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The aim of this master thesis is to introduce the AGT conjecture and
sketch proofs in some special cases. The AGT conjecture relates two a priori
different topics of physics to each other. These topics are two dimensional
conformal field theory and N = 2 supersymmetric Yang-Mills theory in four
dimensions. This relation is somehow expected from the M-theory picture
where both theories are limits of a M5 brane compactification. In the follow-
ing, the two topics needed to understand the conjecture will be presented.
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1 Introduction

N = 2 supersymmetric gauge theories are known as exactly solvable non-trivial quantum
field theories which serve as a toy model to understand asymptotically free theories and
gauge dualities. This theories are at the border of solvable and non-trivial quantum field
theories and serve as a laboratory of gauge/string dualities. In 2009 Alday, Gaiotto and
Tachikawa (AGT) established an extraordinary duality conjecture [1]. AGT supposed a
dictionary between certainN = 2 SCFT in four dimensions and between two dimensional
Liouville theory [2]. The original work related the Nekrasov partion function [3] that
encodes the non-perturbative effects of N = 2 theories for SU(2) to the conformal blocks
of a certain CFT - Liouville theory. This theory arises naturally, quantizing the bosonic
string in non-critical dimensions. The Liouville theory can be quantized as a conformal
field theory with continuous spectrum. In four dimensional gauge theories with extended
Supersymmetry it is possible to compute the partition function of the theory as a path
integral over the space of fields.This approach is applicable for every theory with a
Lagrangian description. Gaiotto [4] argued that the boundary of moduli space of complex
structures of Riemann surfaces is the same as the weakly coupled limit of the moduli
space of gauge couplings where a Lagrangian description exists. Thus there is a map
from a Riemann surface to a superconformal theory with two supersymmetries, which is
a hint for the AGT duality. The dictionary of AGT was also generalized to higher rank
groups. The main question is: Where does this duality come from? This thesis presents
the intermediate steps to understand the duality conjecture. Firstly, common subjects
like N = 2 field theory in general and the solution via the Seiberg Witten approach
will be discussed. In chapter 3 Liouville theory and to computations of correlator in
the theory will be introduced. Next, in chapter 4 we will explain the direct integration
method of Nekrasov to compute the instanton partition function via localization and
see that the Nekrasov partition function reproduce the Seiberg-Witten prepotential in a
certain limit. In Chapter 5 Gaiottos classification [4] of certain SCFTs in four dimensions
will be explained using methods anticipated long time ago by Witten [5]. This will
give a first hint to the AGT conjecture because of the deep relation between Riemann
surfaces and SCFT in 4 dimensions. In chapter 6 the AGT conjecture is presented
and it is shown that at g = 0 the conjecture is true by experimentally testing it. It
turns out that even for asymptotically free theories the conjecture is true if one modifies
the notion of conformal blocks to the irregular blocks. In chapter 7 we briefly want
to present the idea of Wyllard to generalize the AGT duality conjecture to higher rank
groups. It can be concluded that the AGT conjecture can naturally be understood in the
context of topological strings and matrixmodels. This fact gives a possibility to prove
the conjecture and this approach will be explained in chapter 8. The ninth chapter deals
with speculations related to calculations that have been done during the thesis.
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2 N = 2 supersymmetric gauge theories and the
Seiberg-Witten Solution

2.1 Fieldcontent of supersymmetric theories

2.1.1 Fieldcontent of N = 1 SUSY

Firstly we want to review how to construct the field content of N = 1 supersymmetric
theories, before starting to construct higher SUSY theories. This is done by analysing
the irreducible representations1 of the SUSY algebra, which is the only possible extension
of the Poincare algebra without violating the unitarity of the S-matrix. Therefore it is
introduced a complex spinor denoted by Qα and its conjugate Q†α̇. These spinors are the
generators of the new transformations that relate bosons and fermions which are called
SUSY transformations. It is clear that the SUSY generator has to be a spinor from the
assumption that a boson is transformed to a fermion. In the following the Poincare part
is skipped to restrict the equation to the extension of the algebra:{

Qα, Q
†
α̇

}
= 2σµαα̇Pµ{

Qα, Qβ

}
= 0 (1){

Q†α̇, Q
†
β̇

}
= 0

The algebra has a U(1)-symmetry, called R-symmetry. Obviously the vacuum is only
supersymmetric if and only if the potential energy vanishes, otherwise SUSY is sponta-
neously broken. The algebra is the starting point to construct the field content. Here it
is important to distinguish between massive and massless representations.
Massive particles are labeled by mass, spin and one component of spin s3.Therefore,
choosing P µ = (M, 0, 0, 0) reduces the algebra to a Clifford algebra{

Qα, Q
†
α̇

}
= 2Mδαα̇{

Qα, Qβ

}
= 0 (2){

Q†α̇, Q
†
β̇

}
= 0

Then define the “Clifford vacuum“ of spin s to be the state |Ωs〉 that is annihilated by
the SUSY generators.

Q1|Ωs〉 = Q2|Ωs〉 = 0 (3)

So we can use Qα as a lowering operator and Q†α̇ as a raising operator. From this highest
weight state we can now construct the entire representation of the N = 1 algebra by
acting with the conjugate spinor on the vacuum. The field content is:

|Ωs〉, Q†1|Ωs〉, Q†2|Ωs〉, Q†1Q
†
2|Ωs〉 (4)

Choosing different values of the spin, we can construct different supermultiplets. The
case where we do not want to create spin higher than 1, restricts the ”Clifford vacua“ to

1This is done by the Wigner method because the Poincare group is non-compact
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spin 0 and 1
2
. For s = 0 we get a so-called chiral multiplet with the following field content:

state s3

|Ω0〉 0

Q†1|Ω0〉, Q†2|Ω0〉 1
2

Q†1Q
†
2|Ω0〉 0

This is a Majorana spinor and a complex scalar which is a scalar particle and its su-
persymmetric partner. Now assuming that the vacuum has spin 1

2
the supermultiplet

consists of these different fields:

state s3

|Ω 1
2
〉 ±1

2

Q†1|Ω 1
2
〉, Q†2|Ω 1

2
〉 0,1,0, -1

Q†1Q
†
2|Ω 1

2
〉 ±1

2

That are two Majorana fermions, a massive vector particle and a real scalar. A similar
construction can be done for massless particles. We boost our reference frame to the
following one: Pµ = (E, 0, 0, E) and analyse the SUSY algebra. The algebra reduces to:{

Q1, Q
†
1

}
= 4E{

Q2, Q
†
2

}
= 0{

Qα, Qα

}
= 0 (5){

Q†α̇, Q
†
β̇

}
= 0

This is a Clifford algebra with one raising operator. For massless particles helicity is a
good quantum number and we choose a Clifford vacuum of fixed helicity. It is defined
as the state that is annihilated by one of the SUSY generators.

Q1|Ωλ〉 = 0 (6)

Concerning the algebra and the anticommutation relation of Q2, Q†2 produces states
of norm zero. From this analysis we now see that a massless supermultiplet has the
following states:

state helicity
|Ωλ〉 λ

Q†1|Ωλ〉 λ+ 1
2

If we want to construct a CPT-invariant theory we have to add states of inverse helicity
to avoid CPT violating terms. So there a two more states:

state helicity
|Ω−λ− 1

2
〉 −λ− 1

2

Q†1|Ω−λ− 1
2
〉 −λ

3



Again we can choose different helicities and see the field content of a supermultiplet.
Adding the CPT-conjugated states a supersymmetric CPT invariant theory with mass-
less and massive particles can be constructed. For helicity 0 a Weyl fermion and a
complex scalar is determined for the massless chiralmultiplet while a Weyl fermion and
a massless vectorparticle2 is calculated for helicity 1/2 called the vector multiplet
Here some problems are arising. Where are the supersymmetric particles? The analysis
suggests that the particles and their superpartner have the same mass. Therefore it is
clear that SUSY must be spontaneously broken at some energy scale higher than the
observed scales.

2.1.2 Extended SUSY

One of our assumptions was, that there is one SUSY generator, but we can now easily
generalize this to a set of generators Qa

I with a = 1, ...,N that fulfills the extended SUSY
algebra3: {

Qa
α, Q

†
α̇b

}
= 2σµαα̇Pµδ

a
b{

Qa
α, Q

b
β

}
= 0 (7){

Q†aα̇, Q
†
bβ̇

}
= 0

The R-symmetry is now U(N )R. We construct in the extended SUSY representations
in the same manner as the representations for one supercharge starting with the mass-
less representations Pµ = (E, 0, 0, E). By this assumption the algebra reduces to the
following: {

Qa
1, Q

†
1̇b

}
= 4Eδab{

Qa
2, Q

†
2̇b

}
= 0 (8)

We see again, as in the N = 1 case, that Q2b produces states of norm zero for ∀b =
1, ...,N .Analogous to the simpler case a Clifford vacuum of fixed helicity is defined as a
state that is annihilated by a SUSY generator. We create new states by acting with the
conjugate spinor on this Clifford vacua. The extended SUSY algebra will be degenerated
in these different states. In general a massless supermultiplet of extended SUSY has the
following field content with certain degeneracies:

state helicity degeneracy
|Ωλ〉 λ 1

Q†1a|Ωλ〉 λ+ 1
2

N
Q†1aQ

†
1b|Ωλ〉 λ+ 1 N (N − 1)/2
. . .
. . .

Q†11Q
†
12Q

†
1N |Ωλ λ+N /2 1

2Gauge particle
3There are also N conjugated complex spinors
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In this thesis we will not consider general supersymmetry. Instead we will focus on
N = 2 SUSY. The field content of N = 2 SUSY consists of a massless vectormultiplet:
4

state helicity degeneracy
|Ω−1〉 −1 1

Q†1|Ω−1〉 −1
2

2

Q†11Q
†
12|Ω−1〉 0 1

Nevertheless we have also to add the CPT-conjugate states. Finally we end up with the
following field content: two Majorana spinors, one complex scalar and one vectorparticle.
Another clue is that the N = 2 vectormultiplet can be built out of a chiral multiplet
and a vector multiplet in the N = 1 language. We want to move further and study
another supermultiplet built from another Clifford vacuum. For λ = 1/2 we get the
hypermultiplet. The hypermultiplet consists of two Majorana spinors and two complex
scalars. This is CPT invariant for real representations of a gauge group. From this
hypermultiplet we can already deduce that something can not be correct. Take some
gauge group G. From the two Majorana spinors we can construct mass terms for the
fermions that are gauge invariant. Theories with this property are called vector-like
theories. In our standard model description of particle physics particles become massive
via the higgs mechanism, because the gauge symmetry does not allow to write massterms.
Corresponding theories are called chiral-like theories. So somehow N = 2 does not seem
to be something realized in our physical world, but it is a huge laboratory to learn about
string and gauge dualities and even at this stage new interesting phenomena will appear.

2.1.3 Central charge

The algebra for the extended supersymmetry is not the most general possibility for the
extension of the Poincare algebra. If we define the SUSY charges as the integral over
spacetime of the zero component of the supercurrent (like the definition of charge implies)
and calculate the anticommutator we normally neglect boundary terms. Nevertheless in
general there can be some source on the boundary of spacetime that contributes to the
anticommutator and so we have to modify our SUSY algebra. We will directly restrict
to N = 2. The new algebra reads:{

Qa
α, Q

†
α̇b

}
= 2σµαα̇Pµδ

a
b{

Qa
α, Q

b
β

}
= 2

√
2εαβε

abZ (9){
Q†aα̇, Q

†
bβ̇

}
= 2

√
2εα̇β̇εabZ

Here it is a, b = 1, 2 and the number of components of the SUSY charges depends on
the spacetime dimensions. The R-symmetry will be broken by this central charge Z.
We introduce a new operator built out of the SUSY charges, to gain more information

4we just want particles with helicity smaller or equal than 1
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about the representations of the SUSY algebra with central charge:

Q̃α =
1

2

[
Q1
α + εαβ

(
Q1
β

)†]
(10)

˜̃Qα =
1

2

[
Q1
α − εαβ

(
Q1
β

)†]
(11)

Taking this new definitions into account it is possible to calculate the new anticommu-
tation relations. Using the following identity for the epsilon matrices: εαβε

†
βγ = δαγ you

get for the restframe by using equation (9){
Q̃α, Q̃β

†}
= δαβ

(
M +

√
2Z
)

(12){ ˜̃Qα,
˜̃ †
Qβ

}
= δαβ

(
M −

√
2Z
)

(13)

(14)

We now do a simple calculation with this new algebra. We introduce a state |M,Z〉
that is characterized by the mass and the central charge. We assume that the norm of
the state is normalized to unity and consider that we are in a unitary theory, where the
norm of states induces a semidefinite innerproduct.

0 ≤ 〈M,Z| ˜̃Qα
˜̃Q†α|M,Z〉+ 〈M,Z| ˜̃Q†α

˜̃Qα|M,Z〉

= 〈M,Z|
{ ˜̃Qα

˜̃Q†α
}
|M,Z〉

= M −
√

2Z

From this simple calculation it can be deduced a dependence of the central charge and
the mass of supermultiplet

⇒M −
√

2Z ≥ 0 (15)

A direct consequence is that if we tune the mass to zero, that the central charge will also
tend to zero. A BPS-state is defined to be a state that fulfills the following equality5:

M − |Z| = 0 (16)

Taking this condition into account it becomes clear that ˜̃Qα produces zero norm states
or in other words, the BPS-states are annihilated by half of the SUSY generators. So in
fact it is a massive multiplet that looks like a N = 2 massless multiplet or N = 1 massive
supermultiplet.The number of states in this multiplet is extremely reduced. This is the
reason why we call the supermultiplets that fulfill the BPS-bound ”short multiplets“
and the other ”long multiplets“. For example a short chiral multiplet of N = 2 has 4
states, but a long chiral multiplet has 16 states! Quantum corrections can not produce
the missing degrees of freedom in the multiplets, so the BPS-bound is protected from
quantum corrections, even from non-perturbative corrections.

5By rescaling (10) (11) we can bring the BPS bound to the form (16)

6



2.2 Some facts about the N = 2 Lagrangian

2.2.1 N = 2 Lagrangian from N = 1 Lagrangian

We have studied the field content of extended supersymmetric theories and now we have
to construct Lagrangians for this theory that respects the symmetries of the algebra
and of some gauge group following [8]. We extend our fourdimensional spacetime to a
superspace by introducing a non-commutative coordinate, strictly speaking a spinor θα

and its conjugate θ̄α̇ The index structure is lowered and raised with the ε-tensor. The
transformations generated by the SUSY algebra are the following:

xµ → x′µ = xµ + iθσµξ̄ − iξσµθ̄
θ → θ′ = θ + ξ (17)

θ̄ → θ̄′ = θ̄ + ξ̄

Here ξ is a transformation parameter of infinitesimal SUSY transformation that is im-
plemented by the operator ξαQα + ξ̄α̇Q̄

α̇ and by comparing the transformations we can
deduce a local representation of the SUSY charges as a differential operator acting on
the superspace:

Qα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ (18)

There is also a similar expression for the conjugate supercharge. We also introduce a
super covariant derivative that commutes with the SUSY charges.

Dα =
∂

∂θα
+ iθα̇σµαα̇∂µ (19)

The main idea is to introduce superfields. These are fields expanded in the grassmann
coordinates. This expansions are exact due to anticommutation of the superspace ex-
tension. In general the superfield can be written as:

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄ξ̄(x) + θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x) (20)

+ θθθ̄λ̄(x) + θθ̄θ̄ψ(x) + θθθ̄θ̄d(x) (21)

This formalism allows to expand the supersymmetric variations in simple calculations
because we define: δF =

[
ξQ+ ξ̄Q̄

]
F . We can read off the different variations of the

different superfield components. Another very important observation is that the highest
component transforms into a total derivative. So the first guess how to construct susy
invariant theories is as the highest component of some special superfield, since we want
to construct the field content of the representations constructed in the first subchapter.
Therefore we have to find the correct constraints on the superfield. We need two different
constraints to obtain the two different supermultiplets. The first one is as follows:

D̄α̇Φ = 0 (22)

7



This is called a chiral superfield but may also be described as a left chiral superfield.
The direct conclusion is that it can be expanded6:

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) (23)

Here yµ = xµ + iθσµθ̄. The different components consist of a scalar and a fermion and
some auxiliary field which is also needed for an off shell formalism because otherwise
the fermionic and the bosonic degrees do not match. We can also introduce a antichiral
superfield: DαΦ† = 0 that now depends on (y†, θ̄) and is similarly expanded as the chiral
superfield. In general any arbitrary function of chiral or anti chiral superfields is a chiral
or antichiral superfield. The grassmann formalism allows to expand arbitrary functions
exactly. So for Φ chiral superfield we get by Taylor expansion and the anticommutativity
of the grassmann numbers7:

W (Φ) = W (φ+
√

2θψ + θθF ) (24)

= W (φ) +
∂W

∂φ
2
√

2θψ + θθ

(
∂W

∂φ
F − 1

2

∂2W

∂φ2
ψ2

)
(25)

Or for many fields:

W (Φi) = W (φi +
√

2θψi + θθFi) (26)

= W (φi) +
∂W

∂φi
2
√

2θψi + θθ

(
∂W

∂φi
F − 1

2

∂2W

∂φiφj
ψiψj

)
(27)

This function is called superpotential. We now turn to the other supermultiplet and
thereby introduce another constrain. This new superfield should be real, i.e. V = V †

and can be written in the component fields as:

V (x, θ, θ̄) = C + iθχ− iθ̄χ̄+
i

2
θ2 (M + iN)− i

2
θ̄2(M − iN)− θσµθ̄Aµ+

iθ2θ̄(λ̄+
i

2
σ̄µ∂µχ)− iθ̄2θ(λ+

i

2
σµ∂µχ̄) +

1

2
θ2θ̄2(D − 1

2
�C) (28)

Nevertheless fortunately not every component is physical. We can get rid of many
components by an Abelian gauge transformation: V → V + Λ + Λ† with Λ chiral
superfield and Λ† anti chiral superfield. This means: C = M = N = χ = 0 .This gauge
is called Wess Zumino gauge. In this gauge SUSY is not manifest, but we have a gauge
symmetry of the Abelian gauge field. In fact, including the gauge transformation, the
subsequent superfield is gained:

V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D (29)

6This is one possibility. One could also introduce two different subalgebra. In that case the represen-
tation of SUSY charges becomes easier, but since the chiral fields are in different representations we
must do some manipulations to multiply them

7We get terms proportional to θ3 and θ4 but they vanish identically
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The vector superfield consists of a vector boson and its superpartner the gaugino λ.
Further there is an auxiliary field to have an off shell formalism. From this superfield
we can define an Abelian field strength that is a chiral superfield and can be computed
in the Wess Zumino gauge:

Wα = −1

4
D̄2DαV , W̄α̇ = −1

4
D2D̄α̇V

By expanding this definition in the Wess Zumino gauge it is noticable that the usual
Abelian field strength is a component field of the SUSY Abelian field strength.
Now we should extend our definitions to the non-Abelian case. The vector superfield is
in the adjoint representation of the gauge group. The gauge transformations are now:

e−2V → e−iΛ
†
e−2V eiΛ,with,Λ = ΛAT

A (30)

These TA are the gauge group generators. From this we can define the non-Abelian field
strength

Wα =
1

8
D̄2e2VDαe

−2V (31)

that transforms in the following way

Wα → W ′
α = e−iΛWαe

iΛ

We can expand this in components and we get the following form:

Wα = T a
(
−iλaα + θαD

a − i

2
(σµσ̄νθ)αF

a
µν + θ2σνDµλ̄

a

)
(32)

Here we have:

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν , Dµλ̄

a = ∂µλ̄
a + fabcAbµλ̄

c

We have constructed SUSY non-Abelian field strength and certain superfields with the
components we were searching for. Now we are in the position to write down SUSY La-
grangians as the highest component of special combinations of superfields. We multiply
a chiral superfield with an anti chiral superfield, take the highest component, drop sum
derivatives and sum over all possible fields: This is a free field Lagrangian:

L =

∫
d2θd2θ̄Φ†iΦi = ∂µφ

†
i∂

µAi + F †i Fi − iψ̄σ̄µ∂µψi (33)

Apparently this is a free field Lagrangian for a massless scalar and a massless fermion.
The auxiliary field can be eliminated on shell because the equation of motion is just
algebraic. There could also be a more general form of this free field Lagrangian with a
nontrivial metric on the space of fields. Therefore it is possible to write a general function
called Kaehler potential which induces locally a metric. This comes from the notion of
Kaehler manifolds where a closed 2-form exists which restricts the metric locally to be
the second mixed derivative of some scalar function called Kaehler potential.
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The interaction terms can be built out of the superpotential, which has to be holomorphic
or antiholomorphic. So the most general Lagrangian is

L =

∫
d4θK(Φ†,Φ) +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ†) (34)

The other chiral superfield combination is just the highest component of the contraction
of the Abelian field strength and in the non-Abelian case we have to take the trace to
sum over the lie algebra index of the gauge group. So we have

Tr

∫
d2θWαWα = −2iλaσµDµλ̄

a +DaDa − 1

2
F aµνF a

µν +
i

4
εµνρσF a

µνF
a
ρσ (35)

Due to this we know now how to construct the Super Yang Mills Lagrangian with theta
term coming from the topological charge, This theta term is a possible explanation for
CP-violation in non-supersymmetric QCD. Upon introduction of the constant chiral field
τ = θ/2π + 4πi/g2, it is easy to see how to introduce the theta term.

L =
1

8π
Im

(
τTr

∫
d2θWαWα

)
(36)

The last question is how to built a gauge invariant kinetic term. This is done by extending
the Lagrangian built out of the chiral and anti chiral superfields to a locally gauge
invariant term. This is the Kaehler potential. In the renormalisable case it is simply
Φ†e−2V Φ, but it may have a much more complicated form when renormalisability is
not a criterion. In the end we can list the entire Yang-Mills Lagrangian with N = 1
supersymmetry.

L =
1

8π
Im

(
τTr

∫
d2θWαWα

)
+

∫
d4θΦ†e−2V Φ +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ†) (37)

Now it is possible to expand the Lagrangian into the different field in the supermultiplets.
Every term is N = 1 Susy invariant so the whole Lagrangian is invariant under SUSY,
but the normalization between the scalar part and the Yang-Mills part is not fixed by
SUSY. We set the scalar normalization part to one and thus obtain the general super
Yang-Mills action action in components:

L = − 1

4g2
F a
µνF

aµν +
θ

32π2
F a
µνF̃

aµν − i

g2
λaσµDµλ̄

a +
1

2g2
DaDa

+ (∂µφ− iAaµT aφ)†(∂µφ− iAaµT aφ)− iψ̄σ̄µ(∂µψ − iAaµT aψ)

−Daφ†T aφ− i
√

2φ†T aλaψ + i
√

2ψ̄T aφλ̄a + F †i Fi

+
∂W

φi
Fi +

∂W̄

φ†i
F †i −

1

2

∂2W

∂φiφj
ψiψj −

1

2

∂2W̄

∂φ†iφ
†
j

ψ̄iψ̄j (38)

The next question is what could be the N = 2 super Yang Mills action. One interesting
point has already been discussed in the representation theory of the extended SUSY
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algebra. The on-shell N = 2 vector multiplet can be build out of a chiral and a vector
multiplet in N = 1 Susy. The fields needed are already in (38), however the question is
which constraints come from extended supersymmetry? With the fields now being in the
same multiplet these have to be in the same representation of the gauge group. So there
are as many fields as the rank of the gauge group. Moreover the superpotential vanishes
in N = 2 SUSY because only one fermionic component couples to the superpotential
while the other does not. However these two fermionic components that appear now
in the N = 2 vector multiplet are on an equal footing and this restricts the super
potential to zero.This is the reason why both fermionic kinetic terms should have the
same normalization, which is achieved by rescaling the chiral superfield Φ→ Φ/g. The
new Lagrangian has N = 2 supersymmetry.

LN=2 =
1

8π
ImTr

[
τ

(∫
d2θWαWα + 2

∫
d2θd2θ̄Φ†e−2V Φ

)]
(39)

with the following scalar potential after eliminating the D-term and F-term:

V = − 1

2g2
Tr
(
[φ†, φ]2

)
(40)

2.2.2 The N = 2 superspace formalism

Another approach to construct Lagrangians for N = 2 supersymmetric gauge theories
is by making some constraints on N = 2 Superfields that propagate in the extended
superspace. In this extendend superspace there are two grassman coordinates instead
of one. The N = 2 superfield can be written as a function of of the following variables:

F = F (x, θ, θ̄, θ̃, ¯̃θ) and formulating some constraints reduces the field content to a
N = 2 vector supermultiplet. Therefore we introduce two super covariant derivatives
with respect to the different grassmann coordinates and make the following constraints:

D̄α̇Ψ = ¯̃Dα̇Ψ = 0 (41)

We expand the function w.r.t. one variable:

Ψ = Ψ(1)(ỹ, θ) +
√

2θ̃αΨ(2)
α (ỹ, θ) + θ̃αθ̃αΨ(3)(ỹ, θ) (42)

Here is ỹ = xµ+ iθσµθ̄+ iθ̃σµ ˜̄θ. As a result of the N = 1 analysis and the constraints on
the superfields Ψ(1) has to be the N = 1 chiral superfield and Ψ(2) has to be the N = 1
field strength. The last term is:

Ψ(3) = −1

2

∫
d2θ̄
[
Φ(ỹ − iθσθ̄, θ, θ̄)†

]
exp

[
−2gV (ỹ − iθσθ̄, θ, θ̄)

]
(43)

This is just the highest component evaluated at fixed ỹ. Now it is possible to state that
the action in N = 2 language is

S = Im

[
τ

32π

∫
d4xd2θd2θ̃Ψ2

]
(44)
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If we integrate out the second grassman coordinate we will regain the same action as
constructed from N = 1 language by setting the superpotential to zero and rescaling the
chiral superfield. The quadratic dependence of the Lagrangian is due to renormalizability
of the action, but if we study effective actions this is no longer a criterion. In this case
the Lagrangian is controlled by a function called prepotential F which is holomorphic
because it is integrated over half of the superspace. In conclusion the effective action
can have a more complicated form than this renormalisable Yang Mills action.
Here it is important to mention that there are two different effective actions - the 1PI
action and the Wilsonian action. It is necessary to briefly review the difference. The 1PI
effective action is just the Legendre transformation of the vacuum energy as a function
of an external source. It is called 1PI effective action because it can be shown that
this effective action is the generating functional of the one-particle irreducible (1PI)
correlation functions. It is possible to reconstruct the information of a quantum field
system after spontaneous breakdown of some symmetry. Another means of the effective
action is the Wilsonian action which is achieved by integrating out all massive modes
down to some scale and all momenta above this scale. For a theory witout interacting
massless particles the two effective actions are the same but in case of gauge theory,
where massless gauge particles exists they differ. The 1PI effective action does not
depend holomorphically on the cut off scale while the Wilsonian action does. In general
we write:

S = Im

[
τ

4π

∫
d4xd2θd2θ̃F

]
(45)

where F can be any holomorphic function.n this case the central charge will have the
following form:

Z = ane + aDnm (46)

This formula can be explained via duality. a is the vev of the scalar in the vectormul-
tiplet. We will see that there is a dual description of the effective theory. In this dual
description electrically charged objects are replaced by magnetic monopoles. In the dual
description ne and nm

8 are interchanged and also a and aD where aD is the vev of the
dual higgs field characterizing a monopole. The BPS bound of a monopole can be calcu-
lated explicitly to be aDnm. We will see that the duality group is SL(2,Z) and (aD, a)
transform as a doublet. This explains (46).

2.2.3 Coupling gauge theory to matter

This chapter will briefly review how to include matter into the gauge theory. Matter
comes in a different representation than the gaugefield so it can not be in the vector
multiplet. So matter has to appear in hypermultiplets. We will directly formulate
everything in N = 1 language, because then a hypermultiplet contains a chiral field Q
and an anti chiral superfield Q̃† transforming under complex conjugated representations
of the gauge group. We can directly write down the Lagrangian for Nf hypermultiplets

8ne and nm are the charge multiplicities of electric and magnetic interaction
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interacting with an N = 2 vector multiplet:

L = LpureSYM +

∫
d4θ(Q†ie

−2VQi + Q̃ie
2V Q̃†i ) +

∫
d2θ(
√

2Q̃iΦQi +miQ̃iQi) (47)

Here we have a modification of the Kaehler potential by the appearance of more chiral
multiplets and a superpotential. If all mi are equal we will have a flavor symmetry.
From this new terms we can also calculate the modification of the central charge. There
will be an non-homogenous term that appears as:

Z = ane + aDnm +
∑
i

1√
2
miSi (48)

Hence Si depend only on the field content of the chiral fields that come into play by
adding hypermultiplets to the pure gauge theory. The Si are the flavor charges of the
the unbroken flavor symmetry or for different bare masses the flavor charge of the broken
flavor symmetry which is U(1)Nf .

2.3 Seiberg-Witten Solution for pure N = 2 SU(2) gauge theory

The following subsection will analyze the low energy effective action starting with the
classical action with no matter and gauge group G = SU(2) [6]. From this it is possible
to generalize to matter theories. First we have to study the moduli space of inequivalent
vacua to get a physical theory. Then we compute the low energy effective theory and see
that there are inconsistencies where electric-magnetic duality will help us to overcome
these inconsistencies. We will see that there are monodromies on the quantum moduli
space of vacua. These come from singularities where the Wilsonian description breaks
down. Analyzing these monodromies it is possible to deduce that solving the theory
is equivalent to find a certain section of a principal G-bundle where G is the group
generated by the monodromies.Due to this analyzis we see that there is an elliptic curve
that encodes the spectrum and the masses of the BPS states and the gauge couplings
called the Seiberg-Witten curve.

2.3.1 The moduli space of vacua

We know that Susy is unbroken if the scalar potential vanishes, so we have to study the
possible solutions of the following equation

V = − 1

2g2
[φ, φ†] = 0→ [φ, φ†] = 0 (49)

We see that the solutions of this equation take values in the Cartan subalgebra of the
gauge group. The gauge group is broken to G/H. We can parameterize the solutions
of this equation by φ = 1

2
aσ3 where a is some complex number and the vev of the

higgs field. There are still Weyl reflections changing a → −a, so the gauge invariant
quantity parameterizing the moduli space of vacua is 1

2
a2 or trφ2, which is the same
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semiclassically, but it will not be the same in quantum theory.
For the quantum theory we will define the following quantities:

u =
〈
trφ2

〉
, 〈φ〉 =

1

2
aσ3 (50)

u is a complex number parameterizing the gauge inequivalent vacua. So u is a coordinate
on the moduli space of the N = 2 pure super Yang Mills theory called M. M is
one dimensional complex Kaehler manifold and it is essentially a plane that has certain
singularities. These singularities and the behavior near this points will allow to determine
the effective action. For non vanishing 〈φ〉 it is known that the SU(2) gauge symmetry
is broken down to U(1) by the higgs mechanism. So we have to study an U(1) effective
theory. We will briefly discuss the relations for higher rank gauge groups later.

2.3.2 R-symmetry breaking

In the extended SUSY algebra we have a U(N )R symmetry. To briefly repeat how R-
symmetry acts on the multiplets of N = 2 theory it is valuable to organize the field
content as follows:

Aµ
λ ψ

φ

This is the vector multiplet we introduced already. Here we have a U(2)R = SU(2)R ×
U(1)R symmetry. The SU(2) acts on the rows by rotating the fermions in the table.
The gauge field and the scalar are invariant. For the hypermultiplet9 the transformation
acts in the same way as the scalars and leaves the fermions invariant.

ψq
q ψ̃†q

q̃†

In the N = 1 decomposition this gives rise to a coupling of the hypermultiplet to the
vectormultiplet.

W =
√

2Q̃ΦQ (51)

The survivingR-symmetries in theN = 1 language are broken by a chiral anomaly. This
can be seen by constructing a Dirac spinor out of the Weyl fermions in every multiplet
which is invariant under R-symmetry and that looks like a chiral transformation. This
invariance is broken in the quantum theory and so we have a chiral anomaly in the
theory that is the breakdown of the R-symmetry. As we will explain, U(1)R is broken
to Z4Nc−2Nf . There is also a redundant symmetry that has to be projected out and the
discrete group is broken further by the higgs vacuum. In the case of SU(2) gauge group
we have the following breakdown in the end:

SU(2)R × U(1)R → (SU(2)R × Z4)/Z2 (52)

9In the N = 1 language one can write for a N = 2 hypermultiplet a chiral and a anti chiral field Q
and Q̃
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2.3.3 The low energy effective action

So lets start to discuss the low energy effective action that controls the infrared behavior
of the theory, where A is the chiral superfield and F is the prepotential. The Lagrangian
(45) in the N = 1 language is:

Leff =
1

4π
Im

[∫
d4θ

∂F(A)

∂A
Ā+

∫
d2θ

1

2

∂2F
∂A2

WαWα

]
(53)

Here we directly see that we have a Kaehler potential inducing a metric on the space of
fields. We will denote the scalar component of the chiral superfield with a.

K = Im

(
∂F(A)

∂A
Ā

)
→ ds2 = Im

∂2F
∂a2

dadā (54)

This equation (53) shows that the gauge coupling for the field strength term is the same
as the metric. By constructing a metric on the moduli space of vacua, we also gain the
gauge couplings of the theory. The aim is to construct the prepotential F beginning with
the 1-loop corrections. Therefore it is necessary to explain that there are no higher order
corrections due to renormalization theorems which state that the one loop expansion is
exact in perturbation theory. However there will be instantons that will contribute to
the prepotential. The 1-loop prepotential can be deduced in two different ways. One
way is to integrate the β-function with certain integrations limits. Another approach is
to use the anomaly that breaks R-symmetry. As already stated before this is a chiral
anomaly and so we know how the current has to look like. In this special case for SU(Nc)
we know that:

∂µJ
µ = − Nc

8π2
FµνF

µν (55)

So we know how the Lagrangian changes under an anomalous R-transformation. This
is a one-loop effect. (For Nf fermions in the fundamental representation)

δLeff = −α(Nc −Nf/2)

8π2
FµνF

µν (56)

From this we see that the U(1)R is broken down to Z4Nc−2Nf . This can easily be seen

by noting that (32π2)−1
∫
FF̃ is integer valued. It is obvious that the variation of the

Lagrangian and the topological charge differ from a multiplicity of four so we get this
R-symmetry breaking. Regarding the term it is clear that we can see this as a θ-angle
shifting and therefore we set θ to zero.
We can deduce the 1-loop prepotential by performing an R-symmetry transformation
with the relevant terms. Then we assume that the Lagrangian changes as in (56). From
this we get:

F ′′(e2iαA) = F ′′ − 2αNc

π
(57)

We expand this equation for infinitesimal α and integrate the expression resulting in:

F1−loop =
i

2π
A2ln

A2

Λ2
(58)
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Λ is a dynamically generated scale that comes from the integration of the prepotential
and is the same as the dynamically generated scale in quantum chromodynamics. In
perturbation theory this prepotential is exact. Next, the reason for the absence of higher
order terms will be discussed. This argument is due to Seiberg [9].
We know that the effective action is gauge invariant under U(1). This confines the
perturbative prepotential to the following form:

Feff = (1/8g2)Φ2[1 + A2log(Φ2/Λ2)] (59)

The Lagrangian itself is not U(1) gauge invariant because varying the Lagrangian under
a U(1) gauge transfomration results in topological terms which change the action, but
not the equation of motion. We get:

δLeff = −α(A2/g
2)FµνF

µν (60)

So we have forNc = 2 and by comparing (56) with the variation of the effctive Lagrangian
that A2 = g2/4π2. Thus it can be seen that the log term in the prepotential is a 1-loop
effect and the beta function have the following form:

β(g) = −(1/4π2)g3 + instantons (61)

This is exactly the 1-loop beta function and so it is shown that the higher order correc-
tions do not modify the prepotential. Now we turn to the non-perturbative effects: the
instantons. This subject will be discussed further during this thesis, here we want to
argue how the prepotential changes in the presence of instantons. Firstly a k-instanton
contribution should be suppressed by the k-instanton factor. Considering this and in-
cluding the 1-loop β function we get:

F ∝ e−8π2k/g2

=

(
Λ

a

)4k

(62)

By restoring the U(1)R symmetry we can assign charge of 2 to Λ and since the pre-
potential now has an R-charge of 4 we know that the instanton part also has to be
proportional to the square of the chiral superfield. In the end we have:

F = F1−loop + Finst =
i

2π
A2ln

A2

Λ2
+
∑
Fk
(

Λ

A

)4k

A2 (63)

2.3.4 Duality

At this point we will see that the effective action description is not the right one for
the whole moduli space of vacua. In a physical theory the metric on a space should
be positive definite. Nevertheless it holds that Imτ(a) > 0. Since the prepotential is a
holomorphic function we directly see that Imτ is a harmonic function, because it is the
second derivative of the prepotential. It can not take a minimum on the (compactified)
u-plane. If it can not take a minimum, it is not bound from below and so to be positiv
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is violated by the metric. Have we done something wrong? In order to circumwent this
problem duality can be used. Since we approach in the moduli space to some singularity
where the metric goes to zero we have to choose another coordinate system where the
metric is positive. So we will have different local descriptions that are glued together to
get an everywhere consistend picture. The different descriptions are related via duality
transformation. We will show how this can work out. We introduce first two dual fields:

AD =
∂F
∂A

,
∂FD
∂AD

= −A (64)

From this definition we directly see that the gauge coupling is related to the dual field
via τ = ∂AD/∂A. Now we need to reformulate the effective Lagrangian (53) in the
N = 1 language. We can rewrite the first term easily with dual fields:

Im

[∫
d4θ

∂F(A)

∂A
Ā

]
= Im

[∫
d4θADĀ

]
= Im

[∫
d4AD ¯(−F ′D)

]
= Im

[∫
d4ĀDF ′D

]
The possibility to rewrite the term means also that the action (53) is invariant under
duality transformation, i.e. under (64). Now we have to rewrite the second term of the
effective action resulting in a dual Lagrangian by implementation of a constraint. The
Bianchi identity for superspace is Im(DαW

α) = 0 with Dα super covariant derivative.
We will in fact just use the Lagrangian method to introduce constraints in the Path
integral.Usually the path integral is integrated over the vectormultiplet (here called)
V , but you can equivalently also integrate over the fieldstrength and some Lagrangian
multiplier, which is a superfield. The Path integral is then equal to:∫

DV exp

[
i

4π
Im

∫
d4xd2θ

1

2

∂2F
∂A2

WαWα

]
=

∫
DWDVDexp

[
i

4π
Im

∫
d4x

(∫
d2θ

∂2F
∂A2

WαWα +
1

2

∫
d2θd2θ̄VDDαW

α

)]
(65)

The second term can be rewritten as:

Im

∫
d4xd4θVDDαW

α = Re

∫ ∫
d4xd4θiDαVDW

α = −Im

∫
d4xd2θWαDW

α (66)

Here we made use of the fact that the integral over d2θ̄ acts as quadratic super covariant
derivative on the integrand and that the derivative commutes with the dual superfield.
So we could introduce the dual field strength WD = D̄2DαVD. Performing the gaussian
integral over the field strength Wα in the path integral yields the dual Lagrangian:

1

8π
Im

∫
d2θ
−1

τ
W 2
D (67)
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What happened? We have seen that we can write down an equivalent Lagrangian which
exchanges a gauge field coupled to electric charges by an dual gauge field that couples to
magnetic charges if we also exchange the gauge coupling by an S-duality transformation:

τ → τD = −1

τ
(68)

The action is also invariant under T-transformation so we so we recognized that the
action is invariant under SL(2, Z) called the duality group. Returning to the metric on
the moduli space it can be seen that the metric can be written as:

ds2 = Imτdadā (69)

We have seen that we can not have the same coordinate on the whole moduli space and
have defined10 aD = ∂F/∂a. Now the metric can be written

ds2 = ImdaDdā (70)

This formula is symmetric within the field and its dual and and it is also invariant
under the duality group. In fact the problem can be formulated in a more mathematical
language: Let M be the moduli space of vacua parameterized by the u-plane so it is a
one dimensional special Kaehler manifold. Then we introduce some space P ' C2 where
(aD, a) are the coordinates. We choose a symplectic form ω = ImaD∧a on P . In fact we
have a map f : u→ (aD(u), a(u)) so f :M→ P . This is a section of an SL(2,Z)-bundle
over the moduli space of vacua and we know how to introduce a a metric. We simply
pullback the metric from the space P to the moduli space M. In fact solving the low
energy effective theory is equivalent to find (aD, a).

2.3.5 Monodromies on the moduli space of vacua

Now it is possible to study the singularities on the moduli space. The aim is to find out
how the coordinates change if we move along the moduli space. If we take a contour
on the u-plane and go around this contour, the coordinates (aD, a) change in case of
a singularity encircled by this contour. This is called a non-trivial monodromy. We
begin in the limit of large u. The theory is asymptotic free so in this limit it is possible
to use the perturbative expression for the prepotential F1−loop = iA2ln(A2/Λ2)/2π and
compute for large a:

aD =
∂F
∂a
≈ 2ia

π
ln(a/Λ) + ia/π (71)

In this region we can approximate the coordinate by the following equation u = 1/2a2.
For encircling the point at ∞ in a clockwise sense we get ln(u) → ln(u) + 2πi. Out of
the semiclassical approximation of the moduli space coordinate it can be deduced that
ln(a)→ ln(a) + πi. From this we get:

aD → −aD + 2a (72)

a→ −a (73)

10We have defined the dual field condition for the chiral superfield therefore it holds for the scalar
component as well
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This monodromy may also also be written in a more sophisticated form:(
aD(u)
a(u)

)
→M∞

(
aD(u)
a(u)

)
,M∞ =

(
−1 2

0 −1

)
. (74)

Through the non-trivial monodromy we know that there has to be at least some other
non-trivial monodromy in the moduli space of vacua because the monodromies generate
a group and so otherwise the this non-trival monodromy would be the identify element
which is a contradiction. Due to R-symmetry observations it is known that we have the
following symmetry on the modulispace u → −u. The fix points of this group action
are at infinity and at zero. We have already seen that ∞ is a singularity. If there is just
one singularity more then it has to be at 0.This is self-contradictory because it indicates
that the monodromy is the same at zero and infinity.This indicates that a2 is global
coordinate on M. However this violates the former analysis so we have conclude that
we need three singularities or more. Due to the R-symmetry we would have ∞, u0,−u0.
We assume that we have 3 singularities. Probably one would expect a singularity at the
origin. In the classical picture where u = 1/2a2 this is correct because there is a gauge
enhancement at the origin and all the fields that have gotten mass through the higgs
mechanism get massless there. In consequence the Wilsonian description breaks down
there. Asymptotic freedom makes it possible to analyze everything classically within
the large u limit but if we tune the values of u towards the origin we will encounter
monodromies and singularities, because we enter the strong coupled region, where u 6=
1/2a2. Nevertheless why do we get these singularities? A first guess would be that
gauge bosons become massless, but in [6] it was explained why this can not be correct.
Massless gauge bosons would imply that we have an asymptotically and conformally
invariant theory within the infrared limit. This would imply u 6= 〈trφ2〉 unless trφ2 has
dimension zero which would lead to the conclusion that trφ2 is the unity operator which
makes no sense. The singularities do not result in gauge bosons becoming massless, so
why do we have this singularities in the moduli space? There are no other elementary
particles since we are dealing with pure gauge theory, but we have noticed that we
need massive particles with spin ≤ 1/2 that become massless. That should be collective
excitations like magnetic monopoles or dyons. If a magnetic monopole becomes massless
we know from the BPS-bound that the dual coordinate tends to zero. The singularity
is denoted bby u0 so there holds: aD(u0) = 0. Monopoles are described by N = 2
hypermultiplets. These supermultiplets couple to the dual fields AD and WD like the
electron supermultiplet would couple to fields A and W . We know that we have to
deal with SQED because of the breakdown of the non-abelian gauge symmetry to U(1)-
gauge theory. Therefore we can analyze the β function of the theory. This leads to the
following magnetic coupling of the monopole near the singularity:

τD ≈ −
i

π
lnaD (75)

Since from our definitions we have τD = − ∂a

∂aD
, we can integrate the expression to obtain

a ≈ a0 +
i

π
aDlnaD +O(aD) (76)
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For small neighborhood of the singularity we can also write

aD ≈ c0(u− u0) (77)

In fact this means:

aD ≈ c0(u− u0) (78)

a ≈ a0 +
i

π
c0(u− u0)ln(u− u0) (79)

By encircling and going around we now get: ln(u − u0) → ln(u − u0) + 2πi and so the
monodromy around the singularity can be computed directly:

Mu0 =

(
1 0
−2 1

)
(80)

A special condition will help us to deduce the monodromy of the third singularity. The
possible monodromy is restricted because of the R-symmetry acting on the moduli space.
If we take the monodromies counterclockwise then, we have to have that multipling the
two monodromies around the finite u yields the same result as the monodromy around
infinity M∞ = Mu0M−u0 because the homology cycles11 build up a group. From this we
can compute:

M−u0 =

(
−1 2
−2 3

)
(81)

The question that directly arises is which kind of particle gets massless at the singularity.
The charge of every particle has to be invariant under monodromy. This is due to the
fact that a monopole is invariant under its monodromy and via duality has to account
for every particle. The simplest answer to this monodromy invariance is that a (1,−1)
dyon gets massless at singularity. From now on assume that u0 = 1. Now we will solve
the model via elliptic curves

2.3.6 The Seiberg Witten curve

Seiberg and Witten recognized that the solution to low energy theory of pure N = 2
super Yang-Mills can be beautifully encoded in an elliptic curve of a certain genus. We
summarize our conlusions uptil mow: we are studying the quantum moduli space M
of vacua. This is the u-plane with singularities at 1,-1 and at ∞ where we have put
u0 = 1. We have a Z2-symmetry acting on the moduli space. Previously it was shown
that duality indicates a flat SL(2,Z)-bundle over the moduli space of vacua with three
monodromies computed in the last subsection where (aD, a) is a section of this bundle.
We know the behavior of the section near special points. For u =∞

a =
√

2u (82)

aD = i

√
2u

π
ln(u) (83)

11Remember the definiton of a monodromy
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Near u = 1

aD = c0(u− 1) (84)

a = a0 +
i

π
aDln(aD) (85)

Near u = −1

a = c0(u− 1) + aD (86)

aD = a0 +
i

π
(a− aD)ln(a− aD) (87)

Here a0 and c0 are constants. We have a metric on the u-plane

ds2 = Im(τ) · |da|2 (88)

with

τ =
∂aD
∂a

=
∂aD/∂u

∂a/∂u
(89)

The solution of the model, which consists of knowing (a, aD) not only in a local patch,
can be achieved in two different ways. One way is via differential equations where
one studies the Schroedinger equation with periodic potential Through introduction of
the correct potential to the problem it is possible to solve the Schroedinger equation.
From this you can compute the coordinates (aD, a) explicitly. The other approach is
via elliptic curves and was noted in [6]. The monodromy matrices generate a certain
subgroup Γ(2) ⊂ SL(2,Z). This is the set of all matrices that are congruent modulo
two to the identity. The moduli space of vacua M is nothing then the upper halfplane
moded out by the monodromy group. This fact is due to the definition of coordinate
u and the fact that the monodromies does not change the physical theory. We directly
see that three cusps of the quotient correspond to the three singularities. The other
known fact is that the space H/Γ(2) is the moduli space of elliptic curves of genus 1 and
parameterizes the family of elliptic curves Eu via the following equation:

y2 = (x+ 1)(x− 1)(x− u) (90)

On this curve there is also a Z2-symmetry for u by introduction of corresponding sym-
metry transformations to the other variables of the curve. The curve (90) is double cover
of the x-plane12 branched over -1,1,u and∞. We want to fix a branch cut between 1 and
-1 and another between u and ∞. The a-cycle corresponds to a path around one of the
branch cuts and a b-cycle is intersecting both cuts. This can be seen by transforming a
torus into the x-plane with certain branch cuts. Owing to this it is clear that in case two
branch points coincide, a cycle of the curve goes to zero and the curve becomes singular.
This happens at the singularities of the u-plane or at the zeros of the discriminant of
the curve:

∆(u) = 0 = u4 − 2u2 + 1 (91)

12This is due to the quadratic term in y
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The famility of curves gets singular at the singularities of the u-plane u = ±1. To
identify the pair (aD, a) we have to choose two cycles γ1 and γ2 on the Riemann surface
that want should fulfill:

γ1 · γ2 = 1 (92)

They form a basis of the the first homology group. The homology group Vu = H1(Eu, C)
are the fibers of the constructed bundle over the moduli space. Locally we have cycles
and by gluing this together we get the SL(2,Z)-bundle. The elements of Vu can be
paired with elements of the cohomology group via:

γ →
∮
γ

λ (93)

So γ is a meromorphic (1,0)-form on the family of curves, but with a vanishing residue.
This condition protects the pairing form corrections if γ is deformed across poles. γ is
an element of the cohomology group so also defined modulo exact forms. In fact we
think that Poincare duality can be used to identify λ as an element of the Vu. This
can easily be seen by noting that the pairing induces a isomorphism between the k-th
comohomology and the (n-k)-homology. However on a surface we have n = 2 so we
see that the first homology group is isomorphic to the first cohomology group. For the
1-forms we now choose a basis:

λ1 =
dx

y
, λ2 =

xdx

y
(94)

Define a new parameter:

bi =

∮
γi

λ1 (95)

We can then write for the complex structure of the torus:

τu = b1/b2 (96)

Here we have Im(τu) > 0. Now we build an arbitrary section out of this basis

λ = f(u)λ1 + f̃(u)λ2 (97)

We define:

aD =

∮
γ1

λ

a =

∮
γ2

λ (98)

A different choice of the cycles will lead to a SL(2,Z)-transformed (aD, a) pair. In regard
to (98) it can be deduced that the method was correct. The main point is to show that
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the metric on the moduli space is positive. So we calculate the derivative of the section:

∂aD
∂u

=

∮
γ1

∂λ

∂u

∂a

∂u
=

∮
γ2

∂λ

∂u
(99)

We assume:
∂λ

∂u
= f(u)λ1 = f(u)

dx

y
(100)

From this assumption we can directly conclude that τ is now positive on the entire
moduli space of vacua.

∂aD
∂u

= f(u)b1

∂a

∂u
= f(u)b2 (101)

Here we used the definition of (95). The last step is:

τ =
∂aD
∂a

=
∂aD/∂u

∂a/∂u
=
b1

b2

= τu (102)

So we have shown that if τu > 0 then τ is positive on the whole moduli space. In [6]
it is argued that the implication holds also in the other direction and so the derivative
of λ w.r.t. u is indeed independent of λ2. The arbitrary function f(u) is fixed by
the asymptotic behavior near the singularities: f(u) = −

√
2/4π. From the asymptotic

behavior and (100) we can directly calculate λ

λ =

√
2

2π

ydx

x2 − 1
(103)

Now we need an explicit basis of 1-cycles on Eu to evaluate the desired expressions. We
have already discussed that a circle around 1 and -1 lifts to an a-cycle on the Riemann
surface and a circle that intersects both branch cuts (e.g. encircling 1 and u) lifts to a
b-cycle.So we define the γs as the encircling a-cycle and b-cycle. The result is:

aD =

∮
γ1

λ =

√
2

π

∫ 1

−1

dx
√
x− u√

x2 − 1

a =

∮
γ2

λ =

√
2

π

∫ u

1

dx
√
x− u√

x2 − 1
(104)

From this expression one can check that this gives the desired behavior near the singu-
larities, which means that the right monodromies are generated by a coordinate trans-
formation around the singularity. The integrals (104) can be evaluated in terms of
hypergeometric functions, which are defined as follows:

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dxxβ−1(1− x)γ−β−1(1− zx)−α (105)
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At the end we have:

aD =
i

2
(u− 1)F (1/2, 1/2, 2; (1− u)/2)

a =
√

2(1 + u)F (−1/2, 1/2, 1; 2/(1 + u) (106)

Now we turn our interest to gauge theory coupled to matter and especially to the con-
formal case.

2.4 Seiberg-Witten Solution for N = 2 SU(2) gauge theory coupled
to Matter: the superconformal case

In the following we will study conformal SQCD with SU(2) gauge group on the coulomb
branch. For nonconformal cases we want to refer to [8] or to the Appendix. First of all
we want to make some general remarks. Firstly it is convenient to rescale some formulas,
because our matter could have half-integer charges. So in (46) we multiply the electric
charge by 2 and divide a by 2. That will not change the central charge formula. Still
the subsequent equation can be formed (in the large u limit):

2aD = ∂F/∂a , a ≈ 1

2

√
2u , aD ≈ i

4

π
alnu (107)

The effective coupling is changed, too: τ = θ
π

+ 8πi
g2 . The most important fact is that

in contrast to the physics the curve might change. In fact we will try to solve the
theory again via elliptic curves and to try to find the Seiberg-Witten differential. So the
problem we are facing is to find an elliptic curve similar to (90) that describes the pure
gauge theory coupled to 4 flavor with arbitrary bare masses. We start to analyze the
superpotential that now appears in SQCD13 with Nf fundamental hypermultiplets (47):

W =

Nf∑
i=1

(
√

2Q̃iΦQi +miQ̃iQi) (108)

Here Φ is the chiral superfield. The global symmetry group for zero masses is a product
of a flavor symmetry and R-symmetry, which will be broken in quantum theory. When
the gauge group is SU(2) we have the flavor symmetry enlarging from SU(Nf ) to O(2Nf )
which can be seen by analyzing the superpotential14 we have an additional Z2-symmetry
that acts as:

ρ : Q1 ↔ Q̃1 (109)

This symmetry leads the other ”squarks“ invariant. This symmetry will be broken in
the superconformal case. The Coulomb branch is defined as the directions in which the
gauge group is broken to U(1). There is also another branch for Nf > 1 where the gauge

13SUSY Yang-Mills coupled to matter
14This is due to the fact that the fundamental representation of SU(2) is pseudoreal. This will be

explained in more detail in the chapter about N = 2-dualities
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group is completely broken called Higgs branch. However, this thesis is confined to the
first one. This is due to the fact that there are no quantum corrections on the Higgs
branch so the classical moduli space of vacua does not change in case we quantize the
theory.
The one-loop beta function is proportional to 4−Nf , thus the interesting physics appear
for Nf < 4 and Nf = 4. We will restrict to the second case, in case we have to do
assumptions about the number of flavors. There is a Z4−Nf symmetry acting on the
u-plane and in the conformal case this symmetry is absent. We will now analyze the
quantum moduli space of vacua on the Coulomb branch starting again by defining:
u =< Trφ2 >. For Nf = 4 the U(1)R symmetry is anomaly free and we can assign to u
a charge of 4. The parity transformation is anomalous but can be restored by assigning

odd parity to e
− 8π2

g2 .For Nf 6= 0 it is expected that terms with odd instanton number
vanish from the anomalous parity symmetry and that the instantons can not contribute
to the even metric, because the odd instanton number is odd under parity. So we have
even contributions from the instanton sectors:

a =
1

2

√
2u

1 +
∞∑
n=1

an(Nf )

(
Λ2
Nf

u

)n(4−Nf )
 (110)

aD = i
(4−Nf )

2π
a(u)log

u

Λ2
Nf

+
√
u
∞∑
n=1

aDn(Nf )

(
Λ2
Nf

u

)n(4−Nf )

(111)

2.4.1 The singularities in the superconformal case

The aim of this section is to study the singularities on moduli space of vacua for N = 2
gauge theory with four flavors. First of all it is known that the 1-loop beta function is
vanishing. So we know from non-renormalization theorems that the higher loop beta
functions vanish to all orders in perturbation theory. So there could be non-perturbative
effects that lead to the conclusion that the exact beta function does not vanish. There
are some reason to assume that the contributions to the beta function vanishe also non-
perturbativly. One reason is that the metric on the moduli space is not positive definite
and we know no other non-perturbative effects that could modify this in the right way.
So the exact quantum theory is scale invariant and is characterized by the marginal
coupling τ = θ

π
+ 8πi

g2 . The exact answer to the coordinates is

a =
1

2

√
2u (112)

aD = τa (113)

Through introduction of masses of matter the scale invariance and U(1)R-symmetry
is broken. If we send some mass to infinity, we should obtain the moduli space of
the theories with less flavors because we decouple flavors. These theories are discussed
in [8]. If we take masses mi and label i = n + 1, ..., 4 and let this masses go to infinity,
the number of flavors is reduced and the low energy theory should have n flavors with
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the corresponding scale parameter that differ for each matter configuration. In each
singularity there can be more hypermultiplets that become massless. If we denote every
singularity and its order by a number, the overall sum this number has to be 6. This
comes from the fact that we describe the physics via curves. So if we denote the weight
of the ith singularity by ki then we have

∑
ki = 6. These values are not arbitrary and we

now quote some examples from [7] of certain mass configuration with certain singularity
structure. That help us to extrapolate to arbitrary masses. First of all we bring the
masses of the flavor into a row vector.
Ex. 1:
mi = (m, 0, 0, 0) has global symmetry SU(4)×U(1). This has three singularities and ki =
(4, 1, 1), where the massless particles in the first singularity transform in the fundamental
of SU(4)
Ex. 2:
mi = (m,m,m,m) has global symmetry SU(4) × U(1) This has three singularities
and ki = (1, 1, 4), where the massless particles in the last singularity transform in the
fundamental of SU(4)
Ex. 3:
mi = (m,m, 0, 0) has global symmetry SU(2) × SU(2) × SU(2) × U(1) This has three
singularities and ki = (2, 2, 2), where the massless particles in the every singularity
transform in the fundamental of SU(2)
Ex. 4:
mi = (m + µ,m − µ, 0, 0)(µ 6= m) has global symmetry SU(2) × SU(2) × U(1) × U(1)
This has four singularities and ki = (1, 1, 2, 2), where 2 massless particles transform as
doublet under SU(2).
Ex. 5:
mi = (m,m, µ, µ)(µ 6= m) has global symmetry SU(2)× SU(2)× U(1)× U(1) This has
four singularities and ki = (1, 1, 2, 2), where 2 massless particles transform as doublet
under SU(2).
Ex. 6:
mi = (m,m,m,m)(µ 6= m) has global symmetry SU(3) × U(1) × U(1) This has four
singularities and ki = (1, 1, 1, 3), where 3 massless particles transform in the fundamental
under SU(3).

2.4.2 The curve for massless Nf = 4

Now we are in position to deduce the right family of curves. The coupling constant is
dimensionless in this case so the curve y2 = F (x, u,mi, τ) will depend on this coupling.
Strictly speaking this means that the coefficients of the curve will be functions of the
marginal coupling constant instead of being a function of the renormalization scale. We
want to find a curve so that the differential form

ω =

√
2

8π

dx

y
(114)
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has the right periods like in (113). To find the right genus one curve one first notices
that aD is just a multiple of a. Now introduce the curve as the complex plane moded out
by a lattice that is generated by π and τπ. This is a torus. Let w0 = dz. The periods
of this form are the generators of the lattice. We introduce the Weierstrass ℘ function
that obeys:

℘(z) = ℘(z + 1) = ℘(z + τ) = ℘(−z) (115)

This has a double pole at the origin. This ℘ obeys a certain differential equation:

℘′(z) = 4℘3(z)− g2(τ)℘(z)− g3(τ) (116)

Here g2 = 60π−4G4 g3 = 140π−6G6 with G4 , G6 the Eisenstein series.
Now we define x0 = ℘(z) and y0 = ℘′(z) and directly see from (116):

y0 = 4x3
0 − g2(τ)x0 − g3(τ) , ω0 =

dx0

y0

(117)

Setting x = x0u and also y = 1
2
y0u

3/2 and inserting we get:

ω =
√

2/u/4πω0 (118)

and the curve becomes:

y2 = x3 − 1

4
g2(τ)xu2 − 1

4
g3(τ)u3 (119)

This leads to the curve with the right periods. It is important to know more about the
structure of the curve. For this reason the curve has to be factorized first (119):

y2 = (x− e1(τ)u)(x− e2(τ)u)(x− e3(τ)u) (120)

Here the ei are the roots of 4x3 − g2x − g3 with
∑
ei = 0. The roots can be expanded

in terms of modular theta functions and look like:

e1 =
2

3
+ 16q + 16q2 + ... (121)

e2 = −1

3
− 8q1/2 − 8q − 32q3/2 − 8q216q2 + ... (122)

e3 = −1

3
+ 8q1/2 − 8q + 32q3/2 − 8q216q2 + ... (123)

(124)

Here q is the usual instanton parameter. It can be shown that the ei are in one-to-one
correspondence to the even spinstructures on the torus [7].If S-duality should permute
the three 8-dimensional representations of SO(8), which is universally covered by the
corresponding spin group ,the same way it acts on the even spinstructures we can deduce
that the this S-duality corresponds to permute the different ei in the curve.
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2.4.3 The mass deformed curve

Now we want to deduce the curve for arbitrary masses of the hypermultiplets: To do so
the above-mentioned examples will be used. This will restrict in an extent resulting in
a symmetry from which it is possible to deduce the exact form of the curve . First of all
we start with the following mass vector: mi = (m,m, 0, 0) resulting in three singularities
with two particles in each transforming as a doublet under SU(2). From this it can be
shown that the monodromy is conjugate to T 2, where T is one generator of the SL(2,Z).
From this one can deduce that the curve has to look like:

y2 =
∏
i

(x− eiũ− e2
i f) (125)

Here ũ is a constant shift of the coordinate on the moduli space of vacua and f is
proportional to m2. f has to be constant to avoid τ dependency for the residues of
the Seiberg-Witten differential. In the weak coupling limit one can fix the constant to
f = m2. So we now have the curve for the special case and we try now to extrapolate
to the general case with arbitrary bare masses. Therefore we introduce SO(8) mass
invariants.
First of all the quadratic term

R =
1

2

∑
i

m2
i (126)

Then we introduce quartic invariants which are linearly independent

T1 =
1

12

∑
i>j

m2
im

2
j −

1

24

∑
i

m4
i

T2 = −1

2

∏
i

mi −
1

24

∑
i>j

m2
im

2
j +

1

48

∑
i

m4
i (127)

T3 =
1

2

∏
i

mi −
1

24

∑
i>j

m2
im

2
j +

1

48

∑
i

m4
i

(128)

and the fourth quartic invariant R2. We are now able to combine the invariants to
invariants of order six. That are: R3 , RTi and the following one:

N =
3

16

∑
i>j>k

m2
im

2
jm

2
k −

1

96

∑
i 6=j

m2
im

4
j +

1

96

∑
i

m6
i (129)

Now we will impose certain conditions to generalize the curve (125) to arbitrary bare
masses:
1) The curve is a polynomial in the masses, because in the limit of vanishing masses the
curve should be smooth.
2) By assigning U(1)R charges the powers of m are constraint. The charges are for
(ũ, x, y,mi)(4, 4, 6, 2).
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3) In the special case of two identical masses and two zero bare masses, we recover (125).
We can directly restrict the form of the curve from these conditions using the invariants
and (125):

y2 =
∏
i

Wi + x
∑
i

Tifi + ũ
∑
i

Tigi +R
∑
i

Tihi+ pN (130)

Here the Wi = x− eiũ− e2
iR. For the special case mi = (m,m, 0, 0) we have Ti = N = 0

and the curve is directly reduced to (125). In (130) we have to fix some constants
to obtain the correct curve, which will be explained in this paragraph. First of all
we know that we have three singularities at ũi = eim

2. Consequently we know that
the discriminant have double zeros at these values. As it was done in example 4, we
can perturb this configuration of masses through addition and substraction of the same
amount of masses. From this, four singularities will result and, as it was evident in the
example, one singularity has to split to two while the other singularities stay the same.
This can also be seen from the transformation properties. The two ”old“ singularities
transform in the fundamental representation of SU(2) while the other transform under
U(1). Now we assume ũ1 splits and ũ2, ũ3 are double zeros, which still can move on the
moduli space of vacua. Through analyzis of the discriminant and the assumption that
the second and third zeros are double zeros we can deduce equations that restricting the
coefficients in the curve (130). In order to have enough equations to be able to solve
these for the coefficients, this can be done in the same way with mi = (m,m, µ, µ) and
mi = (m,m, µ,−µ).
Finally the following Seiberg-Witten curve is calculated for the N = 2 gauge theory
with Nf = 4:

y2 =
∏
i

Wi + A(W1T1(e2 − e3) +W2T2(e3 − e1) +W3T3(e1 − e2))− A2N (131)

Here we have:
A = (e1 − e2)(e2 − e3)(e3 − e1) (132)

2.4.4 S-duality?

This curve has a full SL(2,Z) invariance in case it is combined with a Spin(8) triality that
permutes the linearly independent quartic invariants of SO(8). More precise this means
that if we act on the gauge coupling with a SL(2,Z) transformation the curve is not
longer invariant under this transformation. Nevertheless if we map the mass parameters
of the four hypermultiplets to linear combinations, we can restore the symmetry of the
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curve:

m1 →
1

2
(m1 +m2 +m3 −m4)

m2 →
1

2
(m1 +m2 −m3 +m4)

m3 →
1

2
(m1 −m2 +m3 −m4)

m4 →
1

2
(−m1 +m2 +m3 −m4)

(133)

These transformations must be performed in order to have a symmetry under the map
τ → − 1

τ

m1 → m1

m2 → m2

m3 → m3

m4 → −m4

(134)

These transformation must be performed in order to have a symmetry under the map
τ → τ + 1. The conclusion is that the transformation on the mass parameteres cor-
respond to the permutation of the three different 8-dimensional representations of the
flavor group, which is called triality. These representations are called 8v, 8s, 8c and corre-
spond to the spinor representation, the conjugated spinor representation and the vector
representation of the flavor symmetry group SO(8). So the invariance group of the
curve is a semi direct product of SL(2,Z) with S3 and this will be used a lot to explore
a general class of N = 2 SCFTs in Chapter 5. Please note that talking about S-duality
means invariance under SL(2,Z) combined with triality.

2.5 Generalization to higher rank gauge groups

In this chapter the extension to higher rank gauge groups will be discussed [10]. The
Lagrangian of the classical theory for arbitrary gauge group of rank r broken down by
the higgs effect to U(1)r is:

Leff =
1

4π
Im

[∫
d4θ

∂F(A)

∂Ai
Āi +

∫
d2θ

1

2

∂2F
∂Ai∂Aj

WαiW j
α

]
(135)

We see that the Kaehler potential is given by K = Im(Āi∂F(A)/∂Ai). Thus the metric
on the moduli space is:

ds2 = Im
∂2F
∂ai∂aj

daidāj (136)
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Here ai is the scalar component of the i − th chiral superfield. Again we see that the
metric is the gauge coupling. Equivalently to the rank one case, the prepotential can be
written as:

F =
2q

πi

r∑
i=1

a2
i +

i

4π
[
∑
α

(α · a)2ln
(α · a)2

Λ2

−
∑
i

Nf∑
j=1

(λi · a+mj)
2ln

(λi · a+mj)
2

Λ2
]

+
∞∑
m=1

Λ2mq

2mπi
F (m)(a) (137)

q depends on the gauge group and ensures asymptotic freedom. λi also depends on
the gauge group and is an orthonormal basis up to a sign in the case of classical gauge
groups. α is the root vector of the corresponding gauge group and the F are the instanton
expansion coefficients that we want to deduce. Analogous to (130), the curve can be
given as:

y2 = A2(x) +B(x) (138)

Here for SU(r + 1):

A(x) =
r∏
i=1

(x− ak) , B(x) = Λ2q

Nf∏
j=1

(x+mj) (139)

q = Nc−Nf/2. The ak parameterizes the coordinates on the moduli space of vacua. The
coordinates, in the case of SU(r+ 1), are given as the Weyl invariant Chern classes. For
other classical gauge groups we can form certain combinations on the ak to parameterize
the moduli space of vacua. For the groups SO(2r + 1), Sp(2r), SO(2r) we have

A(x) = xa
r∏

k=1

(x2 − a2
k) , B(x) = Λ2qxb

Nf∏
j=1

(x−mj) (140)

The meromorphic 1-form on the curve is:

dλ =
x

y

(
A− AB′

2B

)
dx (141)

For SO(2r + 1) we have q = 2r − 1 − Nf and a = 0, b = 2; for Sp(2r) we have we
have q = 2r + 2 − Nf and a = 2, b = 0 and for SO(2r) we have q = 2r − 2 − Nf and
a = 0, b = 4. These results are in compliance with the literature and were evaluated for
classical gauge group groups (e.g. for SU(3) this is done in [11]) according to [6]. In
case we have a curve and the differential we can evaluate the periods again to deduce
the higgs fields and their dual to obtain the exact prepotential.
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2.6 Seiberg-Witten curves from M-theory

Now we are interested in the construction of Seiberg-Witten curves like (130), (125), (90)
from string theory. In fact there are two approaches to this. The first approach makes us
of geometric engineering. Here we compactify the ten dimensions on a local Calabi Yau
manifold with certain singularities. A more detailed description (of this approach) can
be found in [12], [13]. On the other hand the Seiberg-Witten curve can be constructed
as in [?]. Here it was noticed that N = 2 field theories can be constructed as effective
theories on certain brane configurations in type IIA string theory. This construction can
be lifted to M-theory.

2.6.1 Field theory from D6/NS5/D4-branes

Firstly we introduce intersecting brane configurations in Type IIA string theory on R10.

We will have :
NS5 1 2 3 4 5 - - - -
D4 1 2 3 - - 6 7 8 9

So the fivebranes are located at x7 = x8 = x9 = 0 and have a fixed x6 value in the
classical theory. We want to assume that there are n+ 1 NS5 branes and kα D4 branes
suspended between the (α − 1)th brane and the αth NS5 brane. The resulting low

Figure 1: There are several fivebranes with parallel fourbranes in between

energy theory on the D4-world volume is an N = 2 gauge theory with
∏
SU(kα) and

bifundamental hypermultiplets (k1, k̄2)⊕ · · · ⊕ (kn−1, kn). The important fact is that we
have special unitary groups. This is due to the fact that in case the kinetic energy of
the five brane is studied, terms will results which are only convergent if the difference of
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the scalar parts of the U(1) vector multiplet in the U(kα) and in the U(kα+1) is fixed.
This is the case for every fivebrane so a U(1) vectormultiplet is missing in the spectrum.
Therefore we have special unitary gauge groups. If the four branes are parallel, the gauge
symmetry is broken by the higgs effect to gauge symmetry on the Coulomb branch. For
a four dimensional observer the effective gauge coupling grows logarthmically. That can
be seen as pulling the NS5 brane along the x6-direction and the displacement of two
branes is growing logarithmically. By adding some D4-branes on the left and the right
we can built hypermultiplets in the fundamental of the first and last gauge group. Now
we can also include D6 branes in the following brane configuration:
NS5 1 2 3 4 5 - - - -
D4 1 2 3 - - 6 7 8 9
D6 1 2 3 - - - 7 8 9

If there are dα D6 branes between the (α − 1)th brane and the αth NS5 brane, we will
have additional dα hypermultiplets in the fundamental representation of the gauge group
SU(kα).
Let us quickly review how to construct the familiar supersymmetric theories. Pure
N = 2 gauge theory with gauge group SU(N) is constructed by two NS5-branes with
N D4-branes between them. SQCD can be constructed by ddtion of a number of D4-
branes which are semi-infinite15 on both sides of the two NS5-branes or by inclusion of
D6 branes between the NS5 branes.

2.6.2 Lift to M-theory

Now we have seen that we can construct supersymmetric gauge theories from Brane
configurations. Still, how can they be analyzed in general? The basic observation is
that the D4 branes and NS5 branes come from the be same fundamental object in M-
theory. The M5 brane. By compactifying the 11th dimension on a circle one gets that
a D4 brane is an M5 brane that wraps the extra dimension and the NS5 brane is an
M5 brane located at some point on the circle. The whole brane configuration comes
from one curved M5-brane. To preserve N = 2 supersymmetry the world volume of the
M5 brane should have a complex structure on the space transverse to the observed four
dimensional space so should be of the form R4 × Σ where Σ is a Riemannian surface
embedded into R3 × S1.
The D6 branes are lifted to Kaluza Klein monopoles of M-theory. This is due to the
observation that D6 branes are magnetically charged dual objects to D0 branes which are
Kaluza Klein excitations. So D6 branes can be seen as magnetically charged under U(1)
and are called Kaluza Klein monopoles or Taub-NUT spaces. These are 4-dimensional
hyperkaehler manifolds. After the lifting a single M5-brane to M-theory we will have
that the world volume will be R4×Σ where Σ is now embedded into a Taub-NUT space.
So we need to understand the geometry of the M5-brane to compute various quantities.

15Massive modes from the strings stretching between this branes and the four branes in between of the
NS5 branes lead to massive multiplets
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Now let T be a self dual field strength coming from the M5-brane16. We decompose the
fieldstrength

T = (1 + ∗)F ∧ ω (142)

Here ω is a harmonic one-form on the Riemannian surface and F is the gauge field
strength. If we have a genus g surface we will get a U(1)g gauge theory on the coulomb
branch. The gauge couplings are obtained from the dimensional reduction along the
Riemannian surface: ∫

R4×Σ

|T |2 (143)

Hence we see that we get the gauge coupling by evalution of the period matrix of the
surface. This means that the surface is the Seiberg-Witten curve and the gauge coupling
depends only on the complex structure.

2.6.3 Solutions to N = 2 theories

The aim of this section is to write down Seiberg-Witten curves for the several brane
configurations starting with pure gauge. It was already noticed before that this corre-
sponds to two NS5-branes an k D4-branes. We write v = x4 + ix5 and t = exp(−s) =
exp(−(x6 + ix10)/R. Here x10 is the extra dimension form M-theory and R the size of
the extra dimension. So we are searching for an equation F (v, t) = 0 that defines the
Seiberg Witten curve. First we observe that for fixed v the roots of the defining equation
are the position of the NS5-branes. So the number of NS5-branes is equal to the degree
of the function in t. For pure gauge F has to be quadratic in t. Accordingly we see that
the degree in v is equal to the number of fourbranes between the fivebranes. So we have:

F (v, t) = A(v)t2 +B(v)t+ C(v) = 0 (144)

Here A, B, C are polynomials in v of degrees k. There are no fourbranes on the left or
right of the two NS5-branes so we can argue that in the large and zero limit of t there
should be no solution to F = 0 and therefore we can set A = C = 1. So the curve is

t2 +B(v)t+ 1 = 0 (145)

Shifting t we can bring this to

t̃ =
B(v)

4
− 1 (146)

with t̃ = t+B/2. The last step is to bring B to the form

B(v) = vk + u2v
k−1 + ...+ uk (147)

(146) is the solution of pure N = 2 gauge theory. Now we directly want to incorporate
flavors. So we need zeros of the polynomials we have chosen to be constant. In this

16This fact comes from the representation theory of the low-energy theory of M5 branes which is
(2, 0)-theory in 6 dimension and its representation
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case we take A = 1 , C(v) = f
∏Nf

j=1 (v −mj) where the mj are the bare masses of the
hypermultiplets and f is a complex constant. Inserting the new expression for C will
lead to the Seiberg-Witten curve. The above analysis leads to the following general
expression:

F (t, v) = tn+1 + f1(v)tn + ...+ 1 ≡
n∏

α=0

(t− tα(v)) (148)

We have to deduce the structure of this fi. This is done by noting that the solution tαv
to F (v, t) = 0 are polynomials in v and so for large v:

tα(v) ≈ hαv
aα (149)

Here a0 ≥ a1 ≥ ...an and hα constants. The behavior can be expressed by the 1-loop
beta function:

−iτα ≈ sα − sα−1 (150)

Notice that t = exp(−s). One can also argue:

aα − aα−1 = −bα = −2kα + 2kα+1 + kα−1 (151)

We know that the last term of the polynomial is independent of v. So if we multiply out
an expression like (148) then there is term

∏
α tα = 1, thus

∑
aα = 0. From this and

(150) we now can express the powers of the polynomials from the number of fourbranes:

aα = kα+1 − kα (152)

Consequently:
F (t, v) = tn+1 + pk1(v)tn + ...+ pkn(v)t+ 1 (153)

Here pkα are polynomials of the degree corresponding to the number of fourbranes in
between of two fivebranes. The polynomials can be expanded and the coefficients can
be seen as the gauge coupling, the bare mass of the hypermultiplets or order parameters
on the coulomb branch in the αth gauge group factor.
To include matter in an arbitrary fundamental representation of the gauge group we need
to put D6-branes between the NS5-branes. We have seen that this brane configuration
is lifted to an M5-brane that is embedded into a Taub-NUT space. Let us assume we
have d D6-branes. The Taub-NUT space is written:

yz = P (v) =
d∏
a=1

(v − eα) (154)

Here the eα are the positions of the D6-branes in the v-plane and for t going to zero we
have a D6-brane on the right and for very large t we have a D6 brane on the left. This
is seen by the definition of t and the fact that the eα are the positions of the D6 branes.
We assume that there are two NS5-branes, so the curve quadractiv in y:

F (y, v) = A(v)y2 +B(v)y + C(v) = 0 (155)
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By avoiding semi-finite four branes on the left and right one can normalize the polynomial
such that A = 1. Now multiply by z2 and use (154):

y2 +B(v)y + C(v) = 0⇔ C(v)z2 +B(v)P (v)z + P (v)2 = 0 (156)

This restricts the solution to have the following property:

C(v)|B(v)P (v), C(v)|P (v)2 (157)

From this consideration it can be shown that the right Seiberg-Witten curve appears for
N = 2 QCD with fundamental matter. So in fact we have learned that we can construct
effective four dimensional field theories with N = 2 supersymmetry by compactification
of M5 branes that are a product of space time and a genus one Riemann surface. This is
important because later on this approach will be extended by construction of arbitrary
superconformal field theories from compactifications on more general Riemann surfaces
of genus g and with n punctures. The constructions were also generalized to classical
gauge groups in the same spirit as in [?] in [14] by introduction of orientifold planes in
the typ IIA setup.
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3 Liouville field theory

In the following chapter we want to introduce Liouville field theory. Liouville theory
is a two-dimensional non-rational field theory which can be quantized as a conformal
field theory. In 1981 Polyakow studied the quantization of the bosonic string via the
path integral formalism [15]. He noted that the Weyl anomaly can be measured by the
Liouville action and that in the critical dimension of 26 the bosonic string is anomaly
free. However, to solve non-critical bosonic string theories we have to quantize Liouville
field theory or for the superstring we have to quantize super Liouville theory if the
case we do not want to work in ten spacetime dimensions. Beside this, Liouville theory
was introduced a long time ago when Liouville studied the uniformization theorem of
Riemann surfaces which gives a relation to Teichnueller theory. The path integral of
bosonic string theory is:

Zbos =

∫
[Dgab]exp(−λ

∫
√
gd2ξ)

×
∫
DX(ξ)

[
exp

(
−1

2

∫
√
ggmn∂mX

µ∂nXµd
2ξ

)]
× φ[X(ξ)] (158)

for any functional φ.The Weyl moduli is given by: gab = eφδab. By gauge fixing and
introduction of ghosts we can bring this to the subsequent form:

Zbos =

∫
Dφ(ξ)exp

(
−26−D

48π

∫
[
1

2
(∂µφ)2 + µ2eφ]

)
(159)

From this equation it can be seen that the Liouville action principally measures the
Weyl anomaly and we can call the field φ the Weyl moduli. In a more general setup17

the classical Liouville action is defined to be

SLiou =
1

8π

∫
d2z
√
g(gmn∂mφ∂nφ+QR(z)φ(z) + µe2bφ) (160)

Firstly we want to remember how the 3-point function was conjectured and which im-
portant steps have to be taken to evaluate this correlator. Then we want to introduce
the notion of conformal blocks and go to higher point functions. In the semiclassical
approximation we can write Vα(z) = e2αφ(z) which will be our Vertex operators up to
quantum corrections18 or in [16]. We define the n-point function to be:〈

n∏
i=1

Vαi(zi)

〉
=

∫
Dφe−SLiou

n∏
i=1

Vαi(zi) (161)

Liouville theory is conformal if we assume following relation between the central charge
and the number Q which is called the charge at infinity which comes from the free field

17On an arbitrary Riemann surface
18Many more details can be found in [2]
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representation of Liouville theory.

c = 1 + 6Q2, Q = b−1 + b (162)

The conformal dimensions are related to the momenta of the vertex in the following way:

∆α = α(Q− α) (163)

To be complete we state the OPE of the Vertex operators:

T (w)T (z) =
c

2(z − w)4
+

2

(z − w)2
T (w)

1

(z − w)
∂wT (w)

T (w)Vα(z, z̄) =
∆α

(z − w)2
Vα(w) +

1

(z − w)
∂wVα(w) (164)

Beside the primary fields which are the vertex operator, there are also families of decan-
dants that comesfrom the acting of the Virasoro modes on the primary fields:

LKVα(z, z̄) := L−K1 · L−K2 · · ·L−KnVα(z, z̄) (165)

Here K is a partition. K = k1 ≥ k2... ≥ kn. For completion of the Liouville setup we
recall how the Virsoro modes T (z) =

∑∞
k=−∞

Ln
zn−2 act on the the primary fields. For

n > 0 the modes annihilate the the fields whereas for n < 0 it acts as a creation operator
which is clear from (165). For the zero mode we have:

L0Vα = ∆αVα (166)

For the descandants we get:

L0Vα̃ = ∆α̃Vα̃ =

(
∆α +

n∑
i=1

ki

)
Vα̃ (167)

3.1 The 3 point function

Now we want to start to investigate the correlators in the Liouville theory. As the Liou-
ville theory is conformal the position dependence of the 3-point function is completely
fixed: 〈

3∏
i=1

Vαi(zi)

〉
=

C(α1, α2, α3)

|z12|2∆12|z13|2∆13|z23|∆23
(168)

Here we have zij = |zi−zj| and ∆ij = ∆k−∆i−∆j for unequal indices. As long as there
are no technical problems arising we want to calculate the general n-point function. So
lets expand the correlator in a power series in the cosmological constant µ.〈

n∏
i=1

Vαi(zi)

〉
=

∞∑
N=0

V (N)
α1,··· ,αn(z1, · · · , zn) (169)
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It is imporant to stress that this correlator we are investigating will be on genus 0
Riemann surface so the action can be rewritten in the following form:

L =
1

4
(∂mφ)2 + µe2bφ (170)

Now boundary conditions have to be fixed to be able to study Liouville on the sphere
and we have to fix what happends at infinity. The following condition can be seen as a
source of curvature because we have chosen the metric to be flat.

φ(z, z̄) = −Qln|z|2 +O(1), |z| → ∞ (171)

Here we have:

V (N)
α1,...,αn

=
(−µ)N

N !

∫
= 〈Vα1(z1) · · ·Vαn(zn)Vb(u1) · · ·Vb(uN)〉free d

2u1 · · · d2uN (172)

The bracket in the integration is defined as the path integral over the free field and so
we have 〈∏

αi

V (zi)

〉
free

=

∫ N∏
i=1

e2αiφ(zi)exp

(
− 1

4π

∫
(∂aφ)2d2z

)
Dφ

=
∏
i>j

|zi − zj|−4αiαj (173)

But it is known that the derivation only makes sense if the follwing condition is fulfilled:

n∑
i=1

αi = Q−Nb (174)

This is due to the fact that the n-th term does not match the boundary condition (171)
when the relation (174) is not correct. One can say that the n-point function has a pole
every time the equation (174) is fulfilled for every N . So we have the following equation:

resP
αi=Q−Nb

〈
n∏
i=1

Vαi(zi)

〉
= V (N)

α1,...,αn
(z1, ..., zn)|Pαi=Q−Nb (175)

It is of great value that in case n = 3, this equation leads to a possible solution for the
3-point function. The key is that we have the following equation:

V (N)
α1,...,α3

(z1, ..., z3)|Pαi=Q−Nb =
IN(α1, α2, α3)

|z12|2∆12|z13|2∆13|z23|∆23
(176)

where the coeffiecents have been calculated in the mid 80s by Fateev and Dotensko to
be:

IN(α1, α2, α3) =

(
−πµ
γ(−b2)

)N ∏N
j=1 γ(−jb2)∏N−1

k=0 [γ(2α1b+ kb2)γ(2α2b+ kb2)γ(2α3b+ kb2)]
(177)
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Here we have:
γ(x) = Γ(x)/Γ(1− x) (178)

Comparing the position dependence of the 3-point function with the derivation done by
Fateev and Dotensko we can conclude that the condition (174) for n = 3 is equivalent
to the following statement:

resP
αi=Q−NbC(α1, α2, α3) = IN(α1, α2, α3) (179)

In fact, now it is possible to solve for C (168). However, we know that it is only defined
in this derivation for integer screening charge Q − α/b. We will now make a choice for
the function and this function will pass the condition (176). The analytic continuation
of this function is one of the main subjects of [17] that was published recently.
Now we want to introduce a special function Υ(x, b) that depending on a variable and
on the parameter b . We define the function for 0 < Rex < Q as

logΥ(x, b) =

∫ ∞
0

dt

t

[(
Q

2
− x
)2

e−t −
sinh2(Q

2
− x) t

2

sinh bt
2

sinh t
2b

]
(180)

Lets fix b. The following equations can be deduced:

Υ(x) = Υ(Q− x), Υ

(
Q

2

)
= 1

Υ(x+ b) = γ(bx)b1−2bxΥ(x), Υ(x+ 1/b) = γ(x/b)b−(1−2b−1x)Υ(x) (181)

(182)

Obviously this function stays the same after the transformation b → b−1. The last
definition is:

Υ0 =
dΥ(x)

dx
|x=0 (183)

With this we can define a function which will satisfy the condition (179) so this is
conjectured to be the exact 3-point function [18] [19] and is called the DOZZ function
named after the scientist that evaluated the 3-point function along the lines stated here:

C(α1, α2, α3) =
[
πµγ(b2)b2−2b2

](Q−
P
αi)/b

×

Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)
(184)

This function has more poles as as we were searching for but this can be resolved by
introduction of a potential that scales with the inverse of b which is no problem because
we have seen that Liouville theory is self dual.
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3.2 Conformal blocks

After anticipating the form of the 3-point function we can now go further and look for
other correlators. The next natural step is to ask for the 4-point function. It is a central
object in the AGT conjecture and we want to go through the analysis of this function.
First of all we can fix some dependence on the coordinates on the Riemann surface,
where we will restrict to a sphere. On the sphere we will have positions zi, i = 1, ..4.
Regarding the conformal invariance we can bring the fourpoint function to the following
form:

〈Vα1(z1)Vα2(z2)Vα3(z3)Vα4(z4)〉 =|z34|2(∆2+∆1−∆4−∆3)|z14|2(∆3+∆2−∆4−∆1)×
|z23|2(∆4−∆1−∆2−∆3)|z24|−4∆2Gα1,α2,α3,α4(z, z̄) (185)

Here z is the cross ratio of the four coordinates. Thus there will be a dependence on the
coordinates of at least one vertex operator. The four point function can be decomposed
into pairs using OPEs. Depending on which pair you will have different channels like in
the Feynmann graph expansion. We begin by introducing a Bra/Ket notation

〈α1|Vα2(1)Vα3(q)|α4〉 := 〈VQ−α1(0)Vα2(1)Vα3(q)Vα4(∞)〉 (186)

Consider two partitions K,K ′. We define a primary field e2αψ in this notation as |α >
and the family of descendants as |ψK(α) >= L−K1 · · ·L−Kr |α >. Further we define the
matrix K =< ψK |ψK′ >. As a next step we have a completeness relation with respect
to the primary fields.

1 =

∫
dα
∑
K,K′

|ψK(α) > (K−1)K,K′ < ψK′(α)| (187)

We insert this relation into the four-point function

〈α1|Vα2(1)Vα3(q)|α4〉 =

∫
dα
∑
K,K′

〈α1|Vα2(1)|ψK(α)〉 (K−1)K,K′ 〈ψK′(α)|Vα3(q)|α4〉

(188)

We can now define the normalized conformal blocks of the theory as:

B(α, α1, α2, α3, α4, q) =

∑
K,K′ 〈α1|Vα2(1)|ψK(α)〉 (K−1)K,K′ 〈ψK′(α)|Vα3(q)|α4〉

〈α1|Vα2(1)|α〉 〈α|Vα3(q)|α4〉
(189)

With this, one can write the four-point function as:

〈α1|Vα2(1)Vα3(q)|α4〉 =

∫
dα 〈α1|Vα2(1)|α〉 〈α|Vα3(q)|α4〉 B(α, αi, q) (190)

The four point function can be deduced from the 3-point function by gluing them to-
gether and integrating over the primary fields weighted by the conformal blocks. The
conformal block is simply the summation over all the descendants famliles in a certain
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intermediate channel which depends on how you choose the different pairs in the correla-
tor. It turns out that the conformal blocks will have an interpretation in supersymmetric
gauge theories which can be anticipated by following fact: If we have a sphere with four
punctures each corresponding to a vertex operator, we will have four external confor-
mal dimensions and one internal dimensions coming from the integration over the whole
spectrum. Furthermore we will have the cross ratio of the four puncture posititions. If
we turn to the easiest example of N = 2 gauge theory with vanishing β-function, we will
see that this theory can be represtend in the exact same way. There, the parameters
are the masses of the hypermulitplets, the gauge coupling constant. Even the central
charge will have an interpretation in Ω-deformed theories, which will be the topic of the
next chapter. However before we turn to this topic we want to present another way of
rewriting the four point function. Start with the scalar product of two states, which is
the two-point function at zero and infinty. Then remember that, as we are in a CFT, we
have an OPE. So take the four-point function and insert two OPEs. E.g. for the first two
operators and for the second two operators. You end up with a function that depends
on a two point function because the OPE reduces the dependence from two operators
to one. By using the conformal symmetry to change the coordinates and inserting for
the two-point function a well known identity. The you read off the conformal Block for
a sphere with four insertions:

B(α, α1, α2, α3, α4, q) =
∑
|Y |=|Y ′|

q|Y |λ∆
∆1∆2

(Y )K−1
Y Y ′λ

∆
∆3∆4

(Y ′) (191)

Where the λ are the three point functions with two primary and one decendant corre-
sponding to partition Y . In formula:

λ∆∆1∆2(Y ) =

l(Y )∏
k=0

(
∆ + kl∆1 −∆2 +

∑
j<k

kj

)
(192)

Before turning to the Nekrasov partition function we should mentioned that we have only
dealed with the complex variables without taking care of the conjugated dependency.
Normally the four point function does not only depend on the cross ratio but also on
the complex conjugated cross ratio. This should be reflected in the expansion of the
four point function. The evaluation is almost the same and the four point function now
factorizes into the holomorphic conformal blocks and the anti-holomorphic conformal
blocks.

〈α1|Vα2(1)Vα3(q, q̄)|α4〉 =

∫
dα 〈α∗1|Vα2(1)|α〉 〈α∗|Vα3(q)|α4〉 B(α, αi, q)B̄(α, αi, q̄) (193)
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4 Nekrasovs Partition Function

This chapter continues with our studies around N = 2 gauge theories focussing on
another approach more direct to gauge theories [3]. In the Seiberg-Witten approach
we deduced an elliptic curve enconding the low energy pysics of N = 2 theories from
monodromies on the moduli of space of vacua. Now we directly want to calculate
the instanton contributions to the prepotential via direct integration and localization.
Therefore we have to deal with many problems: On which field configurations does the
path integral localize and how can the integration be resolved?
We summarize the strategy to obtain the Partition function of N = 2 gauge theo-
ries [3, 20–26]:
1) We rewrite the Lagrangian in a slightly modified way because we want to be more
general then in the SU(2) case.
2) We twist the theory. This means we gauge the R-symmetry and redefine the Lorentz
group. This will lead to a topological theory where the states are certain cohomology
classes.
3) We show that the twisted Lagrangian comes from the topological action by the typical
gauge fixing procedure.
4) The topological twisted theory (in mathematics Donaldson theory) will be protected
by addition of certain terms. This fact will lead to the conclusion that the partition func-
tion localizes to the instanton contributions and, in more geneneral, case to the solution
of the Seiberg-Witten monopole equation, which is the instanton equation modified by
the matter fields and the Dirac equation in the instanton background.
5)Via localization of the path integral to instanton solutions we have to deal with the
integration of the Moduli space of framed instantons and its construction
6)We reduce the integral to a finite integral of the equivariant Euler class over the moduli
space.
7)By turning on more symmetries the integration can be resolved.
8)We evaluate the instanton partition function.

4.1 Twisting N = 2 SYM

4.1.1 Twisting pure gauge theory

Firstly we write the action (39) in a slightly modified version, because we deal with
gauge groups of higher rank so the dual coxeter number is different from 1. We also
rewrite the action in terms of covariant derivatives and commutators and suppress lie
algebra indices. The new N = 2 Lagrangian is now:

LN=2 =
θ

32πhV
TrFµν ? F

µν+

+
1

2g2hV
Tr{−1

4
FµνF

µν + (∇µφ)†∇µφ−
1

2
[φ, φ†]2

+ iψAσµ∇µψ̄A −
i√
2
ψA[φ†, ψA] +

i√
2
ψ̄A[φ†, ψ̄A]} (194)
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Here the ψA, A = 1, 2 represents the two different gluinos of the vectormultiplet. First
of all we will do a redefinition of the Lorentzgroup to obtain a topological field theory.
We construct a scalar operator:

Q̄ = εAα̇Q̄A,α̇ (195)

This means that we have mixed spinors and spacetime indices that come from the re-
definition of the Lorentz group by choosing the right chiral part to be the diagonal
embedding of the old right chiral part with the rotation group of the R-symmetry:
SU(2)R′ = diagSU(2)R × SU(2)I . We have to redefine all fields in this twisting proce-
dure, write down the new Lagrangian and calculate how this new operator acts on the
new field content of the twisted version. We will make a suprsing observation noticed
by Witten [22]: the twisted theory can be written as an exact ”form“. The twist does
not change the theory if it is put on a manifold with trivial holonomy. So we can now
write for the fields:

ψAα =
1

2
σµAαψµ, ψ̄Aα =

1

2
εAαψ̄ +

1

2
σ̄Aα̇µν ψ̄

µν (196)

The action changes in all terms with spinorial fields. To rewrite this action in the twisted
form we need some equations for the spinor contraction of the Pauli matrices tensor and
have to integrate by parts. After a short calculation, noting that the hodge star dual
can be written in local coordinates as the Levi-Civita tensor, we arrive at:

LtwiN=2 =
θ

32πhV
TrFµν ? F

µν +
1

2g2hV
Tr

{
−1

4
FµνF

µν + (∇µφ)†∇µφ−
1

2
[φ, φ†]2

}
+

1

2g2hV
Tr

{
i

2
ψµ∇µψ̄ −

i

2
(∇µψν −∇νψµ)−ψ̄µν +

i

2
√

2
ψµ[φ†, ψµ]

}
+

1

2g2hV
Tr

{
i

2
√

2
ψ̄[φ, ψ̄]− i

2
√

2
ψ̄µν [φ, ψ̄

µν ]

}
(197)

Here it is indicated that D−µν = 1
2
(Dµν − i ? Dµν). We can now define the complete set

of twisted supercharges and evaluate the variation on the fields after transforming every
spinor 19 in the same way we transformed the gluino fields:

Qµ = σ̄AαQAα, Qµν = σ̄Aα̇µν QAα̇. (198)

Witten observed that the action can be written in the following form:

StwiN=2 = SSYM + Stop = Q̄S̃SYM + Stop (199)

It can be shown that the topological term is even closed under action of the scalar
symmetry. For completeness we write down the variations of the fields under the scalar
symmetry:

Q̄φ = 0, Q̄φ† =
√

2ψ̄, Q̄ψµ = 2i
√

2∇µφ (200)

Q̄ψ̄ = 2i[φ, φ†], Q̄ψµν = −2(Fµν)
−, Q̄Aµ = −iψµ (201)

19Here it is indicated the SUSY transformation parameter that is a spinor
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We can now easily extract SSYM in terms of the scalar symmetry

SSYM = Im

[
Q̄

{
τ

16πhV

∫
d4xTr((Fµν)

−ψ̄µν − i
√

2ψµ∇µφ
† + iψ̄[φ, φ†]

}]
(202)

Here one needs the equation of motion for the twisted tensorial spinor field. The scalar
SUSY generator squares to zero up to a gauge transformation: Q̄2 = G(φ).

4.1.2 Lagrangian from gauge fixing

We will now show that the twisted topological Lagrangian can be understood by gauge
fixing the ordinary topological action [24]:

Stop =
θ

32π2hV

∫
d4xTr {Fµν ∗ F µν} (203)

We have to introduce ghosts that come from the surving R-symmetry under the twist.
The first observation is that the topological action is invariant under certain tranforma-
tions of the gauge field that are larger than the Yang-Mills symmetry:

δAµ = −∇µα + αµ (204)

It is clear that the function α has to be a Lie algebra valued function like αµ because the
gauge field is a Lie algebra valued 1-form. The only restriction is that Aµ+αµ are in the
same orbit of the gauge group. The bigger symmetry comes from the family of 1-forms
that makes the symmetry bigger than the usual Yang-Mills symmetry. We introduce
ghosts for each symmetry. Obviously there are two symmetries, but there is also a third
hidden symmetry that comes from the fact that αµ and αµ − ∇µβ produce the same
trafo for the gauge field strength. So we introduce ghosts ψµ, c,H with ghost numbers
1, 1, 2. Now we fix the gauge.

∇µAµ =0

(Fµν)
− =0

∇µψµ =0

We further have to introduce antighosts and of course Lagrangian multipliers to imple-
mend the constraints. We start with the multipliers that are b, Hµν20 that are bosons
and a fermion η. The ghost numbers are (0, 0, 1). The antighosts are c̄, χµν , λ with ghost
number (−1,−1,−2). The next step is to introduce a BRST charge that corresponds
to the symmetries. This can be extracted by reproduction of the transformation law
for the gauge field corresponding to the ghost and by the requierment that the BRST

20This tensor is antiselfdual
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charge is nilpotent. We get:

Q̄Aµ =−∇µc− iψµ

Q̄c =− i

2
{c, c} − φ

Q̄ψµ =− i∇µφ− i {c, ψµ}
Q̄φ =− i[c, φ]

Q̄c̄ =b

Q̄χµν =Hµν − i {c, χµν}
Q̄λ =η − i [c, λ]

Q̄b =0

Q̄Hµν =− i [φ, χµν ]− i [c,Hµν ]

Q̄η =− i [φ, λ]− i {c, η} (205)

(206)

Indeed a short calculation shows that the BRST charge is nilpotent. We arrive at the
following expression which is equivalent to the twisted theory:

Sgf = Stop + Q̄VSYM (207)

Here the function VSYM is given as:

VSYM =
1

hV g2

∫
d4xTr

{
1

2
χµν

(
F−µν +

1

4
Hµν

)
+
i

8
λ∇µψ

µ + c̄(∇µA
µ + b)− 1

128
η[H, λ]

}
(208)

If certain fields are identified with the topological fields at the end, the direct conclusion
is that the twisted action (197) that makes the theory topological is indeed the same as
the gauge fixed version of the standard topological action (203)

H = −2
√

2φ, λ = −2
√

2φ†

χµν = ψ̄µν , η = −4ψ̄

4.1.3 Twisting matter fields

We have twisted the Lagrangian ofN = 2 pure Super Yang Mills and now we have to deal
with theories coupled to matter. Thus we have to look how the hypermultiplets change
and hope that we can write the the action again as a Q̄-exact form. The hypermultiplet
consists of two complex scalars and two complex scalars that can be written as half-
hypermultiplets in the conjugated representations of the gauge group in the N = 1
language. We take the lowest component as qA → qα̇ as the twist is performed21. Then
we go through all the terms in the Lagrangian for matter multiplets coupled to a vector
multiplet. As an example see (47).

21The chiral multiplet is given by Q = q +
√

2θχ+ θθX
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Let us begin with the massless case. We use the equation of motion22 for the auxiliary
field in the N = 1 chiral superfields which build the matter of the N = 2 theory as the
hypermultiplets consist of two conjugated chiral superfields in the N = 1 language. We
arrive at the following expression:

Smat =
1

hV g2
0

∫
d4xTr∇µq

†
A∇

µqA + iχασµαα̇∇µχ̄
α̇ + iχ̃ασµαα̇∇µ

¯̃χα̇

+ χ̃αφχα − χ̄α̇φ† ¯̃χα̇ +
√

2q†Aψ
A,αχα −

√
2χ̄α̇ψ

α̇
Aq

A +
√

2q†Aψ̄
A
α̇

¯̃χα̇ −
√

2χ̃αqAψA,α

+ .q†A
(
φφ† + φ†φ

)
qA − 1

2

(
q†AT ρaqB + q†

B
T ρaqA

)
q†AT

ρ
a qB (209)

We have to introduce a new pair of auxiliary fields as the SUSY-trafos are not closed
off-shell: hα and h̃α. This is due to the fact that we have integrated out23 the auxiliary
fields in the chiral superfields. We introduce new fields - to avoid some numerical issues
- µ̄α̇, µα̇, να and ν̄α as follows:

√
2 ¯̃χα̇ = µα̇,χα =

√
2να,√

2χ̄α̇ = µ̄α̇,χ̃
α =
√

2ν̄α

Closed off-shell (up to a gauge transformations) BRST operator Q̄ is given by the fol-
lowing relations:

Q̄qα̇ = µα̇, Q̄µα̇ = φqα̇

Q̄q†α̇ = µ̄α̇, Q̄µ̄α̇ = −q†α̇φ
Q̄ν̄α = h̄α, Q̄h̄α = −ν̄αφ
Q̄να = hα, Q̄hα = φνα. (210)

Using these formulae one can check that the matter action can be rewritten as a Q̄-exact
expression: Smat = Q̄Vmat where

Vmat =
1

hV g2
0

∫
d4xTr− i

2
χµνq

†
α̇σ̄

µν,α̇

β̇
qβ̇ − 1

4

(
µ̄α̇λq

α̇ − q†α̇λµα̇
)

+ .2ν̄α
(
σµαα̇∇µq

α̇ − hα
)
− 2

(
∇µq

†
α̇σ̄

µ,α̇α − h̄α
)
να. (211)

Now consider the general case, where the mass is not zero. After integrating out all the
auxiliary fields we obtain the following terms in the action:

Smass =
1

hV g2
0

∫
d4Tr

{
−m2q†Aq

A +
√

2mq†AHq
A +
√

2mq†AH
†qA −m ¯̃χα̇χ̄α̇ −mχ̃αχα

}
.

(212)

22which is algebraic and thus it does not change the action
23We mean using the e.o.m
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The mass term deforms the supersymmetry transformation further. The proper version
of the off-shell BRST transformation is now given by

Q̄qα̇ = µα̇, Q̄µα̇ = φqα̇ +mqα̇

Q̄q†α̇ = µ̄α̇,Q̄µ̄α̇ = −q†α̇φ−mq
†
α̇

Q̄ν̄α = h̄α,Q̄h̄α = −ν̄αφ−mν̄a
Q̄να = hα,Q̄hα = φνα +mνα. (213)

The deformation leads to a new characteristic of the BRST operator. Before we had

Q̄2 = G(φ) (214)

where G(φ) is the gauge transformation with the parameter φ. The new BRST operator
satisfies the new relation:

Q̄2 = G(φ) + F (m). (215)

Here F (m) is an operator which does not act on the gauge multiplet,as it seen from
(213) but multiplies matter fields by ±m which is the the linear term of the following
transformation:

Q→ Q′ = emQ, Q̃→ Q̃′ = e−mQ̃ (216)

Thus it is the infinitesimal form of this operator and can be identified with the flavor
group action if one redfine m → im. This is due to the fact that the flavor symmetry
gets broken by a mass deformation to U(1). To require the full mass terms we have to
add to to the action a BRST exact term Q̄Vmass where

Vmass =
1

hV g2
0

∫
d4xTr

{
−1

4
m
(
q†α̇µ

α̇ + µ̄α̇q
α̇
)}

(217)

The fact that the full action is BRST invariant follows from the fact that every term is
invariant with respect to the transformation of the nilpotent operator

S = Stop + Q̄ (VSYM + Vmat + Vmass) (218)

4.1.4 Localizing the solutions to instantons

Now we can localize the solutions to instanton configurations in the pure gauge scenario.
This is done by deformation the Lagrangian by a Q-exact term to the Lagrangian that
depends on a parameter λ after integrating out some auxiliary fields that were ghosts.
So we lead to an equivalent Lagrangian of the following form:

S = S> +

∫
d4xTr

(
−t2 (Fµν)

− (F µν)− +O(t1) +O(t0)
)

(219)

Since the twisted theory does not depend on this parameter because it is topological,
we can change λ as we want. By sending λ → ∞ we see that the only term that con-
tributes to the Lagrangian is the selfdual part. These are the selfdual connections called
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Instantons. These configurations are non-perturbative extrema of the supersymmetric
Yang-Mills action. In fact we just have to integrate over the moduli space of instantons,
to obtain the partition function because our system localizes to these configurations and
as we want to count gauge inequivalent instantons. Here it is important that we dealing
talking about framed instantons. This framing corresponds to the higgs expectation
value or to trivial gauge transformation at infinity. The basic information is that our
Path integral reduced from integrating over the space of fields to a finite dimensional
manifold which is the moduli space of instantons.

4.2 Some facts about the moduli space of Instantons

Here, the construction of the moduli space of Instantons will be introduced in brief and
some known mathematical facts will be quoted about. We have seen that the partition
function reduces to an integral over the moduli space of instantons. This is the space of
all self dual connections of certain vector bundle modulo gauge transformations. These
transformations are the transition functions of the associated principal G-bundle. The
moduli space is constructed by some data called the ADHM(Atiyah-Drinfeld-Hitchin-
Manin)-data.

4.2.1 ADHM construction

First of all we introduce a complex vector bundle E of rank N over R4 where the fiber is
an N-dimensional vector space framed at infinity. This means that the fiber at infinity
is isomorphic to the N-dimensional complex vector space which correspond to a fixed
higgs vev at infinity for the scalar field. On this bundle we introduce a connection which
will be the instanton. Instantons are characterized by

FA = ∗FA (220)

where ∗ is the hodge star operator. For U(N) constructions we want to summarize the
construction. We introduce two hermitian complex vector spaces V (k-dimensional) and
W (N-dimensional) and certain linear mappings between them. In the literature this
mappings are called B1, B2, I, J

B1 ∈ Hom(V, V ), B2 ∈ Hom(V, V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ) (221)

The vector space W is isomorphic to the fiber of E. This is clear because the vector
bundle has rank N, which is the same as the dimension of W. Due to the framing it
can be seen as the fiber at infinity and there is a natural action of U(N) because of
the freedom to change the basis in a complex hermitean vector space.24 There is also
the freedom of framing in V, so we have a natural action of U(k) on V. In fact we
have an action of U(N) × U(k) on the vector spaces and so on the ADHM data. We

24This can be seen as the rigid gauge transformation at infinity
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introduce the momentum maps µR,ReµC, ImµC associated to U(k) action so it is a map
µi = (µR,ReµC, ImµC) : X → u(k)∗ ⊗ R3 with

X = Hom(V, V )⊕ Hom(V, V )⊕ Hom(W,V )⊕ Hom(V,W ) (222)

The ADHM equations are explicitly given by:

µR =
[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J

µC = [B1, B2] + IJ (223)

In [23] the moduli space of instantons was indentified with the following Hyperkaehler
quotient

Mk,N = X///U(k) = {µR = µC = 0} /U(k) = µ−1(0)/U(k) (224)

In the following we want to explain why this is correct. Let X = (B1, B2, I, J) ∈ X be
a solution to the ADHM-equations (223). We want to construct a self dual connection
over R4. Let us parametrize an operator by the two complex variables (z1, z2) = x ∈ R4

by introduction of a complex structure on the total space R4. We introduce the bundels
of dotted and undotted spinors, the positive and negativ chirality spinor bundles. The
spinors are sections of this bundle. We define an operator:

5†(x) =

(
I −(B2− z2) B1 − z1

J† (B1 − z1)† (B2 − z2)†

)
: W ⊕ S− ⊗ V → S+ ⊗ V (225)

Then we compute 5†(x)5 (x) which acts on the right hand side S+ ⊗ V . By simple
matrix multiplication the following equation results:

5†(x)5 (x) = idS+ ⊗� (226)

The structure of � brings us to the conlusion that 5†(x) is surjective and hence we can
construct a vector bundle as the kernel of the map with a self dual connection coming
from the hermitean metric on W ⊕ V ⊕ V . This will be a U(N)-connection where the
curvature will be selfdual and the instanton number will be k. It turns out that the
moduli space of U(N) k-instantons has the dimension:

dimMk,N = 4kN (227)

4.3 Equivariant cohomology and localization theorems

Here we briefly want to summarize technical facts that allow the evaluation of integrals
over complicated manifolds as fixpoint contributions of some torus group action [27].
Therefore we have to introduce the notion of equivariant cohomology and quote some
deep mathematical results of localization which may be used often in topological theories
like N = 2 twisted SYM.
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4.3.1 Equivariant cohomology

Let us begin with a smooth group action of a compact Lie group G on some oriented,
compact n-dimensional manifold25 M . This is a map

G×M →M, (g, x)→ g · x, x ∈M, g ∈ G (228)

If the action is free, we define the equivariant cohomology as:

H∗G(M) := H∗(M/G) (229)

Two homotopy equivalent spaces have the same cohomology26. From this observation
we can construct the equivariant cohomology even if the group action is not free27. One
can show that for every space there is a homotopy equivalent space on which the group
G acts freely. So if the action on M is not free, define M̃ = M × E where E is a
contractible space define the equivariant cohomology as:

H∗G(M) := H∗((M × E)/G) (230)

One can show that indeed the cohomology as it was just defined is independent of the
choice of contractible space.
Now we have a Lie algebra g that acts on the Lie group via the adjoint action. So we
define a G-equivariant form to be a C∞ map α : g → Ω∗(M) that fulfills the following
relation

α(X) = g−1 · α(Ad(g)X), ∀X ∈ g, g ∈ G (231)

Ω∗(M) is the algebra of complex valued k-forms on M . We will need this to introduce
the twisted deRham complex which will be the key step to the localization theorems.
The wedge product respects the equivariance so we have an algebra of equivariant forms
which we denote with Ω∗G(M). The group action induces an action on the space of
functions:

(g · f)(x) := f(g−1 · x) (232)

From this we can define the Lie derivative by taking the derivative of (232) which is a
vector field:

(LXf)(g) :=
d

dt
f(exp(−tX) · x)|t=0 (233)

As a next step we want to define the interior product which is a contraction of a dif-
ferential form with a vector field. For X ∈ g we define the ιX = ι(LX) and this is
defined as ιX(ω)(X1, ..., Xp−1) = ω(X,X1, ..., Xp−1) so it maps a k-form to a (k-1)-form
and thereby inducing a map from the algebra of forms to itself. Now we can define the
twisted deRham differential, which is an operator dtdR from the algebra of G-equivariant

25We will need the condition to have a well-defined integral
26We mean Cech or singular cohomology
27Non-free group action can destroy the smooth manifold structure. E.g. the orbifold case
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forms to itself. More precise this means:
Let α ∈ ΩG(M), then dtdRα : g→ Ω∗(M) with

dtdR(α)(X) = dα(X)− ιX(α(X)) (234)

Here the d is the ordinary deRham differential and one can show that this twisted deR-
ham differential maps into the algebra of G-equivariant forms and is nilpotent with
degree two like in ordinary deRham theory, in formula: d2

tdR = 0. This allows us to de-
fine the twisted deRham complex as in the usual deRham cohomology theory as follows:
We take a subalgebra of Ω∗G(M) consisting of all polynomial maps α : g→ Ω∗(M) which
is the space (C[g]⊗Ω∗(M))G where the G indicates that the polynomials are G-invariant.
Let us define the twisted deRham complex: It is ((C[g]⊗ Ω∗(M))G, dtdR).
One important fact is a theorem proved by Cartan. He noticed the twisted deRham
complex is the equivariant cohomology of the manifold M . So if we want to compute
cohomology classes of some topological field theory which is acted by e.g. a torus ac-
tion we can compute the cohomology groups in the twisted deRham complex. For the
forms that represent the cohomology classes of this complex we will evaluate localization
theorems that make the evaluation of complicated integrals simpler.

4.3.2 Localization

Now we can state some strong results with the help of the equivariant cohomology which
can not be deduced for ordinary cohomology.
Theorem (Berline-Vergne)
Let G be a compact group with Lie algebra g acting on some Manifold M and let
α : g → Ω∗ be a C∞ map such that it is closed under the twisted deRham differential.
Let X ∈ g such that LX has isolated zeros. Then∫

M

α(X) = (−2π)dimM/2
∑
p∈M0

α(X)[0](p)

det1/2(L(X, p))
(235)

Here M0 indicates the set of zeros of the vector field and on the l.h.s. we evaluate the
zero degree part of α at a point p ∈ M . L(X, p) is the transformation on the fiber of
the tangent bundle induced by the Lie action and can be evaluated explicitly.
From this we come to our main tool in the computation of the partition function.
Theorem (Duistermaat-Heckman)
Let (M,ω) be a symplectic manifold with momentum map µ : M → g∗ where we want
to restrict to G = T and so g∗ = Lie(T)∗ or at least to maximal torus of the Lie group.
Let xf be the T-stable points, so fixed under the group action of the torus. Then we
get: ∫

M

ωdimM/2

dimM/2!
e−〈µ,ξ〉 =

∑
xf

e−〈µ(xf ),ξ〉∏
α(〈ωα(xf ), ξ〉)

(236)

So for simplicity we write 〈ωα(xf ), ξ〉 = ωα, which are called the weights. In fact, if we
have an equivariant closed form with respect to some torus and a manifold that have

52



fixed points under the torus action we just have to evaluate the fixed points of this
action and the weights to calculate the integral. This will lead to the evaluation of the
partition function. There is one more aspect which is very imporant to mention. As
we are dealing with supersymmetric theories we have to deform the localiztion formula
to supermanifolds. This can easily be done by taking into account that the weights of
different statistics will contribute inversly to the formula.

4.4 The partition function

Now we have learned some ways to calculate certain integrals and we already know that
we will have to deal with integrals over the moduli space of instantons. In fact, we need
to know how to integrate over the zero locus of some function which in our case will be
the momentum map from which the ADHM constrution works and of factors which will
be the the quotient over the gauge group. We will quote the results for this integration
which are prestended in a field theoretical way in [25]. First of all define the following
vacuum expectation value for a Q̄-closed gauge invariant operator:

〈O〉 =

∫
DXOeStop+Q̄VSYM (237)

This definition corresponds to the case of pure gauge theory as we have put the matter
and mass potential to zero. The integration measure is the measure in the space of all
fields that appear in the exponent. We already know that the pure SYM localizes to
instantons by allowed deformations of the action so that the a priori infinite dimensional
integral (237) will be reduced to something computable and finite dimensional in the
end. In [25] the following two formulae were deduced. First of all for a manifold M ⊂ X
with ι : M → X the inclusion map and xµ local coordinates on a patch with differential
dxµ = ψµ and a supersymmetric multiplet (H,χ) in the fiber of a bundle over the
ambient space X with s a section:∫

X

α =

∫
DxDψDHDχι∗αeiQ̄χ(s(x)− 1

2t
H) (238)

The next formula already uses the notion of equivariant cohomology and especially the
fact that the cohomology of a quotient is isomorphic to the equivariant cohomology of
the manifold. ∫

s−1(0)/G

α̃ =

∮
X

∫
DηDλDHDχeiQ̄(χs+ψµV µ(λ))ι∗α(φ, x, ψ) (239)

To project on the factor one has to introduce a projection multiplet (η, λ) It is essential
that the two forms correspond to the same cohomology class and the contour integration
is called the equivariant integration and is defined as follows:∮

X

α =
1

Vol(G)

∫
g

dimG∏
a=1

dφ

2πi

∫
M

α(φ) (240)
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where g is the Lie algebra and the integration measure is the Haar measure on the
identity of the group which acts on the manifold equivariantly. Using formula (238) and
using the fact that the function does not depend on the parameter t we can use the
equation of motion show that (238) changes to the following integral:∫

M

α =

∫
X

ι∗αEug(E) (241)

where we defined the equivariant Euler class of the bundle E → X as the following
expression:

Eug(E) =

∫
Dχe

1
4
χRµνψµψνχ (242)

At this point we can give an interesting formula for the vev defined in (237). First of all
we know that the instanton part of the partition function collapses into different sectors
of different instanton numbers q = e2πiτ :

〈O〉a =
∞∑
k=0

e2πikτ

∫
Mk

Õk (243)

Analogous to this pure gauge situation one can study the theory with matter. So we
have to deal with solutions to the Seiberg-Witten monopole equations. Again we can
deform the action that the gauge fields localize to the self dual part, but in additon we
have to solve Weyl equations in an instanton background. If we solve these equations,
we see that the matter action gives additional contributions to the vev of the operator
defined in (243). The action gets contributions as defined in (242), for the solutions
to the Weyl equations. If we define the bundle of solutions to the Weyl equations over
the moduli space of framed instantons as Dk → Mk, we can now write the vev of the
operator as follows [20]:

〈O〉a =
∞∑
k=0

e2πikτ

∫
Mk

ÕkEug(Dk) (244)

And in fact we know the partition functions of the pure gauge theory and also the matter
theory:

Zpure = 〈1〉a =
∞∑
k=0

e2πikτ

∫
Mk

1 (245)

Z = 〈1〉a =
∞∑
k=0

e2πikτ

∫
Mk

Eug(Dk)

4.5 Six dimensional origin and Ω-backround

The integration over the moduli space of instantons has some inconsistences that can be
resolved in a beautiful way. Often it is convenient to introduce supersymmetric gauge
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theories in four dimension as a dimensional reduction of a higher dimensional theory
on some torus. This can also be done in some nontrivial way using the symmetries of
the four dimensional space time through introduction of a background with a nontrivial
metric. To be more precise, we mean that we can come to a four dimensional Lagrangian
from a higher dimensional construction. The theory in four dimension depends on the
choice of compactification.

4.5.1 trival metric

Let us take d = 6 with N = 1. Then we compactify the two extra dimensions on a Torus
T 2 with a flat metric. We assume that the fields do not have a dependency on the two
compactified dimensions because they are small. In 6 dimension we have a sympletic
Majorana spinor ψA. The N = 1 Lagrangian is given by the follwing action

Sd=6 =
1

g2hV

∫
d4xTr

{
−1

4
FIJF

IJ +
i

2
Ψ̄AΓI∇IΨ

A

}
(246)

It is already a 4-dimensional integral because the extra dimensions are integrated out.
We have Fµ4 = ∇µA4 and Fµ5 = ∇µA5 because the derivatives with respect to compact
direction vanish. We define:

φ =
A4 + A5√

2
(247)

So we get F45 = [φ, φ†]. From the gauge term we see the following expression in the
Lagrangian::

−1

4
FIJF

IJ = −1

4
FµνF

µν +∇µφ∇µφ† − 1

2
[φ, φ†]2 (248)

We already see the structure of theN = 2 Lagrangian. Through the additional reduction
of the Majorana spinor with the sympletic constraint the missing terms appear and we
have shown that the Lagrangian can be construted in this way. Now we come to the
question what happens if we compactify on a torus with nontrival metric. It is clear
that we have to do some extra work because you could break all the supersymmetries
in this procedure.

4.5.2 Ω-background

Now we will explore what happens if the torus T 2 acts on the four dimensional space by
Lorentz tranformation. This is also a symmetry of the Yang-Mills theory. So let T 2 act
on R1,3 or, after a Wick rotation, on R4 on the the euclidean space:

V4 = Ωµ
4νx

ν , V5 = Ωµ
5νx

ν (249)

These are the vector fields that act on space time. The matrices are Lorentzmatrices.
Now we define a nontrivial six dimensional metric on the product of space time with
the torus and reduce the theory from six dimensions to four. This will lead to the
conclusion that the Ω-background can only be choosen to have discrete matrices [3]

55



because otherwise we would break all the supersymmetries because we could not be sure
that we have at least one covariant constant spinor. The metric is

ds2 = gµν (dxµ + V µ
a dx

a)
(
dxν + V ν

b dx
b
)
− (dx4)2 − (dx5)2

= GIJdx
IdxJ

So now we get:

Gµν = gµν , G
µν = gµν − V µ

a V
ν
a ,

Gaµ = Va,µ, G
aµ = V µ

a ,

Gab = −δab + V µ
a Vb,µ, G

ab = −δab (250)

Now we will use a six dimensional Vielbein to calculate the action in the Ω-deformed
background. First of all, for the metric on the six dimensional space we can write:

ds2
6 = gµνe

(µ)
I e

(ν)
J dxIdxJ − e(a)

I e
(a)
J dxIdxJ . (251)

We can simply read off the components of the Vielbein and define the new Field strength
tensor in the curved space time with Vielbein indices:

−1

4

√
−GFIJFKLGIKGJL = −1

4
F(I)(J)F

(I)(J). (252)

From this consideration we can conclude that the field strength tensor has the following
components in the background reducing on a two-torus:

F(µ)(ν) = Fµν

F(a)(µ) = Faµ − V ρ
a Fρµ

F(a)(b) = V µ
a V

ν
b Fµν − FaνV ν

b − V µ
a Fµb + Fab. (253)

Now we define

V µ =
1√
2

(V µ
4 + iV µ

5 ) V̄ µ =
1√
2

(V µ
4 − iV

µ
5 )

Ωµ
ν =

1√
2

(Ωµ
ν + iΩµ

5ν) Ω̄µ
ν =

1√
2

(Ωµ
4ν − iΩ

µ
5ν) . (254)

Now we expand the term (252) to see how the action changes in this Ω-background.

−1

4

√
−GFIJFKLGIKGJL = −1

4
FµνF

µν + (∇µφ+ V ρFρµ)
(
∇µφ† + V̄ ρF µ

ρ

)
(255)

− 1

2

{
[φ, φ†]− iV̄ µV νFµν − i

(
V µ∇µφ

† − V̄ µ∇µφ
)}2

. (256)

Note what happends in this expression. It has the same structure as the standard
Lagrangian and if the Ω-matrices commute the last bracket can be written as the square
of commutator [Φ,Φ†] built out of the adjoint valued higgs plus a shift:

Φ = φ− iV µ∇µ, Φ† = φ† − iV̄ µ∇µ (257)
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We also have to be aware of the fact that the connection on the bundle changes in the
Ω-background so we have to shift the Higgs field further by the spinoperator of the
Lorentzgroup that acts on the spinors nontrival. Let us repeat the calculation for the
fermionic part of the sixdimensional action

i

2
Ψ̄AΓIeI(J)∇JΨA (258)

Here ∇ is the Ω-deformed connection. If the Ω-matrices commute again, we can ma-
nipulate this term further by inserting the Vielbein and using the relation between spin
connection and the Vielbein. We come to the following expression:

i

2
Ψ̄AΓIeJ(I)∇JΨA = iψAσ

µ∇µψ̄
A − i√

2
ψA[Φ†, ψA] +

i√
2
ψ̄A[Φ, ψ̄A] (259)

− 1

2
√

2
Ωµνψ̄

Aσ̄µνψ̄A −
1

2
√

2
Ω̄µνψA

1

2
σµνψA. (260)

If you compare the action (39) with the one deduced from dimensional reduction on
the non trivial background, you find at they are the same in case you shift φ → Φ and
accept that the coupling constant gets superspace dependence:

τ → τ(x, θ) = τ − Ω̄+
µνθ

µθν (261)

The great idea was to not only use the scalar part of the twisted algebra but the fermionic
operator to construct a twisted deRham operator. The first idea is that one could simply
try to repeat the calculations as in (202) with another operator of the twisted algebra
and to see how one can obtain a exact action w.r.t. a new operator. The modified SYM
action will be QΩ-exact in case we shift the coupling constant further by the following
term:

τ → τ(x, θ) = τ − 1√
2

[(
Ω̄+
µνθ

µθν − 1

2
√

2
Ω̄µνΩ

µ
ρx

ρxν
)]

(262)

This coupling constant is annihilated by the following supercharge:

Q̄Ω = Q̄+
1

2
√

2
Ωµ

νx
νQµ. (263)

4.6 Obtaining the prepotential and the partition function

4.6.1 The prepotential

This last observation in fact shows how we can compute the prepotential. The partition
function now reads:

Z(a; ε1, ε2) = 〈1〉a =

∫
DXe−Smicro(X) =

∫
|k|<Λ

DX̃e−Seff(X̃)

= exp

{
1

4π
=m

1

2πi

∫
d4x d4θF(−2

√
2a,Λ(x, θ))

}
= exp

1

ε1ε2

F(a,Λ, ε1, ε2) (264)
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In the first line we integrated out the massive degrees of freedom and localized the
integral to the zero modes, which are parametrized by the vev. The function also does
depend on the cutoff scale which becomes now superspace dependent because we have
seen that the coupling is superace dependent and they are related. As we perform the
integral this will lead to a regularized integral in the Ω-deformed R4

ε1ε2
which gives the

denominator and cancels the π’s. By using that the prepotential is homogenous of degree
two we see that the other factors cancel and this will finally lead to the above-mentioned
expression. This brings us directly to the evaluation of the prepotential because if we
turn off the Ω-background, we should really obtain the quantities in the flat space which
is the regular prepotential. We conclude the remarkable formula:

lim
ε1,ε2→0

lnZ(a, ε1, ε2,Λ, τ) = F(a, τ,Λ) (265)

From our discussions in the previous subsection we obtain the following formula

Zk(a,m, ε1, ε2) =

∫
Mk

Eug(Dk) (266)

Here g denotes the torus action of the symmetry groups which is a product of the flavor
group, the gauge group, the rigid gauge transformations and the Ω-deformation. We
should really comment on the perturbative part of the partition function. It is a re-
markable property that this part arises as we fix the gauge. We will not comment on
this in the following. The final solution is:

Z(a,m,Λ, ε1, ε2) = Zpert(a,m,Λ, ε1, ε2)×
∞∑
k=0

qk
∫
Mk

Eug(Dk) = exp
1

ε1ε2
F(a,m,Λ, ε1, ε2)

(267)

4.6.2 Evaluating the partition function explicitly

Now we are in the position to obtain the partition function by using the Duistermaat-
Heckmann formula. Therefore we have to remember how the moduli space of framed
instantons is constructed and deduce the action of the different tori which is used to
equivariantly localize the contributions to the path integral. We have introduced certain
multiplets which we want to integrate out for doing the integration of the equivariant
Euler class over the moduli space of framed instantons. However we want to restrict
to the pure gauge partition function. So the Euler class is trivial in this case and we
have ”just“ to deal with the ”volume“ of the moduli space. See (245). Remember that
the moduli space of framed instantons is the subset spanned by the solution of ADHM-
equations moded out by the ”dual“ gauge group. This dual means that we have fixed
the field configuration at infinity which corresponds to the framing of the instantons
but we now have the possibility to transform our field configuration at infinity in case
it has fixed framing. This is the framed instanton moduli space Mk,N where N comes
from the gauge group U(N) or SU(N) and k is the instanton number. In [25] it was
shown how to deduce formula (245). If you want to integrate over a zero locus you

58



have to introduce a multiplet living in the fiber of the vector bundle. This multiplet
gets supersymmetrized. For the ADHM equation we know that the moduli space is
the intersection of two different zero loci µC = 0, µR = 0. So we have to introduce
two additional supermultiplets to the action (χC, HC), (χR, HR). The algebra now reads:
The transformation properties of the matrices B1, B2, I, J and the ADHM equation
with respect to TL, which is the Lorentzsymmetry are

B1 → eiε1B1, B2 → eiε2B2, (268)

I → e−iε+I, J → e−iε+J, (269)

µR → µR, µC → eiεµC, (270)

where ε = ε1 + ε2 and ε+ = 1
2
(ε1 + ε2). Taking into account and the Lorentz deformation

of the BRST operator we can write

Q̄B1,2 = ψ1,2, Q̄ψ1,2 = [φ,B1,2] + iε1,2B1,2, (271)

Q̄I = ψI , Q̄ψI = φI − Ia− iε+I, (272)

Q̄J = ψJ , Q̄ψJ = −Jφ+ aJ − iε+J, (273)

Q̄χR = HR, Q̄HR = [φ, χR], (274)

Q̄χC = HC, Q̄HC = [φ, χC] + iεχC, (275)

Q̄η = λ, Q̄λ = [φ, λ]. (276)

If we integrate over all the operators in the theory and remembering the previous results,
we can immediatly write by puting together equations (238) and (239):

Zk(a; ε) =

∫
Dφ

Vol(GD)
DηDλDHDχDB1DB2DIDJDψeiQ̄(χ·µ+tχ·H+ψ·V (λ)) (277)

where

χ · µ = Tr

{
χRµR +

1

2

(
χ†CµC + χCµ

†
C

)}
, (278)

χ ·H = Tr

{
χRHR +

1

2

(
χ†CHC + χCH

†
C

)}
, (279)

(note that torus action on χR and χR is chosen in a way that χ ·µ is invariant) and V (λ)
is the dual group flow vector field:

ψ · V (l) = Tr

{
2∑
i=1

ψi[λ,B
†
i ] +

2∑
i=1

ψ̄i[λ,Bi] + ψIλI − I†λψ̄I − Jλψ̄J + ψJλJ
†

}
. (280)

This integral can be evaluated through the deduction of the equivariant action on the
fields, especially the stable points28 and the corresponding weights to compute the finite
integral via the Duistermaat-Heckmann localization formula. First of all we introduce

28These are the fixed points under the torus action
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the torus resulting from the different symmetries of the theory. We have the dual
group transforming the field keeping the framing fixed, the Lorentz symmetry and the
flavor symmetry and the transformations at infinity. In pure gauge we restrict to T =
TG × Tdual × TL. So we have to see how the different fields get transformed under this
action of the torus:

Bi → eφBie
−φeiεi , (281)

I → eφIe−ae−iε+ , (282)

J → eaJe−φe−iε+ , (283)

χC → eφχCe
−φe−iε. (284)

The other fields have been integrated out. The stable point is the origin and if you
infinitesimally write the transformations,that the weights for the different fields are given
as [3]

φi − φj + εt, for Bt,ij, (285)

φi − al − ε+, for Iil, (286)

al − φi − ε+, for Jli, (287)

φi − φj − ε, for χC,ij. (288)

Performing this the same way for χR and using (236) we end up with the following
expression:

Zk =

∮ k∏
i=1

dφi
2πi

1

k!

εk

εk1ε
k
2

∏
i<j≤k

(
(φi − φj)2) ((φi − φj)2 − ε2

)∏
i<j≤k

(
(φi − φj)2 − ε21

) (
(φi − φj)2 − ε22

)
×

k∏
i=1

1∏N
i=1(φi + ε+ − ai)

∏N
i=1(φi − ε+ − ai)

(289)

This is the contribution of the k-th instanton sector to the partition function computed
in [3]. There was also given the result with fundamental matter hypermultiplets. Here
we have to consider the equivariant Euler class of the bundle of solutions to the Weyl
equation. A nice observation in [3] was that the integral

∮
can be interpreted as a contour

integral. Thus the poles will contribute to the partition function. These poles can be
classified by introduction of Young tableaux. We end up with the partition function of
SU(2) with Nf flavors where the theory is asymptotically free or conformal as a sum
over Young tableaux [3,20]. From the partition function we can obtain the prepotential
by turning off the Ω-background. So one has a nontrival check of formula (289) through
comparison of the result to the solution of Seiberg-Witten and others.
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5 N = 2 Dualities

In 2009 Gaiotto introduced a possibility to study a large class of superconformal theories
in four dimensions by using duality arguments and quiver diagrams [28]. We will mostly
restrict to gauge group SU(2) because then we can use powerful statements learned from
the Seiberg-Witten analysis about S-duality. We want to argue that the moduli space of
exactly marginal29 deformations coincides with with moduli space of complex structures
of Riemann surfaces of genus g and n punctures.
Let us sketch the argumentation. We will explore the boundary of the moduli space of

Figure 2: The moduli space of marginal couplings and the Lagrangian description at
corner or boundaries

exactly marginal gauge couplings of quivers up to three gauge groups. On the boundary
theories are weakly coupled and a Lagrangian description exists that will be given by a
quiver. We will use S-duality of one gauge group to analyze dual theories and see that
(once we specify the gauge group and the flavors) that the theories are the same modulo
S-duality and this information can be encdoded in two numbers (g, n) characterzing a
quiver. Instead of trying to investigate the moduli space of gauge couplings we will
introduce a moduli space that matches the moduli space of exactly marginal gauge cou-
plings on the boundary. This is the complex structure moduli space of certain Riemann
surfaces. Matching our quivers from which we have constructed a Lagrangian to certain
Riemann surfaces and using the same rules for the quivers as for the Riemann surfaces
we can explore the interior of the moduli space. We have to mention that we are dealing
with the ultraviolet theory here so we can really write down all possible Lagrangians.

5.1 Quivers for SU(2)-gauge groups

The notion of quiver describes a systematic way of writing down a gauge theory with
a gauge group built as a product of certain other groups and the corresponding flavor
symmetry of the matter content. If the gauge group is always the same e.g. G = SU(2)

29marginal means that the beta function vanishes and implies that the gauge coupling does not depend
on the scale
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and the flavor symmetry for every state is the same, we can represent these quivers as
a skeleton where internal lines correspond a gauge group and external lines the flavor
symmetry. The possibilities of connecting these lines are restricted by the assumption
of vanishing β-function as we are describing conformal theories.

5.1.1 Possible Lagrangians

The philosophy of exploring the UV-parameter space can be compared to the one of
Seiberg-Witten. In Seiberg-Witten theory we study the moduli space of vacua. In
the large vev limit we know that a semiclassical approximation can be done carefully
and the theory can be analyzed exactly. Then, by using the powerfull restrictions of
N = 2 theories in the low energy effective theory, we try to explore the interior of the
moduli space of vacua following the Lagrangian into the strongly coupled region. We
will pick up singluarities and monodromies as we try to interpolate the function into
this region. In some sense this way can be also used for the moduli space of exactly
marginal gauge couplings. As the theory has marginal couplings we can tune them. So
the first question is concerning this weakly coupled region analogous to the large vev
limit in Seiberg-Witten theory. We know that in N = 2 theories there are two different
supermultiplets from which we can build Lagrangians. The vectormultiplet comes in the
adjoint representation of the gauge group as we are dealing with gauge theories and the
hypermultiplets which are the matter that consist of two chiral N = 1 multiplets Q, Q̄
that comes in the representation R, R̄. ForN = 2 the information (G,⊕InIRI⊕R̄I) fixes
the UV-Lagrangian completely, where nI is the multiplicity of different representations30.
The flavor symmetry is

∏
I U(nI) which can be seen by writing down the superpotential

in the N = 1 language with vanishing mass deformations. If the matter representation
of the gauge group is real or pseudoreal, one can define a ”doublet“ (Q, Q̄) out of
the chiral fields and the new superpotential has an enhanced symmetry by rewriting the
corresponding term in the superpotential. For R real the flavor symmetry gets enhanced
to
∏

I Sp(2nI) and for R pseudoreal to
∏

I SO(2nI) which will be important, at least in
the case of SU(2) quivers.
The next question is what are these exactly marginals gauge couplings? From the 1-loop
beta function we know the following relation for SU(Nc) gauge group and Nf flavors.

β ∝ −(Nf − 2Nc) (290)

This equation hold if the vector multiplet is in the adjoint representation of the gauge
group and the flavors in the fundamental representation. The exactly marginal couplings
are the ones where the matter contributes so much that the beta function vanishes.
As can be seen from (290) it should be Nf = 2Nc. Another example could be that
G = SU(2) with N = 2∗. This theory corresponds to a vector multiplet in the adjoint
and a matter hypermultiplets in the adjoint with non-vanishing mass deformation. It
can be easily seen that this is the mass deformed version of N = 4 SYM because with
vanishing mass deformation the vector multiplet and the hypermultiplet are in the same

30E.g. SU(2) Nf = 4 has n1 = 4 for R1 fundamental representation and ni = 0 for i > 1
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adjoint representation and make up the field content of the maximal supersymmetric
theory in four dimensions.
Now we look further for an example of a superconformal theory with marginal couplings.
As we have seen from the beta function the theory with gauge group SU(N) with 2N
flavors is a conformal theory. However one can also have products of groups. One
example could be SU(N)1 × SU(N)2 with 2N fundamentals and one bifundamental,
because the first gauge coupling is coupled to exactly 2N flavors. The flavorsymmetry
group is U(N)2U(1) because every fundamental of SU(N) has a flavor symmetry of
U(N), but the bifundamental only has a U(1) flavor symmetry. We will now restrict to
the case G = SU(2). Starting from two gauge groups we will have SU(2)1×SU(2)2 with
four fundamental and one bifundamental so every gauge parameter is coupled to four
fundamental flavors. We will denote the flavor symmetry group by an index of small latin
capital and the gauge groups by numbers. The bifundamental representation is (2)1⊗(2)2

Figure 3: The flavor groups are all the same

where the fundamental representation of SU(2) is pseudoreal. The tensorproduct of two
pseudoreal representations is a real representation and so the flavor symmetry of the
bifundamental representation is real. However it is already known that flavor symmetry
enhances from U(1) to Sp(2) = SU(2). The flavor symmetry of the four fundamentals
SO(8) can be decomposed as four SU(2), see (293). Thus the flavor symmetry group
is SU(2)5 and the gauge group SU(2)2. One might ask if there is a systematic way to
obtain the possible flavor symmetries and gauge groups by assuming conformal symmetry
for more complicated quiver theories. The answer is yes. We can go further and add
more and more gauge groups and the corresponding matter to keep the couplings exactly
marginal. One can even construct loops by this graph technics and we denote the number
of loops by g. One can simplify these quivers further by painting skeletons. Here the
internal lines correspond to a gauge group SU(2) and the external lines correspond to
a flavor symmetry group SU(2) Then we count the number of gauge groups and the
number of flavor groups. As the bifundamental always gets enhanced flavor symmetry
all the symmetry groups will be SU(2). Doing some combinatorial work we end up for
g loops and n external lines which always corresponds to a SU(2) flavor symmetry with
the following theory which is superconformal as the mass and the higgs are not turned
on:

G = SU(2)3g−3+n

Gf = SU(2)n (291)
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Figure 4: A quiver with a loop

Figure 5: A simplified quiver

So for every g, n the theory has an unique gauge group and an unique flavor symmetry
group. As we will see, the difference comes from the coupling of the matter to the gauge
theory. The main question is what happen if we project out the different ways the matter
couples to the gauge fields. Are the theories then equal after the projection? Obviously
they will be same. Formally we have constructed a map from the space of graphs to the
space of N = 2 superconformal theories. It turns out that the building blocks of the
boundary are S-duality of SU(2) with Nf = 4 and trifundamentals31 which will turn out
to be the theory of four free hypermultiplets.

5.1.2 Building blocks of quiver diagrams in the case of SU(2)

We know that the Seiberg Witten curve of SU(2) Nf = 4 is invariant under SL(2, Z) in
case we permute the three 8-dimensional representations 8v, 8c, 8s of the flavor symmetry
group which gets enhanced to SO(8) in this special case. Now we can try to follow the
action of S-duality on some subgroup. For example we can split into two Lorentz groups:

SO(8) ⊃ SO(4)× SO(4) = SU(2)a × SU(2)b × SU(2)c × SU(2)d (292)

We know how the different representations of the flavor symmetry group get decomposed
under this supgroup. Thus we can show the following fact: S-duality permutes the
different labels of the SU(2) subgroups. The argumentation is as follows: Under the
subgroup of the flavorsymmetry group the different representations get decomposed,

31We will define this quantity later on
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where we have chosen the vector representation to this specific one:

8v = 2a ⊗ 2b ⊕ 2c ⊗ 2d

8s = 2a ⊗ 2c ⊕ 2d ⊗ 2b

8c = 2a ⊗ 2d ⊕ 2b ⊗ 2c (293)

Now we know that the 8v, 8s, 8c are permuted by the outer automorphisms of the du-
ality group which is S3. So under S-duality the labels are permuted as in the figure
indicated. What happens if the mass parameter are turned on? As we can associate a

Figure 6: The SU(2) flavor groups are permuted

mass parameter to every SU(2) subgroup S-duality will permute the mass deformations
the same way as it permutes the labels of the different SU(2) flavor subgroups.
Are there more elementary building blocks from which we can built out this SU(2) the-
ory with four flavors? The answer is yes. Think about a vertex labeled by three indices,
each label come from a flavor group. Now take two of this vertices and gauge two flavor
indices by rotating the indices that are identified. The resulting theory will be SU(2)

Figure 7: A vertex with 3 flavor indicies

with 4 flavors and there will be no anomaly because from the perspective of the gauge
group the other vertices are just flavors .Now we have building blocks and dualities that
will be important to explore the boundary of the moduli space of gauge couplings. The
next step is to deduce what happens if we take two gauge groups with two marginal
couplings. We have already seen that this corresponds to four fundamentals and one
bifundamental that have SU(2)5 flavor symmetry.

5.1.3 Triality at work

We have seen how S-duality acts on the flavor subgroups of the corresponding hyper-
multiplets for a theory of one gauge group. We now can use this at a gauge coupling
to explore a different frame in which the theory appears. This can be done for every
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Figure 8: We glue 2 vertices by gauging one flavor index

gauge coupling in a quiver diagram by turning off a gauge coupling almost decoupling
the gauge group and by simultaneously assuming that S-duality is still valid on the other
gauge couplings. As a first example we analyze what happends for two gauge groups.
Firstly we tune the coupling on the first node to be arbitrary weak and we assume that
we can do an S-duality transformation on the second node. We deduce a whole set of
S-dual theories by permuting the different labels of the flavor symmetry group. Then we
repeat the same procedure on the second node. What are the main conclusions? First
of all we see that S-duality transformations do not commute, so that the moduli space
of marginal couplings is not just the product of two moduli spaces of theories with one
gauge group. This can easily be seen by just reversing the choice of node and observing
that this does not bring us to the same result. This seems like a trivial statement but
it tells us that the space of exactly marginal couplings has a nontrivial structure. The
other conclusion is that the pictures closes. So by tuning the coupling on and off and
using the S-duality arguments we will end up in the same theory. This means that there
are only finitly many S-dual theories.
Next we go a step further and analayze the theory with three gauge groups. The same
arguments as for two gauge groups lead to the conclusion that we are dealing with four
fundamentals and two bifundamentals corresponding to gauge group SU(2)3 and SU(2)6

flavor symmetry or equivalently g = 0, n = 6. Again we tune off the different gauge

Figure 9: The SU(2) flavor groups are permuted

couplings which are all exactly marginal and perform S-duality transformations. In the
case of two gauge groups the structure of the quiver does not change but here we will
find an S-dual frame that has three internal lines coming together. This can be seen by
taking the quiver of this theory and tuning the gauge coupling arbitrary weak at the first
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node and the third. Then we can do an S-duality transformation on the second node
and deduce a new class of S-dual theories that does not look like a typical quiver: This

Figure 10: A new example of a Sicilian quiver

quivers are called ”generalized“ or ”sicilian“ quivers, depending on which authors one
wants to follow. In the middle of the three gauge groups there are states transforming
as (2)1⊗ (2)2⊗ (2)3. These are called trifundamentals. If we decouple the six flavors we
are left with the building block where every link is given a flavor index. This analysis
can be further extended to many more gauge groups but the main issues were already
adressed in the case of zero, one, two and three gauge groups.

5.1.4 Riemann surfaces from trifundamentals

We briefly state what are the results until now. It is known that the moduli space of
exactly marginal gauge couplings or, to be more precise, of exactly marginal deformations
has boundaries on which a Lagrangian description of superconformal theories exists. S-
duality relates all the theories with the same number of loop and external legs in the
graphs to each other and so, after projecting out the S-duality grou,p the theories are the
same if the two numbers (g, n) are fixed, at least on the boundary. Another observation
was that the different theories can be glued together from the graphs with just three
legs. Another fact which we have not mentioned yet is the number of gauge groups that
is determined by the number of loops and external legs. The theory of arbitrary (g, n)
has 3g − 3 + n exactly marginal gauge couplings τi and can be built out of 2g − n + 2
graphs with three legs. In fact we can introduce the same amount of coordinates and
move around in the space. Nevertheless we know that this description only works locally
on the boundaries of the space. One way out is to search for a space that fullfils all the
requirements to be the moduli space of marginal gauge couplings. Let us introduce the
moduli space of Riemann surfaces Cg,n of genus g and n punctures or marked points.
For g > 1 the dimension of this space is:

dimMg,n = 3g − 3 + n (294)
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Actually, the dimensions match. So a first educated guess could be to map the graphs of
the three external legs to a sphere with three punctures which can be fixed by conformal
symmetry to be at 0, 1,∞. Then remember that we have constructed SU(2) with four
flavors from two graphs. So now one can ask how to glue the spheres around the
punctures. If one associates flavor symmetry to the punctures and introduces local
coordinates at one sphere around infinity and on the other around the zero point, you
can glue the spheres together in the same way you ”glue“ together the graphs by gauging
the flavor symmetry of each graph. For example, take a sphere with coordinate z = 1

w

around infinity and on the other sphere a local coordinate z around 0. Define the
following gluing parameter:

z

w
= q = e2πiτUV (295)

You end up with a sphere with four punctures at 0, 1,∞, q. Analogously, this represents

Figure 11: The 3-punctured spheres are glued like the vertices

SU(2), Nf = 4 theory, where q is directly related to the gauge coupling of the system.
So what is S-duality in this picture? We know that S-duality just permutes the different
labels of the flavor symmetry. If we assume that every puncture has a certain flavor
symmetry index, we conclude a dramatic observation. The boundary of the moduli
space of complex structures is the region where the Riemann surface degenerates. So
the S-duality frames are nothing more than the different ways a Riemann surface like
the sphere with four punctures can degenerate into the two spheres with three punctures
glued together by a long tube which gives the strength of the gauge coupling. This even
bring us to the next conclusion. Remember that the Teichmueller space has the following
relation:

MTeich
Cg,n /MCG(Cg,n) =Mg,n (296)

Where MCG is the mapping class group which are the diffeomorphisms of the Riemann
surface which preserve orientation and where the trival homotopy cycles are projected
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out. We we conclude that MCG is the S-duality group and the Teichmueller space is
the full UV -parameter space. Taking a Riemann surface Cg,n we define the class of
theories which are all the same up to S-duality as Tg,n as the theory coming from the
quiver corresponding to the Riemann surface Cg,n. Gaiotto conjectures that the moduli
space of gauge couplings of the theory Tg,n is the same as the moduli space of complex
structure of the corresponding Riemann surface Cg,n. This conclusion directly induces
a map from the space of Riemann surfaces to the space of different N = 2 conformal
theories:

F :Mg,n → Tg,n, Cg,n → τi, i = 1, ..., 3g − 3 + n (297)

The τis correspond to the gauge coupling because the gauge group is SU(2)3g−3+n. This
map strongly suggests that there is a relation between N = 2 conformal theories in four
dimensions and between Riemann surfaces or a theory defined on a Riemann surface,
depending on how much information can be extracted from the Riemann surface. In the
end this connection leads to the AGT conjecture.
One could argue even more sophisticated. Study the category of all Riemann surfaces
and and a category which is not well-defined but known to physicist of supersymmetric
theories of N = 2. Then the map should be something like a functor from the category
of the Riemann surfaces to the category of theories denoted ∪∞g,n=0Tg,n and behaves
well under degenerations of the Riemann surface. This means that the morphisms in
the category of Riemann surfaces are the gluing of two different Riemann surfaces and
the N = 2 theories constructed from this glued Riemann surface have to have the
right properties. In fact, we already know a large number of ill-defined functors. The
hyperkaehler functor which maps an N = 2 theory to its higgs branch or a special
kaehler functor which maps the theory to its Coulomb branch or the partition function
functor. Composing this with the functor from Riemann surfaces to the different N = 2
theories Tg,n defines a well-defined functor from the category of Riemann surfaces to the
category of hyperkaehler, special kaehler manifolds and to the complex numbers [29].

5.1.5 Seiberg-Witten curves

Starting with the observations of Witten about brane configurations and related Seiberg
Witten curves32 we can begin with a SW-curve of a system of n SU(2) groups (corre-
sponding to the theory Tn+3,0) with the right fundamental matter at the end and rewrite
the curve in some way. The polynomial is a function in two variables depending on the
position of the 5-branes and 4-branes (v, t) ∈ C × (C∗ − (t0, · · · , tn)) 33. The degree in
v is two because we are dealing with SU(2) gauge group and of order n + 1 in t. Lets
restrict to n = 1 with four flavors and turn off the mass deformations. We can write the
curve as:

(t− 1) (t− t1) v2 = ut (298)

32See 2.6
33The ti are the positions of the D4 branes in the brane configuration
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In the Seiberg-Witten theory the gauge coupling is identified with the complex structure
parameter of a torus

y2 = t(t− 1)(t− t1) (299)

By doing a coordinate transformation we can bring the curve to the following form
v = tx:

t(t− 1)(t− t1)x2 = u (300)

The S-duality invariant moduli space is the same as the complex structure moduli space
of a sphere with four punctures at 0, 1, t1,∞. Through a further transformation, puting
this four punctures on the same footing t1, ..., t4, one deduces the following form of the
Seiberg-Witten curve:

x2 =
u

∆2(z)
= φ2(z) (301)

t1 is the cross ratio of the four roots of this function ∆2 and z is a coordinate on the
Riemann surface which is a sphere with four punctures. The Seiberg-Witten differential
is λ = xdz and so we conclude that the Seiberg-Witten curve lives in the cotangent
bundle of the Riemann surface and the canonical 1-form that exists on such Riemann
surfaces is just the Seiberg-Witten differential. The quadractic differential φ2(z)dz2 has
poles at the punctures of the Riemann surface. In [?] the mass deformed curve was also
computed from the brane configuration. Also in the mass deformed case we can, in fact,
bring the SW-curve to the following form:

x2 = φ2(z) (302)

The φ2(z) is a little bit more involved and the mass parameter are now the coefficents of
the double poles in the quadratic differential φ2(z)dz2. We conjecture a Seiberg-Witten
curve for the Tg,n. The curve lives in the cotangent bundle of a Riemann surface, called
the ”Gaiotto“ curve. For every brane configuration it will be of the form

x2 = φ2(z) (303)

The canoncial one-form will be the Seiberg-Witten differential and the quadratic dif-
ferential has simple poles at the punctures. Mass deformations are residues of double
poles with quadratic divergences. The nice oberservation is that if a Riemann surface
degenerates, the quadratic differential actually develops a double pole. This means, as
the curve degnerates, a gauge coupling has to become something like a flavor symmetry
information with corresponding mass deformation.

5.2 N = 2-dualities for higher rank gauge groups

To generalize the above-mentioned construction we have to find building blocks for the
higher rank gauge groups. Here we have to deal with some problems. In the case
of rank two we will see that the construction for higher rank gauge groups are much
more difficult because there are blocks of strong interacting theories that can not be
reduced by S-duality to weak interacting theories. If we explore the moduli space of

70



exactly gauge couplings for SU(3) gauge group coupled to six hypermultiplets in the
fundamental representation of the gauge group, we will see that there is a point on the
moduli space where the system gets infinitely strongly coupled. At this point the system
is the same as a SU(2) theory coupled to some strange flavor symmetry. This duality is
called Argyres-Seiberg duality [30], which we want to explain in the following lines.

5.2.1 Argyres-Seiberg duality

Let us begin with this conformal theory of SU(3) Nf = 6. We can study the moduli
space of gauge couplings. For SU(2) we have seen that there exists an S-duality frame
that is the semidirect product of SL(2, Z) and Spin(8) and we have used this fact as a
building block of general quiver or Sicilian quiver. In the case of rank two it does not
work out that simple. First of all we want to give a dual theory in the infinitely strongly
coupled fixed point. The S-duality group of this theory for six massless fundamental
hypermultiplets is Γ0

2, which is a subgroup of SL(2, Z). So the fundamental domain
for this subgroup is not bound away from infinite strongly coupled points. Argyres and
Seiberg proposed that there is a dual frame in this point which is the following duality:

SU(3)w, 6 · (3⊕ 3̄) = SU(2)w, (2 · 2⊕ SCFTE6) (304)

That means that the conformal theory with one gauge group SU(3) is the same as
the a SU(2) gauge theory coupled to one fundamental and a strongly interacting non-
Lagrangian theory with flavor symmetry E6 where a subgroup is gauged. So we study
the Seiberg Witten curve that encodes the low energy effective action given in [31]:

y2 =
[(

1−
√
f
)
x3 − ux− v

] [(
1 +

√
f
)
x3 − ux− v

]
(305)

Here u, v are the order parameter that parameterize the two-dimensional moduli space
of vacua and are of dimension two and three. The corresponding one forms ωu =
xdx
y
, ωv = dx

y
with the corresponding cycles determining the BPS spectrum. The coupling

is parameterized in a way that f → 1 corresponds to the infinitely strongly coupled point.
From the curve it is directly clear that in this limit the leading order vanishes at one side
of the factorization so that it is a genus one curve in contrast to the case f 6= 1 where it
is a genus 2 curve. The one form corresponding to the dimension two operator develops
a pair of poles at x =∞. This can be shown by introducing a local patch on the sphere
or by computing the integral around infinity picking up contributions as residua. Now
think about a 1-dimensional Coulomb branch with a dimension two operator u and a
mass deformation m. This has a rank 1 global flavor symmetry which is broken by the
mass parameter. The central charge is

Z = nelectrica(u) + nmagneticaD(u) + nm (306)

The third contribution comes from the broken flavor symmetry which we want to gauge
weakly. Then the quark number n becomes a new electric charge and the mass defor-
mation is the vev of some vectormultiplet. From Seiberg-Witten theory we know the
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following equations hold:
∂Z

∂u
=

∮
γ

ωu,
∂Z

∂m
=

∮
γ

ωm (307)

The γ are cycles on a genus two curve and the ω are one-forms. If we turn off the gauging,
the genus two curve degenerates to a genus one curve because a cycle degenerates and
by computing ∂Z/∂m = n we see that the one form ωm has to develop a pair of poles.
This setup is exactly the same as by considering the limit where f goes to 1 in the
Seiberg-Witten curve and so we can give an explanation. If f goes to zero we can see
v as a coordinate on the moduli space of vacua of a rank 1 SCFT and u appears as
a mass deformation. For f almost 1 we will have that u is a vev of a vectormultiplet
of a global symmetry of the same SCFT, exactly like in the example discussed above.
From this discussion we should now have the possibility to rederive the Seiberg-Witten
curve of some rank 1 theory. There we have to put f = 1, u = 0, because this limit
restores the SCFT symmetry that is broken by the mass deformation which is u. With
this assumptions we can identity the SCFT as E6-theory by reproducing the Seiberg
Witten curve of this theory. The other limit is the conformal point of the E6-theory
which means that we have to put v = 0. This reproduces the Seiberg-Witten curve
SU(2)-theory.

5.2.2 Argyres-Seiberg duality is not enough

We want to see that the same strategy we use for G = SU(2) is not that powerful in
the case of rank two. Consider e.g. a quiver of three SU(3) groups34 turn off the all
gauge couplings and then turn on the middle gauge coupling. By Argyres-Seiberg we
find an E6-theory with a weakly coupled SU(2) gauge group. We will get SU(3) gauge
theories coupled to the E6-theory. To obtain the S-dual frames we would have to guess
the strong coupling limit of such theories which is not known. So we can not deduce
the set of all S-dual frames by just using Argyres-Seiberg as the building block instead
of S-duality in the rank one case. We just can give the theory by hand and then show
that the weakly coupled limits produce all S-dual frames.

5.2.3 Short comments on the higher rank generalizations

In fact we can go on and study quivers with higher rank gauge groups. One problem
that arises directly is the problem of flavor symmetry or the classification of punctures.
Every puncture is characterized by a flavor symmetry information and the divergences
of higher differentials that controll the Seiberg-Witten curve by certain Young tableaux.
The Seiberg-Witten curves can be deduced from the multibrane scenario and will have

34To be conformal we will have 2 bifundamentals with flavor symmetry U(1) and the we pick a flavor
subgroup SU(3)2 similar to the rank one case. The big difference is that the fundamental represen-
tation is not pseudoreal in the rank two case and so we have two different types of flavor symmetry.
Here SU(3)2U(1)1
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the same canonical form as in the rank one case:

xN =
N∑
i=2

φi(z)xN−i (308)

This curve lives in the cotangent bundle of the Gaiotto curve and its canonical 1-form
is the Seiberg-Witten differential.

5.3 4d N = 2 SU(2)-quivers from compactifications of 6d(2, 0)− A1

theories and higher rank realizations

We have seen that there is a whole class of SCFTs which are the same up to S-duality
uniquely determined by the topology of a Riemann surface we want to call the ”Gaiotto
curve“. We will give some evidence that this class can be constructed by a twisted
compactification of low energy theory of k coincident M5-branes wrapping the Gaiotto
curve. We will relate the Gaiotto curve to the Seiberg-Witten curve and explain how
we can define this class of theories for higher rank. This is strongly related to Witten’s
construction in Typ IIA string theory and the lift to M-theory. In this way we see that
the AGT relation arises naturally as two different compactification limits compared after
the reduction.
The low energy theory of k coincident M5 branes is given by a six-dimensional super
conformal theory of type N = (2, 0) with Lie algebra AK−1. From Nahms classification
of super Lie algebras we know that there is a (2, 0) theory T [g] with simply laced Lie
algebras g in six dimensions corresponding to different M5 branes setup. The field
content of a theory with one M5 brane decoupled from gravity is a tensormultiplet
containing a two-form which has a corresponding self dual 3-form. 5 scalars transforming
in the vector representation of the R-symmetry group SO(5) and four fermions making
the theory supersymmetric which fulfill a reality condition. What do we mean by twisted
compactification? We begin with a six-manifold of the following form:

M6 = R4 × Cg,n (309)

We reduce the sixdimensional theory along the Gaiotto curve Cg,n to a four dimensional
theory or, to be more precise, we compactify one M5 brane on a curve Cg,n. However
doing this would break all the supersymmetries. To avoid this we have to do a twisted
compactification. We break the R-symmetry group:

SO(5)R → SO(3)R × SO(2)R (310)

and the spacetime symmetry group:

SO(1, 5)→ SO(1, 3)× SO(2) (311)

The spinors now transform under the decomposition as a product of positive and neg-
ative chirality spinors, where the reality condition in six dimensions removes half of
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the components, which is good because we just want to have half of the supercharge
algebra. By identification of the surving R-symmetry group with the structure group of
the Riemann surface Cg,n, which is exactly a SO(2)-bundle, we can get rid of the terms
that would avoid having covariant constant spinors. In fact, turning on the curvature of
Riemann surface would bring us to a term of the following form:

Dµε = (∂µ + Γ) ε (312)

Obviously supersymmetry could be broken. Therefore now we set SO(2)R = SO(2) and
so we can have:

Dµε = (∂µ + Γ± Aµ) ε (313)

Here Aµ is a R-symmetry connection. In fact, we can bring our spinors to be covariantly
constant. By elimination of the curvature of the R-symmetry with the structure group
of the Riemann surface (or vice versa) we are left with the following symmetry group
under which the spinors now transform:

SO(1, 3)× SO(3)R = SO(1, 3)× SU(2)R ∼= N = 2 (314)

This equation indicates that we have actually constructed an N = 2-symmetry group by
the twisted compactification. But what happend to the scalars of the tensormultiplet.
In the six-dimensional theory the five scalars φi, i = 1, ...5 transformed as a vector
of the R-symmetry group SO(5). Now φ1, φ2 couple to the structure group of the
Riemann surface by the twisted compactification. We define a 1-form of the following
form φ(z, z̄) = φ1 + iφ2dz where z is a coordinate on the Riemann surface. Now we can
think of the supersymmetry conditions. A short calculation shows that supersymmetry
is preserved if and only if the field φ(z, z̄) is a holomorphic function so ∂̄φ(z, z̄) = 0.
So this function can be nontrivial. If we take k M5-branes wrapped on a curve, we will
have a collection of one-forms

φ(1)(z), φ(2)(z), ..., φ(k)(z), (315)

Now we want to define an equation where all the information is concentrated on. So we
take an arbitrary one-form λ and build the following equation(
λ− φ(1)(z)

) (
λ− φ(2)(z)

)
· · ·
(
λ− φ(k)(z)

)
= 0 = λk−u1(z)λk−1 + · · ·λk−uk(z) (316)

Obviously these uk(z)‘s are k-differentials which can be written as uk(z) = a(z)dzk. We
end up with the following conclusion: If we take k coincident M5 branes or, to be more
precise, the low energy limit of this theory which should be six-dimensional N = (2, 0)
of type Ak−1 and wrap35 them around an arbitrary Riemann surface of genus g with
n punctures the resulting theory has cn = 2 supersymmetry in four dimensions and is
controlled by the following equation:

0 = λN + u1(z)λN−1 + · · ·uN(z) (317)

35We mean by this wrapping the twisted compactification of the directions of the Riemann surface
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Rewriting this equation further by defining

uk(z) = uk

(
dz

z

)k
, uN = (ΛNz + uN + ΛN/z)

(
dz

z

)N
, λ = xdz/z (318)

we see that the equation reproduces Seiberg-Witten solutions studied in [32]. For each
z ∈ C we will have N solutions to the equation. So the Seiberg-Witten curve is the
N-sheeted branched cover of the Gaiotto curve. We have seen the same relation in (301)
or in more detail for the SU(2) case. It can be shown that certain paths corresponds to
certain states and that it can be shown that this description will lead to N = 2 vector
multiplets and also hypermultiplets. For example, take the sphere with three punctures
wrapped by two coincident M5 branes. The defining equation is:

x2 = φ2(z) (319)

Every puncture is labeled by a mass parameter. This will give four paths and two zeros
of the differential which is given as

φ2(z) = m2
adz/z, z = 0

φ2(z) = m2
bdz/z − 1, z = 1

φ2(z) = m2
cd(1/z)/(1/z), z =∞ (320)

From four paths of this type one can deduce that this corresponds to hypermultiplets
with certain mass deformations given as linear combination of the mass parameters of
the punctures. So the conclusion is that wrapping two M5 branes on a sphere with three
punctures we have constructed four dimensional N = 2 theory of four free hypermul-
tiplets what was expected from the four dimensional point of view. One can actually
argue that connecting two copies of this theory and gauging together one global symme-
try will lead to the right paths and zeros of the differential to have SU(2) gauge theory
with four flavors. If you tune the coupling you will have the same geometry again but
the mass parameters will be permuted. This is nothing than S-duality!
Again, one can ask how the different local descriptions are glued together. We are deal-
ing with exactly marginals deformations and as we tune on the vev of the higgs we are
moving in the moduli space of vacua that is fibered over the moduli space of gauge
couplings. So the Lagrangian changes in the following form:

L→ L′ = L+ δτi

∫
d4xdθ2

〈
Trφ2

i

〉
(321)

If we define ui = Trφ2
i , we can see uiδτi as a 1-form and the Coulomb branch which

is fibered over MUV gets as a fiber bundle glued together like the cotangent bundle
of the moduli space T ∗Mg,n and we can go further and study this space of complex
structure deformations and its corresponding 1-forms. It turns out that the Seiberg-
Witten curve lives in the cotangent bundle of the Gaiotto curve and can be given as
N-sheeted branched covering of the Gaiotto curve with the following equation:

xN =
N∑
i=1

φi+1(z)xN−i (322)
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This was expected from the analysis done before. On the cotangent bundle of the
Riemann surface with local coordinates (x, z) there is a canoncial one form written as:

λ = xdz (323)

So we have come to the same conclusion by three different approaches. First of all
we rewrote the Seiberg-Witten curve with a non-bijectiv transformation obtaining the
Gaiotto curve. This transformation lead to the possibility to have a branched cover-
ing. The second way was to construct a curve with the information from the twisted
compactification of the six-dimensional theory of type Ak−1 with N = (2, 0) SUSY. The
last approach is, but not explicitly performed here, to derive the relation of the moduli
space of gauge couplings with the Coulomb branch. The Coulomb branch is fibered over
the moduli space. The different local descriptions are glued together like the cotangent
bundle of the moduli space which was identified with the moduli space of complex struc-
tures of a Riemann surface. From this it follows that the Seiberg-Witten curve lives in
the cotangent bundle.
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6 The AGT conjecture

Now we come to the central statements of this master thesis: The AGT conjecture which
relates conformal field theory and supersymmetric gauge theories. We will explain two
different cases. The first one, which is the one presented in [1], studies a relation between
SCFT in 4 dimensions with N = 2 supersymmetry and Liouville theory on a Riemann
surface. The other case is a similar relation between asymptotically free theories and
CFT first noted in [4]. We will formulate the conjecture and do some tests of the AGT
duality at lower genus of the Riemann surface. We will see that there is some evidence
that a dictionary exists.

6.1 General Statement for conformal theories

We have a map from Riemann surfaces to SCFT in 4 dimensions with N = 2 supersym-
metry. Therefore we may ask if there is a correspondence between certain objects in the
two theories. One natural object in the SCFT is the Nekrasov partition function. Start
with U(2) gauge group factor out a U(1) part and set a1 = −a2 = a. So we conjecture
that for G = SU(2), Nf = 4 the instanton part of the partition function is the conformal
block of the CFT on the Riemann surfaces which causes the four-dimensional N = 2
theory:
Conjecture AGT I

ZU(1) × Znek
inst(a, µα, ε1, ε2) = B(∆1,∆2,∆3,∆4; ∆0, c) (324)

Remembering (191) and defining

BαY,Y ′ = λ∆
∆1∆2

(Y )K−1
Y Y ′λ

∆
∆3∆4

(Y ′) (325)

we can also state (324) as∑
|Y |=|Y ′|

q|Y |BαY,Y ′(α1, α2;α3, α4) = (1− q)−ν
∑
Y,Y ′

q|Y |+|Y
′|Z

SU(2)
Y,Y ′ =

∑
Y,Y ′

q|Y |+|Y
′|Z

U(2)
Y,Y ′ (326)

Here we have (1− q)−ν = ZU(1). We need to identify the parameters:

µ1 = α1 − α2 +
ε

2
, µ2 = α1 + α2 −

ε

2
, µ3 = α3 − α4 +

ε

2
, µ4 = α3 + α4 −

ε

2

a = α(0) + ε/2, ∆k =
αk(ε− αk)

ε1ε2
, c = 1 +

6(ε1 + ε2)2

ε1ε2
(327)

If we want to compute the correlator of four primary fields in a CFT, we have seen that
we have to combine the conformal block with the 3-point function. If there is a relation
between the conformal block and the instanton part of the Nekrasov partition function,
could there be an object in the four-dimensional theory we have to identify to compute
the correlator in the Liouville theory? The AGT conjecture states that the perturbative
part of the Nekrasov function can be identified with the DOZZ-formula and the classical

77



part of the partition function as simple function in q. So the four-point correlator in
Liouville theory living on the Gaiotto curve is the integral over the Coulomb branch
(as the coulomb branch parameter is identified with the internal conformal dimension
of the intermediated channel in the expansion of the correlator) of the squared complete
Nekrasov function:
Conjecture AGT II〈

Vα0(∞)Vα1(1)Vα2)(q)Vα3(0)
〉

=

∫
daa2|Znek(a, µi, q)|2 (328)

The last conjecture relates the field that comes from the compactification of the six-
dimensional theory and lives on the Gaiotto curve to the energy-momentum tensor of
the CFT. CFTs have powerfull Ward identities and by inserting the Energy momentum
tensor we will have expansions that depend on the OPEs of the other operators. From
this AGT concluded:
Conjecture AGT III

φ2(z)dz2 = −〈T (z)〉 (329)

φ2 has double poles of fixed coefficents. The space of quadratic differential with fixed
residua actually has the same dimension as the Coulom branch for the theories of class
Tg,n. Indeed, we can see this φ2(z) as the field coming from the Gaiotto curve as we wrap
the M5 branes around the curve. The conjecture can be checked experimentally. If you
calculate the residua of the quadratic differential the fixed coefficents of the quadratic
differential in the limit of vanishing Ω-background should be the same as the mass
parameters for certain cycles and for the other cycles the Coulomb branch parameter.
This statement was checked in [1].

6.1.1 Experiments at genus 0

After formulating the AGT conjecture we will see that (324) is experimentally true.
What we exactly mean is that we will see that the two expressions (324) will match in
the first orders in the expansion. The Gaiotto curve is a sphere with four punctures
located at 0, 1,∞ and q. On the on the hand we will expand the instanton partition
function in the instanton counting parameter and on the other side in the position on
the sphere which is not fixed by conformal symmetry. This reflects the fact that in
the construction of the Tg,n-theories the gluing parameter was identified with the gauge
coupling which can be tuned. So let us start with the expansion in the lowest order of
the conformal block (189). The first nontrivial term will be:

B(1)(∆1,∆2,∆3,∆4) =
〈α1|Vα2L−1|α〉 (〈α|L1L−1|α〉)−1 〈α|L1Vα3(q)|α4〉

〈α1|Vα2(1)|α〉 〈α|Vα3(q)|α4〉
(330)

78



Evaluating the different operations explictly leads to the following linear term for arbi-
trary external dimension and to the following term in the conformal block expansion

B(1)(∆1,∆2,∆3,∆4) = −
2a4 + 2a2

(
ε(−α1 + α2 − α3 + α4) + α2

1 − α2
2 + α2

3 − α2
4 − ε2/2

)
ε1ε2(4a2 − ε2)

−

−
2
(
α1(ε− α1)− α2(ε− α2) + ε2/4

)(
α3(ε− α3)− α4(ε− α4) + ε2/4

)
ε1ε2(4a2 − ε2)

(331)

Now expand the partition function to linear order so for k = |Y |+ |Y ′| = 1:

Z[1][0] =
1

ε1ε2

∏4
r=1(a+ µr)

2a(2a+ ε)
(332)

And we also need:

Z[0][1] =
−1

ε1ε2

∏4
r=1(a− µr)

2a(2a− ε)
(333)

Now we combine the contributions from the easiest Young tableux and we also have to
incorporate the ZU(1)-factor by also expansion in the instanton counting parameter. In
the Nekrasov partition function this gives a contribution of ν in the linear order. At
least we have to calculate

B(1)(∆1,∆2,∆3,∆4)−
(
Z[0][1] + Z[1][0] + ν

)
=? (334)

We use (327) and see that for ν = 2α1α2/ε1ε2 both sides really match! The quadratic
expansion in the instanton counting parameter produces horrible expressions which can
be analyzed the same way with mathematica. It is easier to show the powerfull results
of mathematica in the case of asymptotically free theories and we will come back to this.
Now we compute the four point function in Liouville theory. We have seen that the four
point function can be written as

〈Vα0(∞)Vα1(1)Vα2(q)Vα4(0)〉

=

∫
dαC(α∗0, α1, α)C(α∗, α3, α4)|q∆α−∆α3+∆α4 B̃(α, α1, α2, α3, α4, q)|2 (335)

where the B̃ mean that we have already factored out a certain dependence (191) on
the cross ratio out of the conformal block. It is already clear that this conformal block
have the full instanton information (at least this is the conjecture). By plugin in the
DOZZ-formula we can deduce that the four point function can be written in the following
form:

= F (α∗0)F (m0)F (m1)F (α1)
∣∣∣qQ2/4−∆α3−∆α4

∣∣∣2 ∫ a2da |Zα0

m0
α
m1

α1(q)|2 (336)
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up to a constant which only depends on b. Here

F (α) =
[
πµγ(b2)b2−2b2

]−α/b
Υ(2α) (337)

This Z have the following form [1]:

Zα0

m0
α
m1

α1(q) =

q−a
2

∏
Γ2(m̂0 ± m̃0 ± a+Q/2)

∏
Γ2(m̂1 ± m̃1 ± a+Q/2)

Γ2(2a+ b)Γ2(2a+ 1/b)
B̃(α, α1, α2, α3, α4, q) (338)

The first factor is nothing than the contribution of the classical prepotential! Also the
rest of the functions are the contributions to the 1-loop of four fundamental hypermulti-
plets! So we conclude that the Liouville four-point correlator is up to some constants the
same as the full square of the Nekrasov partition function integrated over the Coulom
branch with the natural measure which means that we have to encounter the Vander-
monde determinant which is a2.
The AGT conjecture can also be formulated in a more abstract way. It states that the
conformal block of a CFT defined on a Riemann surface Cg,n is the same as the instan-
ton part of the Nekrasov partition function of a theory in four dimensions coming from
two M5 branes wrapping the Riemann surface Cg,n. In [1] it was also computed up to
some order that the 1-point function on a torus is the same as the Nekrasov partition
function integrated over the Coulom branch. This should hold at least for mulitple punc-
tures on a sphere and on a torus by just integrating over the multidimensional Coulomb
branch.The complete dictionary can be found in table 1.

6.2 General Statement for asymptotically free theories

After introduction of the AGT conjecture the question appeared if it possible to establish
such a duality also between asymptotically free theories and CFT. For the gauge group
SU(2) we can have Nf = 0, 1, 2, 3. On the gauge theory side there is still the possibility
to compute the Nekrasov partition function. So we have to find a related object on the
CFT side. Therefore Gaiotto [4] introduced a special coherent state whose norm should
reproduce the Nekrasov partition function called Gaiotto state. The motivation of this
idea comes from the M5-brane construction. Another possibility is to go to the gauge
theory side and to decouple fundamental by sending their mass to infinity keeping the
renormalization scale finite. Then use the dictionairy and do the corresponding steps on
the CFT side. The object which we will obtain we will defined as ”irregular conformal
block“ and we will see that this will indeed match the Nekrasov function. To define
this Gaiotto states we have to deal with extensions to the program in [4] because the
compactifications obtained are in order to construct superconformal theories and want
to deduce asymptotically free theories from M5 brane compactifications. The punctures
that control the theory are no longer regular so are of higher degree as two and the
construction can be find in [?] and [33]. We will restrict to punctures that are not of
higher degree than four. We will do the calculation for the pure gauge case but the
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∣∣∣ N = 2 theory of class Tg,n Liouville theory on the Gaiotto curve Cg.n

∣∣∣∣∣∣ Liouville parameters
∣∣∣∣∣∣Deformation parameters ε1, ε2 ε1 : ε2 = b : 1/b
∣∣∣∣∣∣ c = 1 + 6Q2, Q = b+ 1/b
∣∣∣∣∣∣ four free hypermultiplets a three-punctured sphere
∣∣∣∣∣∣ Mass parameter m Insertion of
∣∣∣∣∣∣ associated to an SU(2) flavor a Liouville exponential e2mφ
∣∣∣∣∣∣ one SU(2) gauge group a thin tube (or channel)
∣∣∣∣∣∣ with UV coupling τ with gluing parameter q = exp(2πiτ)
∣∣∣∣∣∣ Vacuum expectation value a Primary e2αφ for the intermediated channel,
∣∣∣∣∣∣ of an SU(2) gauge group α = Q/2 + a
∣∣∣∣∣∣ Instanton part of Z Conformal blocks
∣∣∣∣∣∣ One-loop part of Z Product of DOZZ factors
∣∣∣∣∣∣ Integral of |Z2

full| Liouville correlator
∣∣∣

Table 1: Dictionary between the Liouville theory and Nekrasovs partition function Z.

matter theories can be worked out in the complete same fashion. The main statement
is:

〈A,B〉 = Z
Nf=0,1,2,3

nek (339)

Here A,B are certain coherent states in the Verma module. The definiton of these
states is defined from the M5-brane perspective and we will now present the pure gauge
example.

6.2.1 Experiments for Nf = 0

In the following chapter we restrict to the case of pure gauge theory. The cases Nf =
1, 2, 3 work the same way. First let us quote that the Gaiotto curve is a sphere with two
punctures such that the quadratic differential on the sphere has a degree three pole at
the puncture that can be put to zero and infinity by conformal symmetry. The curve is
given as [33]:

x2 = φ2(z) =
Λ2

z3
+

2u

z2
+

Λ2

z
(340)

The parameters are the Coulomb branch parameter and the scale of the theory that
differ for every matter content. Now we define the state |∆,Λ2 > living in the Verma

module of highest weight of conformal dimension ∆ = Q2

4
− a2. The curve restricts the
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choice of the Gaiotto state to:

L1|∆,Λ2〉 = Λ2|∆,Λ2〉 L2|∆,Λ2〉 = 0 (341)

because of the relation of the energy momentum tensor and the quadratic differential
living on the Gaiotto curve. By using the Virasoro algebra one deduces that for all n > 2
the modes of the energy-momentum tensor act as annihilation operator. We expand the
Gaiotto state in the scale parameter:

|∆,Λ2〉 = v0 + Λ2v1 + Λ4v2 + · · · (342)

Here v0 is the highest weight vector |∆〉 and vn is a level n descendant such that L1vn =
Λ2vn−1 and L2vn = 0 . Using the Virasoro algebra and by studying the requierments
from the Gaiotto curve one can deduce the functions vn up to every power recursivly.
We state the coefficents up to second order:

v0 = |∆〉

v1 =
1

2∆
L−1|∆〉

v2 =
1

4∆ (2c∆ + c+ 16∆2 − 10∆)
((c+ 8∆)L2

−1 − 12∆L−2)|∆〉 (343)

Our proposal is to identify the Norm of the Gaiotto state with the Nekrasov partition
function. So we calculate the Norm of this Gaiotto state. We assumed that the highest
weight state is normalized to unity. For the norm we get:

〈∆,Λ2|∆,Λ2〉 =
∑

Λ4n|vn|2

=1 +
Λ4

2∆
+

Λ8(c+ 8Λ)

4∆(2c∆ + c+ 16∆2 − 10∆)
+ · · · (344)

Now we compare the Nekrasov function in the pure gauge theory for U(2). We calculate
the Nekrasov function up to quadratic order and set the casimirs as a1 = −a2

36 and get
the following equation

Z
Nf=0

nek =
∞∑
0

q|n|Z
Nf
n = 1 +

2q

ε1ε2(ε1 + ε2 − 2a)(ε1 + ε2 + 2a)

+
q2(8(ε1 + ε2) + ε1ε2 − 8a)

ε21ε
2
2((ε1 + ε2)2 − 4a2)((2ε1 + ε2)2 − 4a2)((ε1 + 2ε2)2 − 4a2)

+ · · · (345)

Here something remarkable has happened. If we identify the instanton counting param-
eter as the fourth power of the scale parameter in the irregular conformal block q = Λ4,
the two quantities match up to second order in case we use the standard AGT dictio-
nairy. Let us be explicit in the linear term. First of all we have ε1ε2 = 1 and ε1 = b.

36This is the SU(2) case

82



Furthermore we have Q = (ε1 + ε2)2 and so we get 4∆ = ((ε1 + ε2)2− 4a2). So the linear
term gets:

2q

ε1ε2(ε1 + ε2 − 2a)(ε1 + ε2 + 2a)
=

2Λ4

1(ε1 + ε2)2 − 4a2
=

2Λ4

4∆
=

Λ4

2∆
(346)

We see that the linear term matches and the same calculation can be done for every
order e.g. order 3:

“
16c∆ + 2c2∆− 52∆2 + 22c∆2 + 48∆3

”
Λ12

96c∆2 + 48c2∆2 − 960∆3 − 624c∆3 + 144c2∆3 + 4896∆4 − 240c∆4 + 96c2∆4 − 6816∆5 + 1056c∆5 + 2304∆6

(347)

Now we calculate the Nekrasov function up to third order:

q
3
(

1

4aε31 (2a + ε1) (−2a + 2ε1) ε22 (−2a + ε2) (−ε1 + ε2) (2a− ε1 + ε2) (−2a + ε1 + ε2)

−
1

4aε31 (−2a + ε1) (2a + 2ε1) ε22 (2a + ε2) (−ε1 + ε2) (−2a− ε1 + ε2) (2a + ε1 + ε2)

+
1

12a (2a− 2ε1) (2a− ε1) ε31ε2 (−2ε1 + ε2) (−ε1 + ε2) (−2a + ε1 + ε2) (−2a + 2ε1 + ε2) (−2a + 3ε1 + ε2)

−
1

12a (−2a− 2ε1) (−2a− ε1) ε31ε2 (−2ε1 + ε2) (−ε1 + ε2) (2a + ε1 + ε2) (2a + 2ε1 + ε2) (2a + 3ε1 + ε2)

+
1

4aε21 (−2a + ε1) (ε1 − ε2) (2a + ε1 − ε2) ε32 (2a + ε2) (−2a + ε1 + ε2) (−2a + 2ε2)

−
1

4aε21 (2a + ε1) (ε1 − ε2) (−2a + ε1 − ε2) ε32 (−2a + ε2) (2a + ε1 + ε2) (2a + 2ε2)

+
1

2a (2a− ε1) ε21 (2a− ε2) (2ε1 − ε2) ε22 (−2a + ε1 + ε2) (−2a + 2ε1 + ε2) (−ε1 + 2ε2) (−2a + ε1 + 2ε2)

−
1

2a (−2a− ε1) ε21 (−2a− ε2) (2ε1 − ε2) ε22 (2a + ε1 + ε2) (2a + 2ε1 + ε2) (−ε1 + 2ε2) (2a + ε1 + 2ε2)

+
1

12aε1 (2a− 2ε2) (ε1 − 2ε2) (2a− ε2) (ε1 − ε2) ε32 (−2a + ε1 + ε2) (−2a + ε1 + 2ε2) (−2a + ε1 + 3ε2)

−
1

12aε1 (−2a− 2ε2) (ε1 − 2ε2) (−2a− ε2) (ε1 − ε2) ε32 (2a + ε1 + ε2) (2a + ε1 + 2ε2) (2a + ε1 + 3ε2)
) (348)

It really matches the CFT side under the identification of the parameters! We see that,
indeed, the following equation is fulfilled:

〈∆,Λ2|∆,Λ2〉 = Z
Nf=0

nek (a, q) (349)

So we concluded that the Nekrasov partition function again has a counterpart on the
CFT side37. It is clear that this is no proof of the AGT conjecture but a hint that this
is not just an accident appearing in the lowest order of some expansion.
The main question is if we can define these coherent states in some way. This leads to
the idea to use the AGT conjecture to know which object could be interesting on the
CFT side and to see that this objects actually exists.

6.2.2 Irregular conformal blocks in Nf = 0

Here we want to demonstrate how we can use the AGT conjecture to define interesting
objects on the CFT side. We start with a sphere with four punctures. The Gaiotto

37We have checked this up to fifth order
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construction tells us that we have SU(2) with four flavors. Now sending the masses of
the flavors(hypermultiplets) to infinity decouple them from the theory. By doing that
we have to keep the renormalization scale fixed. In fact:

q
4∏
i=0

µi = Λ (350)

Then we define the irregular conformal block, sending q → 0, as:

B∆(Λ) = lim
∆i→∞

B(q,∆1,∆2,∆3,∆4,∆) (351)

We take (191) and see what happens to the terms in this certain limit. In fact the inverse
of the matrix in the conformal block does not depend one the external dimensions and
so nothing happens. The γ functions will change because we can neglect certain terms
now caused by the fact that the external conformal dimensions grow infinitly. For the
irregular conformal block we get:

B(Λ,∆) =
∑
|Y |=|Y ′|

Λ4nK−1
[1n],[1n] (352)

Now we compare this expression to the norm of the Gaiotto state. The norm of the
Gaiotto state (=

∑
cYL

−Y |∆ >) is:〈
Λ2,∆|Λ2,∆

〉
=
∑
Y,Y ′

c(Y )K−1
Y,Y ′c(Y

′) (353)

These are two different descriptions of the notion of irregular conformal blocks that
should match. So at the end the expansion coefficents of the Gaiotto state are given as:

CY = Λ|Y |K−1
[1|Y |],Y

(354)

So this is the Gaiotto state constructed from the four-point conformal block and, by doing
some calculations, it can be shown that it fulfills the condition that was implemented
from the M5-brane construction. The upshot is that the expansion coefficents of a
Gaiotto state can be given directly. In fact, we could also decouple less flavors from the
theory keeping the beta function negative and do the same calculations. The Gaiotto
states should be defined from the conformal block description by sending less masses to
infinity keeping the scale fixed. Again, the remarkable relation shows that the scalar
product of certain Gaiotto states matches the Nekrasov partition function as explained
in [4]
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7 Toda Field Theory and AGT for SU(N)

The AGT conjecture relates fourdimensional SU(2) gauge theory with 2 supersymmetries
to Liouville theory. So the natural question that arises is what happen for higher rank
gauge groups? What should be the corresponding CFT. In [34] a possible answer to
this question was given. Since Liouville theory arrises as a special case of Toda field
theories and is also related to some ADE classification it was natural to assume that
SU(N) gauge theory is dual to a Toda field theory. In this section we want to remind
you what the Toda Field theory is and also stress that it is much more involved to do
some observation in the higher rank gauge group case then in rank 1 case in [1] and that
we have to overcome some problems. There is also AGT conjecture for special classical
groups like Sp(1) and SO(4) [35] and for generalized quivers or Sicilian quivers studied
in Gaiottos N = 2 dualities paper [36], but we will restrict to the SU(N) case.

7.1 Toda Field theory

We begin by introduction of the action of Toda field theory:

S =

∫
d2z
√
g

[
1

8π
gad 〈∂aφ, ∂dφ〉+ µ

N−1∑
i=1

eb〈ei,φ〉 +
〈Q, φ〉

4π
Rφ

]
, (355)

Here gad is the metric on the Riemann surface with curvature R. The ei are the simple
roots of the AN−1 Lie algebra and we have a scalar product on the root space. The
N − 1-scalar fields in Toda theory are put into a N − 1-dimensional vector expanded in
the simple roots: φ =

∑
eiφi. If you take N = 2 then you will deal with one simple root

that is 1 so the action reduces to (160) up to normalization.
We will call the class of theories we are dealing with Toda theories although we restrict
here to the theories with the roots of the Lie algebra of SU(N). In this case the central
charge to obtain a conformal theory is forced to be:

c = N − 1 + 12 〈Q,Q〉 = (N − 1)(1 +N(N + 1)(b+
1

b
)2) (356)

where we have a certain modification of the charge at infinity Q

Q =
(
b+ b−1

)
ρ (357)

At first sight the theory we are dealing with seems to be almost the same as Liouville
theory but in Liouville theory there exists only one conserved current, the Energy Mo-
mentum tensor coming from the Virasoro sector. In Toda theory with N > 2 this is
not true as we will have more conserved currents. In fact, there are N − 2 additional
holomorphic currents called Wk-currents and the resulting algebra is called the WN+1-
algebra. Here k runs from 2...N + 1. The conformal dimension grows accordingly to the
rank of the gauge group plus one.
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Let us expand the new conserved currents in modes and as we know that the conformal
dimension is the rank of the gauge group plus one we can directly write:

W(k)(z) =
∞∑

n=−∞

z−z−k (358)

We can also start to define primary fields in this context and we do this in the same way
as for the Virasoro sector (or Verma module)

W
(k)
0 V = w(k)V , W (k)

n V = 0 when n > 0 (359)

So we define the primary fields
Vα = e〈α,φ〉 (360)

It is more instructive to study a certain example of aW-algebra as done in [34] where the
easiest case was considered. This is the A2-case. We will have an additional holomorphic
current of conformal dimension 3. I n this case the Virasoro algebra is untouched:

[Ln, Lm] =(n−m)Ln+m +
c

12
(n3 − n)δn,−m

[Ln,Wm] =(2n−m)Wn+m (361)

[Wn,Wm] =
c

3 · 5!
(n2 − 1)(n2 − 4)nδn,−m +

16

22 + 5c
(n−m)Λn+m+

(n−m)

(
1

15
(n+m+ 2)(n+m+ 3)− 1

6
(n+ 2)(m+ 2)

)
Ln+m

Λn =
∞∑

k=−∞

: LkLn−k : +
1

5
xnLn (362)

with:
x2l = (1 + l)(1− l) , x2l+1 = (2 + l)(1− l) . (363)

7.2 AGT-W duality

We have seen that if we construct quivers of SU(3) gauge theory we will have different
flavor symmetry depending on whether the external leg is a bifundamental or a funda-
mental. So in the construction with the Riemann surfaces it was also noted that we
have to deal with two different punctures on this surfaces. The punctures in the general
case of six-dimensional N = (2, 0) theory of type Ak−1 reduced on a Riemann surface
are classified by Young tableaux [28]. In the SU(2) case we inserted Vertex operators
in the punctures and so the mass parameter of the hypermultipet is identified with the
corresponding conformal dimension. Now the flavor symmetry is labeled by a Young
diagram so we have to find a map from the Young diagrams or type of puncture to the
conformal dimension or Toda momenta. If we map the puncture corresponding to the
U(1) symmetry to the highest weight of the A2 algebra we can actually see that the

86



number of parameters on both sides match which would not be the case if we do not
constraint the possible Toda momenta for the different types of punctures. So the AGT
conjecture gets lifted to higher rank case to the AGTW-conjecture.
Conjecture AGTW
Toda field theory with Lie algebra Ak−1 is AGT dual38 to the SU(N) theory with 2N
flavors

38In the same way of SU(2)
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8 Proving AGT

In [1] the AGT conjecture was established by calculating a power series in two char-
acteristic quantities and observing that they match order-by-order in this expansion
under identification of the parameters. This is no proof, altough it gives strong evidence
that it could hold to all orders. Here we want to present some ideas to proof the AGT
conjecture. Firstly we will see that for special cases the proof to the AGT conjecture
becomes much easier and can be done. We will constrain the parameters in a way that
the quantities become much easier and we can do a careful analysis to match the con-
formal blocks and the partition function up to all orders. Then we go further and try to
give an idea how to prove the AGT conjecture in general with the help of matrix models
and β-ensembles.

8.1 Special cases

8.1.1 The c →∞ limit

In [37] the case of very large central charge is studied and we want to go through the
proof briefly. The first important observation is that the conformal block has a nice
form in the large central charge limit:

B∆;∆1,∆2,∆3,∆4(x) = F1(∆ + ∆1 −∆2,∆ + ∆3 −∆4; 2∆;x) (364)

where the function on the right hand side is hypergeometric function that can be given
explicitly as:

F1(∆+∆1−∆2,∆+∆3−∆4; 2∆;x) =
∞∑
n=0

xn

n!

n−1∏
k=0

(∆ + ∆1 −∆2 + k)(∆ + ∆3 −∆4 + k)

2∆ + k

(365)
From the AGT conjecture we have the following conjecture:

c = 1 +
(ε1 + ε2)2

ε1 · ε2
(366)

So the large c limit comes from from the limit ε1 → 0 but then the AGT conjecutre
states that also the external conformal dimensions grow infinitely. So we choose the
vertex operator in a way that the external dimension stay finite and this leads to the
restriction that the U(1) factor drops out because the exponent that appears in the
U(1) factor is proportional now to O(ε1) so in the large central charge limit will give
no contribution. The main question is which partitions will survive the limit we are
taking in the Nekrasov partition function and if we can bring the results in a systematic
approach. To see what we have to do we firstly expand the Nekrasov functions into the
instanton counting parameter.
In the linear term only the partition [1][0] will contribute to the Nekrasov partition
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function. The other terms will be of order ε1 therefore will vanish within the limit. We
have:

Z[1],[0] =
(∆0 + ∆1 −∆2)(∆0 + ∆3 −∆4)

2∆0

+O(ε1) (367)

Now we compare the term of the Nekrasov function with (365) and see that the result
matches indeed in the limit.
We go further by computing the term for |Y |+ |Y ′| = 2 which is the quadratic term in
the instanton expansion: The results are all proportional to ε1 except to the term Z[11],[0]

which also gets contributions within the limit

Z[11],[0] =
(∆0 + ∆1 −∆2)(∆0 + ∆3 −∆4)(∆0 + ∆1 −∆2 + 1)(∆0 + ∆3 −∆4) + 1

4∆0(∆0 + 1)
+O(ε1)

(368)
It seems as if we only get contributions from that ones that have one trivial partition
[1n] and the other [0] in the large central charge limit. This is the next step to deduce
which Young tableau contributes and then to evaluate the Nekrasov function in general.
This we lead to a proof of the AGT conjecture in this special limit. We proceed as
follows: We will study from which terms the contribution does come and so we can give
explicitly show that the pairs of Young tableaux that contribute reduce from (Y, Y ′)
to (1n, 0) where n is the cardinality of the Young tableau. Now we analyze when the
numerator and the denominator of Nekrasov partition function ZY,Y ′ = N/D vanish in
the ε→ 0 limit. Remember that the numerator is given by:

N(Y, Y ′) =
∏

(i,j)∈Y

4∏
α

(a1 + ε1(i− 1) + ε2(j − 1) + µα)×

∏
(i′,j′)∈Y ′

4∏
α

(a2 + ε1(i′ − 1) + ε2(j′ − 1) + µα) (369)

We search for all the terms where the ε2 dependency drops out so that the small ε1 limit
gives zero contribution. From the definition of the dictionary we know which terms will
vanish in the limit. Remember:

a = α0 − ε/2, µ1 = −ε/2 + α1 + α2, µ2 = ε/2 + α1 − α2,

µ3 = −ε/2 + α3 + α4, µ4 = ε/2 + α3 − α4 (370)

The terms
∏

(a+µα + ε2 + kε1),
∏

(a+µα + kε1),
∏

(−a+µα + kε1) will contribute with
powers of ε21 and are the reason why the numerator tends to zero in the limit. So we
have to set i = 1, 2 or i′ = 1. So the contribution to the partition function is:

N(Y, Y ′) ' ε
2(](i=1)+](i=2)+](i′=1)
1 (371)

Now let us analyze the denominator. To get the SU(2) partition function we have to set
a1 = −a2 = a. This is the reason we get terms in the denominator terms dependent and
independent of a because some of them depend on a1 +a2 thus the dependence drops out
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for these terms. Again we want so get terms where the ε2-dependency drops out and the
limit contributes in powers of ε1. From the evaluation of the partition function in the
former chapters we know that the dependency drops out exactly if ki(Y ) = j which is
the left edge of a row39 and so we conclude that the number of columns contributes with

ε
](i=1)+](i′=1)
1 where the second term comes from the second Young tableau Y ′. Similiarly

we can analyze the a dependent terms and see that they contribute to the denominator
by ε

](i=2)+](i=1)
1 . From this it follows that the partition function for a pair of Young

tableaux is:
Z(Y, Y

′) = N(Y, Y ′)/D(Y, Y ′) = ε
](i=2)+](i′=1)
1 (372)

This contributes if and only if we can set ](i = 2) = 0 and ](i′ = 1) = 0. This means
that the partitions that can contribute are only the ones of the form (1|Y |, 0) and so we
can go further and compute the partition functions explicitly
We calculate now:

Z[1n],[0] =
(−)n

n!(ε1ε2)n

n∏
i=1

∏4
α=1 (a+ µα + (i− 1)ε1)

(2a+ ε+ (n− i)ε1) (2a+ (n− i)ε1)

=
(−)n

n!(ε1ε2)n

n∏
i=1

ε2nε2n1 (∆0 + ∆1 −∆2 + (i− 1)) (∆0 + ∆3 −∆4 + (i− 1)) +O(ε1)

(2α0 + (n− i)ε1) (2α0 − ε+ (n− i)ε1)

→ 1

n!

n∏
i=1

(∆0 + ∆1 −∆2 + (i− 1)) (∆0 + ∆3 −∆4 + (i− 1))

2∆0 + (n− i)
(373)

Here it was important that ε2 stay finite and in the small ε1 limit the term in the de-
nominator in front of ε exactly cancels the sign dependency. To complete the calculation
we built up the sum where the summation index is now n = |Y |, which is the only free
parameter in the pair of Young diagrams and we rename i− 1→ k:

∞∑
n=0

xnZ[1n].[0] →
∞∑
n=0

xn
1

n!

n−1∏
k=0

(∆0 + ∆1 −∆2 + k) (∆0 + ∆3 −∆4 + k)

2∆0 + k
(374)

This is (365) and this completes the proof of the AGT conjecture in the large central
charge limit with finite external conformal dimensions.

8.1.2 Proving the asymptotically free case in the pure gauge limit

We turn now to general proofs. The pure gauge AGT conjecture first formulated in [4]
relates the instanton partition function to the irregular conformal block which can be
identified with the norm of the Gaiotto state which is a highest weight state in the Verma
module. One possibility to proof such relations is to show that every side of an equation
fulfills the same recursive relation. Then under the identification of the parameters the
conjecture is proven. The important equation is a recursive formula of Zamolodchikov.

39depending how you draw the Young diagram
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In the limit of Nf = 0 the formula states that the irregular conformal block has the
following expansion:

B∆,∆1,∆2,∆3,∆4(x) = H∆,∆1,∆2,∆3,∆4(q) (375)

with q = (x) = e−π
K(1−x)
K(x) and K(x)

∫ 1

0
dt√

(1−t2)(a−xt2)
. The nice observation of Zamolod-

chikov was that the function on the rhs can be given as a power series, where the terms
have a recursive relation:

H∆,∆1,∆2,∆3,∆4(q) = 1 +
∞∑
n=1

(16q)nHn
∆,∆1,∆2,∆3,∆4

(376)

with:

Hn
∆,∆1,∆2,∆3,∆4

= δn,0 +
∑

1≤rs≤n

Ars
∆−∆rs

Hn−rs
∆rs+rs,∆1,∆2,∆3,∆4

(377)

With the formulae:

∆rs =
Q2

4
− 1

4
(rb+ sb−1)2

Ars =
1

2

r∏
p=1−q

s∏
q=1−s

(
µ− pb+ qb−1

2

)
,(p, q) 6= (0, 0), (r, s) (378)

If we rewrite the irregular block for Nf = 0 in the following way, we can get an easy
recursive relation for the irregular conformal block.〈

∆,Λ2|∆,Λ2
〉

=
∞∑
n=0

Λ4n 〈∆, n|∆, n〉 (379)

From (377) we conclude:

〈∆, n|∆, n〉 = δn0 +
∑

1≤rs≤n

Ars
∆−∆rs

〈∆rs + rs, n− rs|∆rs + rs, n− rs〉 (380)

In [38] it was shown that the Nekrasov partition function (with a1 = −a2 = a) fulfills
the same relation as (380). The instanton partition function can be written as a contour
integral and every pair of Young diagrams corresponds to a choice of integration con-
tour. One has to analyze the pole structure and calculate the residua of this function.
This yields a long expression that can be simplified by some algebra and leads to an
equation how the residue of a factorized partition function corresponds to the original
one. Fortunately, we can calulate the rhs directly and the lhs is the Nth-contribution
in the instanton partition function expansion. As we go to the SU(2) and manipulate
the equation further40 we see that the Nekrasov partition function fulfil the following
equation:

Zn(∆, b) = δ0,n +
∑

1≤rs≤n

Ars
∆−∆rs

Zn−rs(∆rs + rs, b) (381)

40We have to match the large casimir condition and that is reason for the δ-term in the recursive
relation
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By Comparing the equation for Zn with (380) the AGT conjecture in the pure gauge
limit is proven.

8.2 Proof via Topological string theory

In [39] a way to relate the AGT conjecture naturally to topological string theory and
matrix models was sketched. The bridge that appears to be one of the most interessting
ways to prove the conjecture IS Matrix models. The reason for this is that we can
express the Liouville 3-point functions in a matrix model representation. Let us begin
by recalling basic facts of matrix models and the relation to Calabi-Yau manifolds in the
topological B-model. For a more detailed discussion of matrix models and topological
string we refer to [40].
The partition function of the matrix model with one matrix (corresponding to the rank
1 case) is given as:

Z =

∫
N×N

dΦexp
1

gs
TrW (Φ) (382)

gs is the coupling constant and the integral is a contour integral in the space of matrices.
This matrix model describes the B-model on a Calabi-Yau of the following form:

uv + F (x, z) = 0 (383)

where F (x, z) = 0 is the spectral curve of the matrix model called Σ embedded into C2.
The function F (x, z) is given as:

F (x, z) = x2 −W ′(z)2 + f(z) = 0 (384)

This is a double cover of the z-plane. Saddle points of this integral correspond to the
critical points of the potential W (z) and determine the function f(z). The connection
between matrix models and CY-geometries were explained in several papers by Vafa and
Dijkgraaf in 2002 [41–43]. Consider the following geometry given by:

uv + x2 −W ′(z)2 (385)

The singularities at u = v = x = W ′(z) = 0 are resolved into a one dimensional
projective space. We wrap N B-branes over this spaces so we resolve the singularities and
this is the geometry after the so called geometric transition. For large N in the matrix
model it computes the closed topological string amplitudes on the resolved geometry. If
one defines W ′(z)2 − f(z) = P (z) and tunes the functions, one can bring the equation
x2 = P (z) to hyperelliptic curve, where the higher genus corrections come from a field
on the spectral cover φ(z). This field has a natural interpretation in CFT.
In a series of papers from the mid 90s it was shown that the following partition function
has another interpretation:

Z =

∫
dNz

∏
I<J

(zI − zJ)2 exp
∑
I

1

gs
W (ZI) (386)
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The ”dual“ formulation states that the Vandermonde determinant is nothing but the N-
point function of vertex operators at the positions of the eigenvalues. Now the potential
is coupled to to the current ∂φ. The complete formula states:

Z =< N |exp

(∫ ∞
−∞

dzeiφ(z)

)
exp

(∮
∞
dz

1

gs
W (z)∂φ(z)

)
|0 > (387)

From this expression one can deduce the relation between the Liouville field and the
matrix field, where the Liouville field is interpretated as the string field living on the
spectral cover:

φ(z) =
1

gs
W (z) + 2Trlog(z − Φ) (388)

From this, one can argue that the spectral curve looks like

x2 = g2
s

〈
∂φ(z)2

〉
(389)

This fact comes from the observation that the energy momentum tensor which generates
the matrix transformation is the derivative of the Liouville field. By rewriting the terms
in free fermions ψ1, ψ2 we see that the fermions build up U(2) affine current algebra. The
U(1) part decouples so we are left with a SU(2) algebra. By bosonization ∂φ1 = ψ1ψ

∗
1

and ∂φ2 = ψ2ψ
∗
2 of the free fermions we derive that the partition function can be written

as:

Z =

〈
exp

(∫
dzJ+(z)

)
exp

(∮
∞
dzW (z)J3(z)/gs

)〉
N

(390)

By the subscript we mean that the term is inserted as 〈N |., .|0〉 and with the Ji, i =
+,−, 3 the SU(2) currents given as:

J+ = eiφ− , J3 = ∂φ− (391)

where the subscript on the φ field means that we have taken the difference of the
bosonized fields. If we now take the potential to zero, the CY-geometry will give rise to
a A1-singularity as you directly see from (385). In this special case the CFT description
of matrix models corresponds to the following action:

S =

∫
d2z∂φ∂̄φ+

∫
dzeiφ(z) (392)

The nice conclusion is that the action is the Liouville action in the case of vanishing
background charge Q or (hopefully) equivalently Ω-deformation ε1 + ε2 = 0.
To really conclude that the AGT conjecture is true we have to go further and turn on
the deformation parameters. We define β = −ε1/ε2. The main question is how the
geometry changes now. Let us introduce a complex structure on the four dimensional
real space and take the local CY geometry to be:

NΣ ⊕ C2 (393)
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Considering the canonical line bundle of C2 over a Riemann surface Σ. This is analgous
to the T 2 fibration we have seen in the evaluation of Nekrasov partition function. Now
let FC2 be the curvature of this bundle and assume that it can be expressed in terms of
the curvature of the Riemann surface.

FC2 = −ε ·RΣ (394)

The problem is that we do not have a Ricci-flat space anymore and supersymmetry is
broken.However we can twist the normal bundle again to get rid of the curvature term.
There is a rotation generator in the normal bundle. If we take the trace of it, we have
a U(1) symmetry. Then denote JR as the generator acting on the field and we have to
add a term to the action of the fields, a term like

ε

∫
Σ

JR ∧ ωΣ (395)

The generator gets wedged with the spin connection on the Riemann surface, but what
should be JR? The geometry normal to the Riemann surface has a holomorphic two-
form and the U(1) symmetry can be seen as the freedom to muliply a phase. The phase
can be given explicilty as θ = ε1 + ε2/

√
ε1ε2. Then by implementing the transformation

on the fermions we can deduce the correct form of the term we have to add to the free
Liouville action. It reproduces the missing term of the Liouville action correctly and
introduces a background charge at infinity.
If we now go back to the affine SU(2) current algebra and turn on the background charge
we see that the vertex operator should have the following form:

J+ = ebφ (396)

It reproduces the known answer if we take b = i→ Q = 0. In this case the Vandermonde
determinant gets corrected slightly to be raised by the power of 2β and the potential
gets a prefactor of β. So this results in the derivation of the AGT conjecture. The
relation between gauge theories and the Liouville theory comes from the bridge which is
a β-deformed matrix model with penner type potential which was shown by engeeniering
the gauge theory and matching the matrix model description in the topological string
with the CFT side [39]
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9 Speculations

What could be a further conclusion of this AGT duality? One interesting property of the
Nekrasov partition function is that it computes the refined topological string partition
function in a certain limit:

Znek = Ztop
ref (397)

In [44] a generalization of the holomorphic anomaly equation [45] was conjectured to the
refined case where the Ω-background is turned on. In fact, the holomorphic anomaly
gives the possibilty to study the free energies of the topological string for higher genera
amplitudes. In the refined case the free energies depend on two numbers associated
to the genus of the Riemann surface and the number of punctures. The holomorphic
anomaly equation is a recursive formula in the free energies so, in principle, computable.
The refined holomorphic anomaly equation was used to calculate higher genera contri-
butions to the refined topological string. However if the Nekrasov partition function in
four dimensions is the ”same“ as the topological string partition function then one might
ask what is the topological string partition function in the dual AGT frame? Is there
a corresponding equation to the generalized holomorphic equation in Liouville or Toda
theory? We have performed calculations in this direction but nothing meaningful have
appeared until now. An interesting question related to this is the worldsheet description
of the Ω-background which should be clarified further.
There could also be a relation between M-theory and quantum deformed Virasoro alge-
bras coming from the observation that the five-dimensional Nekrasov partition function
defined on R4 × S1 is the same as the irregular conformal blocks in the quantum de-
formed Virasoro algebra. These irregular conformal blocks are again norms of certain
coherent states living in Verma module over the deformed Virasoro algebra. [46]
Other speculations could be adressed in the direction to super Liouville theory. Is
there for any Liouville theory a dual gauge theory ? Even for the complicated coset
models of W-theories there seems to be a correspdoning gauge theory living on an orb-
ifold. [47], [48], [49], [50], [51]
Further issues are dealing with surface operators. What is their dual interpretation in
the conformal field theory side? E.g. [52] There is ongoing research in proving AGT by
studying matrix models in much more detail as we have done here. The generalization
to β-ensembles lead to the possibility to compute also higher genus terms with matrix
models techniques and is a good candidate for the proof of AGT. There is also some
other higher dimensional dualiy conjecture.Instead of splitting 2 + 4 = 6 there could be
another possibility like 3+3 = 6. Recently a paper [53] was published where the authors
constructed a supersymmetric theory in three dimensions TM to every 3-manifold M of
a certain type. One motivation was a work of this year stating that that the Partition
function of bosonic SL(2,Z) Chern Simons theory on a three-manifold is equivalent to
the Partition function of superconformal theory in 3-dimensions.
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10 Conclusions and Summary

The aim of this master thesis was to study the AGT conjecture. The conjecture relates
quantities in four dimensional N = 2 gauge theories to two-dimensional conformal field
theory, in particular to Liouville theory. We presented how one can solve N = 2 field
theories in the infrared limit via elliptic curves and how to construct these curves from
branes in typ II string theory. We have seen how we can compute the non-perturbative
effects by using Lorentz symmetries, localization and equivariant cohomology. We have
studied a way to classify gauge theories and their non-Lagrangian regions in the moduli
space of gauge couplings and formulated drastic observations. We have seen that these
theories can be understood from a higher dimensional point of view. We have formulated
the AGT conjecture for conformal theories and for asymptotically free theories and
proved them in very special cases.
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