2 by the following
expression :

4(c+ 18)

3
√

3c
√

24n− 1
n3/4e

π

√
2δ0(24n−1)

2
√
3 .

Since δj,c,,1,0 < δ0 is decreasing in j, for j > 1 we bound the k = 1 contribution by the
argument of j = 2

2(c+ 18)√
3c
√

24n− 1
e
π

√
2δ2,c,1,0(24n−1)

√
3 .
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Before coming to the error terms of the Circle Method we have to bound the contribution
of T−1 .
Contribution of T−1 :
By the same analysis, it is possible to bound this term by a similar expression as the ones
before. By bounding the sinh by the exponential function, using ρ ≤ 2 and showing δ−1,c,k,r
is smaller then δ+

2,c,1,0 and so choosing the right argument in the exponential function T−1
can be bounded by

2(c− 1)√
3c
√

24n− 1
e
π

√
2δ+2,c,1,0(24n−1)

√
3 .

Here we bounded the number of solutions to δ−j,c,k,r > 0 by c−1
24

which is a rough bound, but
makes sense for all odd c (We could bound the number of solutions stricter, but we would
have had to put an extra condition on c or introduce a heavyside function that reflects
the fact the there are no solutions for c < 23). Now we want to make the O(nε)-term in
the Theorem 4.5 explicit. We had Ã

(
j
c
;n
)

= Σ1 +Σ2 with Σ1 = S1 +S2, where S2 =: Serr
contributes to the error in the circle method. See Theorem 4.5 for details.
Contribution of the error of Σ1

We again use the bounds |z| ≥ k
n
, Re(z) = k

n
, and C(ζhc , q1) = 1 +C(ζhc , q1)− 1 to obtain:

Serr ≤ 2

∣∣∣∣sin(πjc
)∣∣∣∣ e2π

∑
k≤N
c|k

k−
3
2

k−1∑
h=1

(h,k)=1

1

sin
(
πh
c

) max
z

∣∣e π
12kz

(
C(ζhc , q1)− 1

)∣∣ .
Here we used again a change of variables jh′ → h. The next step is to estimate
|e π

12kz (C(ζhc , q1)− 1)|. Remember that (3.1):

C(ζhc , q1) =
1

(q1)∞
+

(1− ζhc )

(q1)∞

∑
m∈Z\{0}

(−1)mq
m(m+1)

2
1

1− ζhc qm1

=
1

(q1)∞
+

(1− ζhc )

(q1)∞

∞∑
m=1

(−1)mq
m(m+1)

2
1

(1− ζhc qm1
+

(1− ζ−hc )

(q1)∞

∞∑
m=1

(−1)mq
m(m+1)

2
1

1− ζ−hc qm1
.

From this it is easily seen that |e π
12kz (C(ζhc , q1)− 1)| may be bounded by

e
π
24

∞∑
n=1

p(n)e−πn + e
π
24

∞∑
n=0

p(n)e−πn
∞∑
m=1

e−πm(m+1)/2

∣∣∣∣ 1− ζhc
1− ζhc qm1

+
1− ζ−hc

1− ζ−hc qm1

∣∣∣∣ .
Note that the summation index n on the first term starts with 1 where one the second
sum with 0, that means we absorbed the −1 into the sum. We bound the term further
by noting that ∣∣∣∣ 1− ζhc

1− ζhc qm1
+

1− ζ−hc
1− ζ−hc qm1

∣∣∣∣ ≤ 2
1 + | cos

(
π
c

)
|

1− e−πm
.
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Defining c2 :=
∑∞

n=1 p(n)e−πn and c1 :=
∑∞

m=1
e−

πm(m+1)
2

1−e−πm it is possible to bound Serr by:

2e2π

∣∣∣∣sin(πjc
)∣∣∣∣ e π24 (c2 + 2

(
1 +

∣∣∣cos
(π
c

)∣∣∣) c1(1 + c2)
)∑

k≤N
c|k

k−
3
2

k−1∑
h=1

(h,k)=1

1

| sin
(
πh
c

)
|
.

Using (4.23) and estimating the sum over k by an integral expression we obtain after
evaluating the integral the upper bound for Serr:

2e2π+ π
24

∣∣sin (πj
c

)∣∣ (c2 + 2
(
1 + | cos

(
π
c

)
|
)
c1(1 + c2)

)
n

1
4

(
1 + log

(
c−1

2

))
π
(
1− π2

24

)
c

.

We continue by repeating this procedure for the O(nε)-term of Σ2:
Contribution of the error of Σ2

The error correspond to the terms where δij,c,k,r is not positive. Therefore we define

M̃(jh′, l, c; q1) to be the terms with positive exponents in the q1-expansion of

e
π

12kz q
− l2

2c2

1 C(jh′, l, c; q1)

and bound M̃ . Writing for the entire sum Terr, using the usual bounds of |z| and doing
the usual change of variable jh′ → h the following bound is easily obtained:

Terr ≤ 8e2π

∣∣∣∣sin(πjc
)∣∣∣∣∑

h,k
c-k

k−
3
2 max

z
M̃(h, l, c; q1).

The difficult bounds come from the function M̃ . Remember that C(h, l, c; q1) has the
following expansion

C(h, l, c, q1) =
iζ−h2c q

l
2c
1

2(q1)∞

(
1− ζ−hc q

l
c
1

) +
iζh2cq

− l
2c

+1

1

2(q1)∞

(
1− ζhc q

1− l
c

1

)
−iζ

h
2cq
− l

2c
1

2(q1)∞

∞∑
m=2

(−1)mq
m(m+1)

2
1(

1− ζhc q
m− l

c
1

) +
iζ−h2c q

l
2c
1

2(q1)∞

∞∑
m=1

(−1)mq
m(m+1)

2
1(

1− ζ−hc q
m− l

c
1

) .
We bound the contributions of M̃ term by term beginning with the first one. We rewrite
the denominator by a geometrical sum and by 1

(q1)∞
=
∑

m=0 p(m)qm1 . So we have

iζ−h2c q
l
2c
1

2(q1)∞

(
1− ζ−hc q

l
c
1

) =
i

2
ζ−h2c q

l
2c
1

∑
m=0

p(m)qm1
∑
r=0

ζ−hrc q
rl
c

1 .
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Maximizing |z| and taking the absolute value of this expression, noting that for m = 0
not all the terms correspond to the error but for all higher m they do, and using that
Re(z−1) ≥ k

2
, we gain the following contribution to M̃

1

2
e−

πl
2c

+ l2

2c2
+ π

24

(∑
r≥r0

e−
πlr
c +

∑
r=0

e−
πlr
c

∑
m=1

p(m)e−πm

)
,

where r0 := d−1
2

+ l
2c

+ c
24l
e. Using

∑
r≥r0

e−
πlr
c =

e−
πr0l
c(

1− e−πlc
) , c2 =

∑
m=1

p(m)e−πm

and the usual geometrical series we can bound the term further by

e−
πl
2c

+πl2

2c2
+ π

24
−πr0l

c

2
(

1− e−πlc
) +

e−
πl
2c

+ l2

2c2
+ π

24 c2

2
(

1− e−πlc
) =

e
πl
c (− 1

2
+ l

2c
+ c

24l
−r0)

(
1 + c2e

πr0l
c

)
2
(

1− e−πlc
)

≤
(
1 + c2e

πδ0
)

2
(
1− e−πc

) .
The second sum can be bounded exactly the same way. In the third and fourth summand
all the terms will contribute to the error as was shown in the Theorem 4.5. We obtain∣∣∣∣∣∣∣−

iζh2cq
− l

2c
+ l2

2c2

1 e
π

12kz

2(q1)∞

∞∑
m=2

(−1)mq
m(m+1)

2
1(

1− ζhc q
m− l

c
1

)
∣∣∣∣∣∣∣ ≤

1

2
e−

πl
2c

+ π
24

+πl2

2c2 (c2 + 1)
∑
m=2

e−
πm(m+1)

2

1− e−πm+π l
c

≤1

2
eπδ0(c2 + 1)c3,

where

c3 :=
∑
m=2

e−
πm(m+1)

2

1− e−πm+π
.

We proceed by repeating this step for the fourth sum in the C(h, l, c; q1) expansion. As
there is nothing new we omit the step and just give the bound for M̃ . It is

eπδ0c1(1 + c2).

So at the end the error terms coming from the function M̃ can be bounded by the following
function f(c) that just depends on c

f(c) :=
1 + c2e

πδ0(
1− e−πc

) + eπδ0c1(1 + c2) +
1

2
eπδ0(c2 + 1)c3.
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So the error can be bounded by

Terr ≤ 8e2πf(c)
∑
h,k
h-k

k−
3
2 ≤ 16e2πf(c)n

1
4

∣∣∣∣sin(πjc
)∣∣∣∣ .

Here it used that the sum over h can be bounded trivially by k because the sum runs over
the residue class modulo k and we estimated the sum over k by an integral expression.
As a next step we want to bound the contributions that come from symmetrizing the
integral. In Theorem 4.5 we have shown that it is possible to split the integration over
the Farey arcs by making the integral bounds symmetric and showed that the needed
integral to correct this symmetrization will contribute to the error. These terms have to
be made explicit.
Symmetrizing
We had used ∫ ϑ′′h,k

−ϑ′h,k

=

∫ − 1
kN

− 1
kN

−
∫ − 1

k(k+k1)

− 1
kN

−
∫ 1

kN

1
k(k+k1)

.

Plugging into the first term of the main contribution we are left with the following error
term:

S1err = −i sin

(
πj

c

)∑
h,k
c|k

ωh,k(−1)ak+1

sin
(
πjh′

c

) e−
πij2kh′

c2
− 2πihn

k

×

(∫ − 1
k(k+k1)

− 1
kN

+

∫ 1
kN

1
k(k+k1)

)
z−

1
2 e

2πz
k (n− 1

24)+ π
12kz dΦ.

Taking the absolute value and the usual bound of |z| we can bound the term by

|S1err| ≤
∣∣∣∣sin(πjc

)∣∣∣∣ e2π+ π
12

∑
1≤k≤

√
n

c|k

n
1
2

k
1
2

∑
h

(h,k)=1

1

| sin
(
πh
c

)
|

2

kN

≤
4
∣∣sin (πj

c

)∣∣ e2π+ π
12

(
1 + log

(
c−1

2

))
π
(
1− π2

24

) ∑
1≤k≤

√
n

c|k

k−
1
2

≤
8e2π+π/12

(
1 + log

(
c−1

2

))
n

1
4

π
(
1− π2

24

)
c

.

Now we do the same for the second main contribution. Remember that we have to bound
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the following term:

S2err = 2 sin
(πa
c

) ∑
k,r
c-k

δi
a,c,k,r

>0

i∈{−,+}

(−1)ak+l
∑
h

ωh,ke
2πi
k

(−nh+mia,c,k,rh
′)

×

(∫ − 1
k(k+k1)

− 1
kN

+

∫ 1
kN

1
k(k+k1)

)
z−

1
2 e

2πz
k (n− 1

24)+ 2π
kz
δia,c,k,rdΦ

Completely analogous to S1err it is possible to show:

S2err ≤ 8e2π

∣∣∣∣sin(πjc
)∣∣∣∣ ∑

r,k

δi
j,c,k,r

>0

i∈{−,+}

k−
1
2 e2πδij,c,k,r .

As a next step we evaluate the sum over r with i = + and bound it in terms of δ0. As
it is the biggest argument, we can also bound the term with i = − analogously. So we
restrict to the case i = +. The sum over r gives

S2err ≤16e2π

∣∣∣∣sin(πjc
)∣∣∣∣ ∑

r,k

δ+
j,c,k,r

>0

i∈{−,+}

k−
1
2 e2πδ+j,c,k,r

=16e2π

∣∣∣∣sin(πjc
)∣∣∣∣∑

k

k−
1
2

∑
r≤r0−1

e−
πl
c

+πl2

c2
+ π

12
− 2πlr

c

=16e2π

∣∣∣∣sin(πjc
)∣∣∣∣∑

k

k−
1
2

e−
πl
c

+πl2

c2
+ π

12

(
e−

2πl
c
r0 − 1

)
e−

2πl
c − 1

≤16e2π

∣∣∣∣sin(πjc
)∣∣∣∣∑

k

k−
1
2

e2πδ0

1− e− 2π
c

≤32e2πn
1
4

∣∣∣∣sin(πjc
)∣∣∣∣ e2πδ0

1− e− 2π
c

.

Two facts should be explained. We had used that the summation over r is an error term
if it starts with r0, so here we have to sum over all the r-terms where r ≤ r0−1. As a next
step we calculated the geometric series in r and bounded the term similar to the Σ2-error.
Finally an estimation of the k-sum gives the final expression. The last contribution we
have to bound is coming from the evaluation of the integral. There it is used that it is
possible to change the path of integration if one accounts the integral over the smaller
arc. This term has to be made explicit.
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Integrating along the smaller arc
Remember that we had to compute integrals of the following form

Ik,t =
1

ki

∫ 1
kN

− 1
kN

z−
1
2 e

2π
k (z(n− 1

24)+ t
z )dz.

Now we denote the circle through k
n
± i

N
and tangent to the imaginary axis at 0 by Γ.

For z = x + iy, Γ is given by x2 + y2 = k
n

+ n
N2k

x =: αx. The path of integration can
be changed into the larger arc, while on the smaller arc we have the following bounds:
1
k
< α < 2, Re(z) ≤ k

n
and Re(z−1) < k. This can be used to bound the integral over the

smaller arc which we denoted by ΓS. Splitting Ik,t = Imaink,t + Ierrk,t we can bound Ierrk,t

Ierrk,t ≤
2

k
e2π+2πt

∫
ΓS

|z|−
1
2dz ≤ 2

k
e2π+ π

12

∣∣∣∣∣
∫ k

n

0

(x2 + y2)−
1
4 (dx+ idy)

∣∣∣∣∣
=

2

k
e2π+2πt

∣∣∣∣∣
∫ k

n

0

(αx)−
1
4 (dx+ idy)

∣∣∣∣∣ =
2

k
e2π+2πt

∣∣∣∣∣
∫ k

n

0

(αx)−
1
4dx+ i

∫ k
n

0

(αx)−
1
4dy

∣∣∣∣∣
=

2

k
e2π+2πtα−

1
4

∣∣∣∣∣
∫ k

n

0

x−
1
4dx+ i

∫ k
n

0

x−
1
4dy

∣∣∣∣∣
=

2

k
e2π+2πtα−

1
4

∣∣∣∣∣43
(
k

n

) 3
4

+ i

∫ k
n

0

x−
1
4
dy

dx
dx

∣∣∣∣∣
=

2

k
e2π+2πtα−

1
4

∣∣∣∣∣43
(
k

n

) 3
4

+ i

∫ k
n

0

x−
3
4
α− 2x

2
√
α− x

dx

∣∣∣∣∣ .
Next we compute the derivative of f : [0, α]→ R defined by x→ α−2x

2
√
α−x and see that the

derivative is negative for x < 3
2
α and so for all x ∈ [0, α]. That means that the function

f(x) has its maximum at x = 0 and so we can bound further:

Ierrk,t ≤
2

k
e2π+2πtα−

1
4

∣∣∣∣∣43
(
k

n

) 3
4

+ iα
1
2

∫ k
n

0

x−
3
4dx

∣∣∣∣∣
≤2

k
e2π+2πt

(
4

3

(
k

n

) 3
4

α−
1
4 + 2α

1
4

(
k

n

) 1
4

)

≤2

k
e2π+2πt

(
4

3
+ 2

5
4

)
n−

1
8 . (4.24)

Here it is used that k ≤
√
n and so k

n
≤ n−1/2, α < 2. Combining the contributions from

Σ1, using usual formulas like (4.23), and estimation of the sum over k, we can bound the



4.3 Inequalities of crank differences 42

whole contribution by (t = 1/24):

4
(

4
3

+ 2
5
4

) ∣∣sin (πj
c

)∣∣ (1 + log
(
c−1

2

))
e2π+ π

12n
3
8

πc
(
1− π2

24

) .

The same can be done for Σ2,

4

(
4

3
+ 2

5
4

) ∣∣∣∣sin(πjc
)∣∣∣∣ e2πδ0+2π

1− e− 2π
c

n−
1
8

∑
k≤
√
n

1

k

≤ 4

(
4

3
+ 2

5
4

) ∣∣∣∣sin(πjc
)∣∣∣∣ e2πδ0+2π

1− e− 2π
c

(
1 + log(

√
n)
)
n−

1
8

≤ 8

(
4

3
+ 2

5
4

) ∣∣∣∣sin(πjc
)∣∣∣∣ e2πδ0+2π

1− e− 2π
c

,

where it is used that the the log grows smaller then every root function, that means
that we can bound the contribution of n. Explicitly that means that we calculated the
maximum of f(x) = (1 + log(

√
x))x−

1
8 and the maximal value can be bounded by 2.

The explicit constant
Denoting the different error terms by Σ̃errj and the main part by T+

1 we can conclude
that

Na,b,c = min

{
n ∈ N

∣∣∣∣∣T+
1 (a, b, c, n)−

∑
j

Σ̃errj(c, n) > 0

}
.

This finishes the proof of the theorem.

For c < 13 the Sj will give the main contributions to the circle method as noticed in
the last theorem. As the sign of Sj depend on the sign of B̃j,c,k and the B̃j,c,k oscillate we
will have the following

Corollary 4.8. For n > Ña,b,c where Ña,b,c is an explicit constant we have

1. If 0 ≤ a < b ≤ 2, then the difference M(a, 5, 5n+ d)−M(b, 5, 5n+ d) is{
< 0 if (a, b, d) ∈ {(0, b, 1), (0, 2, 2), (1, 2, 2), (1, 2, 3)} ,
> 0 if (a, b, d) ∈ {(0, b, 0), (1, 2, 1), (0, 1, 3)} .

2. If 0 ≤ a < b ≤ 3, then the difference M(a, 7, 7n+ d)−M(b, 7, 7n+ d) is
< 0 if (a, b, d) ∈ {(0, 1, 1), (0, 1, 6), (0, 2, 1), (0, 2, 2), (0, 3, 1), (0, 3, 6),

(1, 2, 2), (1, 2, 4), (1, 3, 3), (1, 3, 4), (2, 3, 3), (2, 3, 6)}
> 0 if (a, b, d) ∈ {(0, 1, 0), (0, 1, 3), (0, 1, 4), (0, 2, 0), (0, 2, 3), (0, 3, 0),

(1, 2, 1), (1, 2, 6), (1, 3, 1), (2, 3, 2)} .
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3. If 0 ≤ a < b ≤ 4, then the difference M(a, 9, 3n+ d)−M(b, 9, 3n+ d) is

< 0 if (a, b, d) ∈ {(0, 1, 1), (0, 1, 6), (0, 1, 8), (0, 2, 1), (0, 2, 2), (0, 2, 6)} ,
(0, 3, 1), (0, 3, 3), (0, 3, 6), (0, 4, 1), (0, 4, 6), (0, 4, 8)

(1, 2, 2), (1, 2, 4), (1, 2, 7), (1, 3, 2), (1, 3, 3), (1, 3, 4)

(1, 3, 5), (1, 3, 7), (1, 4, 4), (1, 4, 7), (2, 3, 1), (2, 3, 3)

(2, 3, 5), (2, 3, 7), (2, 3, 8), (2, 4, 5), (2, 4, 8), (3, 4, 0)

(3, 4, 4), (3, 4, 6), (3, 4, 8)} ,
> 0 if (a, b, d) ∈ {(0, 1, 0), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5), (0, 1, 7),

(0, 2, 0), (0, 2, 3), (0, 2, 4), (0, 2, 5), (0, 2, 7), (0, 2, 8),

(0, 3, 0), (0, 3, 4), (0, 3, 7), (0, 4, 0), (0, 4, 2), (0, 4, 3),

(0, 4, 4), (0, 4, 5), (0, 4, 7), (1, 2, 1), (1, 2, 5), (1, 2, 8),

(1, 3, 0), (1, 3, 1), (1, 3, 6), (1, 3, 8), (1, 4, 1), (2, 3, 0),

(2, 3, 2), (2, 3, 4), (2, 3, 6), (2, 4, 2), (3, 4, 1), (3, 4, 2),

(3, 4, 3), (3, 4, 5), (3, 4, 7)} .

4. If 0 ≤ a < b ≤ 5, then the difference M(a, 11, 11n+ d)−M(b, 11, 11n+ d) is

< 0 if (a, b, d) ∈ {(0, 1, 1), (0, 1, 7), (0, 1, 8), (0, 1, 9), (0, 2, 1), (0, 2, 2),

(0, 2, 9), (0, 3, 1), (0, 3, 8), (0, 3, 9), (0, 4, 1), (0, 4, 7),

(0, 4, 8), (0, 5, 1), (0, 5, 9), (1, 2, 2), (1, 2, 4), (1, 3, 3),

(1, 4, 4), (2, 3, 3), (2, 3, 5), (2, 3, 8), (2, 4, 8), (3, 4, 4),

(3, 4, 7), (3, 4, 10), (3, 5, 10), (4, 5, 5), (4, 5, 9)} ,
> 0 if (a, b, d) ∈ {(0, b, 0), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 5), (0, 3, 4),

(0, 3, 10), (0, 4, 3), (0, 4, 5), (0, 5, 3), (0, 5, 4), (1, 2, 1),

(1, 2, 5), (1, 2, 7), (1, 2, 8), (1, 3, 1), (1, 3, 7), (1, 3, 10),

(1, 4, 1), (1, 4, 5), (1, 4, 9), (1, 5, 1), (1, 5, 7), (1, 5, 8),

(2, 3, 2), (2, 3, 4), (2, 3, 10), (2, 4, 2), (2, 4, 9), (2, 5, 2), (2, 5, 4),

(3, 4, 3), (3, 4, 5), (3, 4, 9), (3, 5, 3), (3, 5, 8), (4, 5, 4), (4, 5, 7),

(4, 5, 8)} .

Proof. The proof uses computer techniques. As c is odd and less than 13, the inequalities
are easily checked by hand using MAPLE. That is done by assuming c < 11 and k = c,



4.3 Inequalities of crank differences 44

because this yields the largest argument in the hyperbolic sine in Sj and from that we

only have to compute which sign
∑

j ρj(a, b, c)B̃j,c,c(−n, 0) has to see which inequality the
crank differences obey. For c = 11 the arguments of the hyperbolic sines could match and
cancellation between Sj and Tj can occur. So we have to add to

∑
j ρj(a, b, c)B̃j,c,c(−n, 0)

also ρ1(a, b, 11) sin
(
π
11

)
corresponding to the maximal argument in the hyperbolic sine

coming from the combination k = 1, j = 1, r = 0 to see which inequality the crank
differences obey. Computing all the signs gives the complete list. Two things should
be mentioned. The largest argument occur if c = k and that avoids problems in the
computation of the B̃j,c,c(−n, 0) because c = 9 is not prime. The other important fact
is that we have to modify the constant. As the Sj are no error terms for c < 11 the
T+

1 (a, b, c, n) can be bounded by the error term Σnew
err (a, b, c, n) := 2

ρ(a,b,c)
T+

1 (a, b, c, n). So
we obtain

Ña,b,c := min

{
n ∈ N

∣∣∣∣∣∑
j

Sj(a, b, c, n)−
∑
j

Σerrj − Σnew
err > 0

}
.

where the Σerrj are all the error terms of Theorem 4.20 except for the Sj-terms.



Chapter 5

Results

In this diploma thesis we have computed asymptotic values of the Fourier coefficients
of an infinite family of crank generating functions. To do so we had to prove a statement
about the transformation of the crank generating functions under Möbiustransformation.
This allowed us to use the Hardy-Ramanujan-Rademacher method to compute these co-
efficients asymptotically (see Theorem 4.5). From that theorem we could extract the
asymptotic value of M(a, c;n). Again using Theorem 4.5 we could compute certain crank
differences asymptotically and see that the crank differences obey certain inequalities by
detecting the main contribution of the main part of theorem 4.5. Instead of bounding
the error in the asymptotic expansion by O(nε) we bounded the all error term by term
explicit by a contribution depending on n and c. From that we could see that for c > 11
and all n > Na,b,c the sum of all error is less then the main contribution. This fact is quite
surprising in the sense that for c < 13 the behavior is different. For that case the main
contributions highly oscillate and there is no general inequality that the crank differences
obey. We computed all inequalities for the cases c < 13 by using computer algebra pro-
grams. This thesis is an analog of [6] and [7], where the same analysis was done for the
Rank. Due to mock terms the rank is more involved, but needs for the analog statement
about the Rank differences only c > 9. Note that the restriction c > 11 could be seen
heuristically as a consequence that the crank explains more Ramanujan congruences si-
multaneously as the rank.
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