
Asymptotics of ruin probabilities for risk
processes under optimal reinsurance poli-
cies: the small claim case

Hanspeter Schmidli∗

Laboratory of Actuarial Mathematics, University of Copenhagen, Universitetsparken

5, DK-2100 Copenhagen Ø, Denmark

Abstract

We consider a classical risk model with the possibility of reinsurance. Moreover,
in one of the models also investment into a risky asset is possible. The insurer
follows the optimal strategy. In this paper we find the Cramér-Lundberg approx-
imation in the small claim case and prove that the optimal strategy converges to
the asymptotically optimal strategy as the capital increases to infinity.
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1. Introduction

Recently there was an increased interest in risk models with the possibility of invest-

ment into a risky asset. Kalashnikov and Norberg [6] considered a risk model where

all surplus was invested into a risky asset modelled as a Black-Scholes model. They

found out that the ruin probability in such a model converges to zero like a power

law, even if the claim size distribution is light-tailed. The result was generalised

by Frolova et. al. [2] to the case where only a (constant) fraction of the surplus is
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invested into the risky asset. In a very general setup the result is also obtained by

Nyrhinen [7].

If instead of a constant fraction one would invest a constant amount into the

risky asset one would get a so-called perturbed risk model. As shown by Dufresne

and Gerber [1] the exponential decay of the ruin probability in the small claim case

is preserved. The asymptotic behaviour in the subexponential case is not changed,

see [15]. This shows that it cannot be optimal to invest the whole surplus into the

risky asset. Therefore considered Hipp and Plum [4] a model where the insurer was

able to choose dynamically the amount invested into the risky asset. The goal was to

minimise the ruin probability. Because it is possible not to invest the ruin probability

obtained is smaller than the corresponding ruin probability in the original model.

Another possibility an insurer has to control the business is reinsurance. Schmid-

li [10] considered the case where the ruin probability is minimised by reinsurance

only. In [12] reinsurance as well as investment is allowed. Because theoretically

the whole risk can be reinsured the ruin probability always is decaying exponen-

tially. This is because if the insurance risk is a linearly decrasing process and only

investment is possible one basically has to control a Brownian motion with drift.

And a Brownian motion with (positive) drift has an exponentially decreasing ruin

probability. In [10] and [12] proportional reinsurance is considered for convenience.

The results are generalised to other types of reinsurance by Vogt [16].

We now introduce the model. Let St =
∑Nt

i=1 Yi be the aggregate claims process

of an insurance portfolio, where {Nt} is a Poisson process with rate λ. The claim

sizes {Yi} are iid, strictly positive and independent of the claim arrival process.

We denote by Y a generic random variable, by MY (r) = IIE[exp{rY }] its moment

generating function and by G(y) its distribution function. All stochastic quantities

are defined on a large enough complete probability space (Ω,F , IIP).

The insurer follows a strategy (A(u), b(u)) of feedback form, where (A(u), b(u)) ∈
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A ⊂ [0,∞) × [0, 1]. Feedback form is not necessary. We could have allowed all

adapted processes {(At, bt)} such that (1) below is well defined. But it turns out

that an optimal strategy exists and that it is of feedback form. The following cases

had been investigated in [4], [10], [12]:

A = [0,∞)× {1}, no reinsurance,

A = {0} × [0, 1], no investment,

A = [0,∞)× [0, 1], investment and reinsurance.

A(u) denotes the amount invested into a risky asset, modelled as a geometric Brow-

nian motion

dZt = µZt dt+ σZt dWt ,

where {Wt} is a standard Brownian motion independent of {St}. We assume here

that all economic quantities are discounted. In particular, the claim sizes increase

with inflation and the amount “not invested” is put on a bank account or invested

in a riskless bond. It is even possible to borrow money at the same rate. The latter

can be interpreted that the portfolio under consideration has a debt to the capital

resources of the company. The parameters fulfil µ, σ > 0.

b(u) is the retention level in proportional reinsurance, i.e. if a claim Y occurs at

the time where the surplus is u (prior to the claim payment) then the insurer pays

b(u)Y and the reinsurer pays (1− b(u))Y . In order to get this reinsurance cover the

insurer has to pay a continuous premium at rate c(b(u)). As in [12] we assume that

c(b) is strictly decreasing, c(1) = 0, and that c < c(0) < ∞, where c is the rate at

which the insurer gets premiums. We have chosen here proportional reinsurance for

simplicity. Other types of reinsurance can be treated similarly, see [16].

In this paper we work with the natural filtration {Ft} of {(St,Wt)}, i.e. the

smallest right continuous filtration such that {(St,Wt)} is adapted. Note that we

cannot complete the filtration because we want to change the measure later. The
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filtration has to be right continuous in order that the ruin time defined below is a

stopping time.

Under the chosen strategy the surplus process is

dXt = (c− c(b(Xt)) + µA(Xt)) dt+ σA(Xt) dWt − b(Xt−) dSt , X0 = u . (1)

The time of ruin is τA,b = inf{t ≥ 0 : Xt < 0} and the ruin probability is ψA,b(u) =

IIP[τA,b <∞]. The control function is ψ(u) = inf ψA,b(u), where the infimum is taken

over all controls such that {Xt} is well defined. In order that ψ(u) < 1 we have to

assume that c > λIIE[Y ] in the case without investment. If investment is possible

the positive safety loading can be achieved by investment.

The following result has been proved in [4], [10] and [12].

Proposition 1. Suppose there is an increasing function δ(u) solving the Hamilton-

Jacobi-Bellman equation

sup
(A,b)∈A

1
2
σ2A2δ′′(u) + (c− c(b) + µA)δ′(u) + λ(IIE[δ(u− bY )]− δ(u)) = 0 , (2)

where δ(u) = 0 for u < 0. If investment is possible suppose that δ(u) is twice

continuously differentiable on (0,∞). Then δ(u) is bounded and δ(u) = δ(∞)(1 −

ψ(u)). Moreover, the arguments (A(u), b(u)) in (2) maximising the left hand side

determine the optimal strategy {(A(Xt), b(Xt))}. If investment is not possible then

there exists an increasing solution to (2). If investment is possible and the claim

sizes have a bounded density then there exists a twice continuously differentiable

increasing solution to (2). �

Note that if investment is possible then any increasing solution to (2) is concave,

yielding that ψ(u) is convex.

We suppose in the rest of this paper that ψ(u) solves

inf
(A,b)∈A

1
2
σ2A2ψ′′(u) + (c− c(b) + µA)ψ′(u) + λ(IIE[ψ(u− bY )]− ψ(u)) = 0 , (3)
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where we let ψ(u) = 1 for u < 0. If investment is possible we also assume that

ψ(u) is twice continuously differentiable. In the following sections we investigate

the asymptotic behaviour of ψ(u) as u→∞ as well as the asymptotic behaviour of

the strategies (A(u), b(u)). Part of this problem has been solved in [5]. There the

case without reinsurance had been considered. Several technical problems did not

appear in this case that show up in the case with reinsurance. We therefore assume

here always that reinsurance is possible. We will in this paper only consider the

small claim case, i.e. exponential moments of the claim size distribution exist. The

large claim case had been considered in [13] and [14].

2. Lundberg bounds and the change of measure formula

We assume that the distribution tail 1−G(y) is decreasing exponentially fast. More

specifically, we assume thatMY (R) <∞ for R > 0 defined below and that c− > 0 for

c− defined by (7) below. These are the usual conditions needed for ψ0,1(u) ∼ Ce−Ru

in the classical risk model, see [8], and in the case without reinsurance, see [5].

We start by defining the Lundberg exponent R. Let r = R(A, b) be the strictly

positive solution to (zero if no solution exists)

λ(MY (br)− 1)− (c− c(b) + µA)r + 1
2
σ2A2r2 = 0 . (4)

R(A, b) is the Lundberg exponent in the case of a constant strategy (A, b). The

Lundberg exponent for our problem is R = sup(A,b)∈AR(A, b). This is, we max-

imise the Lundberg exponent in order to obtain an asymptotically optimal constant

strategy. In the case without investment this problem is discussed in [17] where

also (quite weak) conditions are formulated under which b 7→ R(A, b) is a unimodal

function. Note that the function on the left hand side of (4) is strictly convex and

zero in r = 0 and r = R(A, b). Thus it is positive at r = R, and therefore the
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optimal parameters (A∗, b∗) minimise (4) at r = R,

inf
(A,b)∈A

λ(MY (br)− 1)− (c− c(b) + µA)r + 1
2
σ2A2r2 = 0 .

We therefore have A∗ = µ/(σ2R) and r is the solution to

inf
b∈[0,1]

λ(MY (br)− 1)− (c− c(b))r − µ2

2σ2
= 0 . (5)

Example 1. Consider the case where investment and proportional reinsurance is

possible. The reinsurer uses an expected value principle, i.e. c(b) = (1 + θ)(1 −

b)λIIE[Y ]. Taking the derivative with respect to b in (5) gives λM ′
Y (bR) = (1 +

θ)λIIE[Y ]. Because M ′
Y (r) is a continuous increasing function a value for bR can be

obtained. Plugging in this values into (5) yields R, and therefore b and A. It is

possible that b > 1. In this case one has to set b = 1 and then to solve

λ(MY (r)− 1)− cr − 1
2
µ2/σ2 = 0 .

If the claim sizes are exponentially distributed with parameter α we get bR =

α(1−
√

1/(1 + θ)). This yields

R =
λ(
√

1 + θ − 1)2 + 1
2
µ2/σ2

λ(1 + θ)/α− c
,

which is positive because c < c(0). The optimal b is now easily obtained. �

We denote the asymptotically optimal constant strategy by (A∗, b∗), that is R =

R(A∗, b∗). From the considerations above it is clear that A∗ = µ/(Rσ2) is unique.

Waters [17] gives conditions under which also b∗ is unique.

We now prove an upper Lundberg bound.

Proposition 2. There exists a constant 0 < c+ < 1 such that ψ(u) ≤ c+e−Ru.

Proof. Choose the constant strategy that maximises the Lundberg coefficient. If

investment is possible the result follows from [1]. If no investment is possible, the

result is the Lundberg inequality for the classical risk process, see [8]. �
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For simplicity we suppose that the process is stopped at ruin, i.e. dXt = 0 for

t > τ . Consider now the process

Mt = exp
{
−R (Xt∧τ − u)−

∫ t∧τ

0

θ(Xs) ds
}
,

where

θ(u) = λ(MY (b(u)R)− 1)− (c− c(b(u)) + µA(u))R + 1
2
σ2A2(u)R2 .

The function θ(u) is positive and zero exactly if (b(u), A(u)) are the values maximis-

ing the Lundberg coefficient. We will later change the measure and readily get the

lower bound.

Lemma 1. The process {Mt} is a martingale with mean value 1.

Proof. The result follows in the same way as in [5]. �

The martingale {Mt} can be used to change the measure on Ft. We denote

the measure by IIP∗, that is IIP∗[A] = IIE[Mt;A]. It turns out that the measure is

independent of t. Indeed, for A ∈ Ft and t < s,

IIP∗[A] = IIE[Mt;A] = IIE[IIE[Ms | Ft];A] = IIE[Ms;A] .

It will become clear from the lemma below that IIP∗ can be extended to F . However,

the two measures are singular on F . Let T be a stopping time. Then for A ∈

FT ∩ {T <∞}, IIP∗[A] = IIE[MT ;A]. Indeed, by the optional stopping theorem

IIP∗[A ∩ {T ≤ t}] = IIE[Mt;A ∩ {T ≤ t}] = IIE[IIE[Mt;A ∩ {T ≤ t} | FT ]]

= IIE[MT ;A ∩ {T ≤ t}] .

The claimed formula follows now by the monotone limit theorem. For details see [8]

or [9].
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Lemma 2. Under the measure IIP∗, the process {Xt} is a jump diffusion process

with location dependent parameters. The claim intensity is λ∗u = λMY (b(u)R),

the claim size distribution (that is the distribution of Y , the jump size is b(u)Y ) is

dG∗u(y) = eb(u)Ry dG(y)/MY (b(u)R), the drift parameter is c∗u = c−c(b(u))+µA(u)−

σ2A2(u)R and the diffusion parameter is σ∗u = σA(u). Moreover, IIP∗[τ < ∞] = 1,

and therefore

ψ(u) = IIE∗
[
exp

{
RXτ +

∫ τ

0

θ(Xs) ds
}]

e−Ru . (6)

In particular, the expected value is bounded by c+.

Proof. That {Xt} remains a strong Markov process follows by direct verification

similarly as in [11]. Calculation of the generator yields the result similarly as in [11].

The infinitesimal drift of the process is

c− c(b(u)) + µA(u)− σ2A2(u)R− λb(u)M ′
Y (b(u)R) .

This is minus the derivative of (4) with respect to r. Because (4) is convex in r,

has a zero at zero and R(A(u), b(u)) and R ≥ R(A(u), b(u)) the derivative must be

strictly positive. This means that the process {Xt} has a negative drift, implying

that IIP∗[τ <∞] = 1. �

We can now easily find a lower Lundberg bound. The following result had been

proved in [3] and [5] in the case without reinsurance.

Proposition 3. Suppose that c− > 0, where

c− := inf
z

1

IIE[eR(Y−z) | Y > z]
. (7)

Then ψ(u) ≥ c−e−Ru.

Remark. The condition c− > 0 is fulfilled under quite mild conditions. For

example, if the hazard rate G′(y)/(1 − G(y)) is ultimately bounded away from R

and larger than R one has c− > 0. �
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Proof. The expected value in (6) is bounded from below by IIE∗[eRXτ ]. Condition-

ing on Xτ− yields

IIE∗[eRXτ | Xτ− = y] = IIE∗[eR(y−b(y)Y ) | Y > y/b(y)] =
eRy

∫∞
y/b(y)

dG(z)∫∞
y/b(y)

eRb(y)z dG(z)
.

Taking the infimum over all y (we omit the condition G(y/b(y)) < 1) one obtains

IIE∗[eRXτ ] ≥ inf
y≥0,b∈(0,1]

1−G(y)∫∞
y

eRb(z−y) dG(z)
≥ inf

y≥0

1−G(y)∫∞
y

eR(z−y) dG(z)
= c− .

This is the assertion. �

3. The Cramér-Lundberg approximation

In this section we consider formally the case where investment and reinsurance is

possible. If we let µ = 0 in the calculations below then the optimal investment

strategy is A(u) = A∗ = 0 and therefore basically the case with no investment

follows. We only need to consider the two cases separately if properties of the

derivatives are used because we do not assume existence of the second derivative in

the case without investment.

Taking the infimum over A in (3), that is

A(u) = − µψ′(u)

σ2ψ′′(u)
,

the Hamilton-Jacobi-Bellman equation reads

inf
b
− µ2

2σ2

ψ′(u)2

ψ′′(u)
+(c−c(b))ψ′(u)+λ

(∫ u/b

0

ψ(u−by) dG(y)+1−G(u/b)−ψ(u)
)

= 0 .

(8)

b can be replaced by b(u). Using integration by parts the equation can be written

as

inf
b
− µ2

2σ2

ψ′(u)2

ψ′′(u)
+ (c− c(b))ψ′(u)

+ λ
(
δ(0)(1−G(u/b))−

∫ u

0

(1−G((u− z)/b))ψ′(z) dz
)

= 0 . (9)
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Let f(u) = ψ(u)eRu. Then

− µ2

2σ2

(Rf(u)− f ′(u))2

R2f(u)− 2Rf ′(u) + f ′′(u)
− (c− c(b(u)))(Rf(u)− f ′(u))

+ λ
(∫ u/b(u)

0

f(u− b(u)y)eRb(u)y dG(y) + (1−G(u/b(u)))eRu − f(u)
)

= 0 . (10)

Note that Rf(u)−f ′(u) > 0 and R2f(u)−2Rf ′(u)+f ′′(u) > 0 by the corresponding

properties of ψ(u).

Because f(u) is bounded we conclude that f ′(u) is bounded from above. Because

f(u) > 0 it is not possible that f ′(u) is decreasing to infinity. Thus if f ′(u) would

be unbounded there must be points where f ′(u) is at a local minimum with an

arbitrarily small value. But noting that f(x) is bounded and that f ′′(u) = 0 at such

a point the left hand side of (10) would be strictly negative. This is not possible,

and we conclude that f ′(u) is bounded. In the case without investment we will show

below that f ′(x) is bounded.

Let g(u) = Rf(u) − f ′(u) = −ψ′(u)eRu. Then g(u) > 0 and g′(u) < Rg(u).

Moreover, g(u) is bounded. Equation (9) then reads

− µ2

2σ2

g(u)2

Rg(u)− g′(u)
− (c− c(b(u)))g(u)

+ λ
(
δ(0)(1−G(u/b(u))eRu +

∫ u

0

(1−G(y/b(u)))eRyg(u− y) dy
)

= 0 . (11)

From (5) we have

λ
MY (b∗R)− 1

R
g(u)− (c− c(b∗))g(u)− µ2

2Rσ2
g(u) = 0 .

Taking the difference to (11) yields

− µ2

2σ2R

g(u)g′(u)

Rg(u)− g′(u)
+ (c(b(u))− c(b∗))g(u) + λ

(
δ(0)(1−G(u/b(u))eRu

+

∫ u

0

(1−G(y/b(u)))eRyg(u− y) dy − MY (b∗R)− 1

R
g(u)

)
= 0 .
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b(u) is the value at which the minimum of the left had side is taken. If we therefore

replace b(u) by b∗ we obtain

− µ2

2σ2R

g(u)g′(u)

Rg(u)− g′(u)
+ λ

∫ u

0

(g(u− y)− g(u))eRy(1−G(y/b∗)) dy

− λg(u)

∫ ∞

u

eRy(1−G(y/b∗)) dy + λδ(0)eRu(1−G(u/b∗)) ≥ 0 , (12)

where we used that

MY (b∗R)− 1 =

∫ ∞

0

∫ b∗y

0

ReRz dz dG(y) = R

∫ ∞

0

(1−G(z/b∗))eRz dz .

Note that the last two terms in (12) tend to zero as u→∞ provided g(u) is bounded.

We will now show that g(u), and therefore also f ′(u) is bounded in the case without

investment.

Suppose that g(u) is unbounded. Let un := inf{u : g(u) = 2nR}. Suppose first

that G(x0) = 1 for some finite x0. For n large enough b∗un > x0. That means that

the left hand side in (12) is strictly negative because g(un−y) < g(un). Hence we can

assume G(x) < 1 for all x > 0. For n large enough we have δ(0)eRun(1−G(un/b
∗)) <

ε. Let u′ = sup{u : (1−G(u/b∗))eRu ≥ ε}. For n large enough u′ ≤ un. This implies

that

nRε

∫ u′

0

1Ig(un−z)≤Rn dz ≤
∫ un

0

(g(un)− g(un − y))eRy(1−G(y/b∗)) dy < ε .

Thus
∫ u′

0
1Ig(un−z)≤Rn dz ≤ 1/(nR). Recall that f(u) < 1. If g(u) > nR then

f ′(u) = Rf(u)− g(u) < −(n− 1)R. Thus

f(un) = f(un − u′) +

∫ u′

0

f ′(un − z) dz

< 1 +R

∫ u′

0

1Ig(un−z)≤Rn dz − (n− 1)R

∫ u′

0

1Ig(un−z)>Rn dz

≤ 1 + 1/n− (n− 1)R(u′ − 1/(nR)) = 2− (n− 1)Ru′ .

For n large enough one therefore would have f(un) < 0. Thus g(u) is bounded.
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Let ζ = limu→∞ g(u)/R. Then ζ > 0. Indeed, if limu→∞ g(u) = 0 then for x

large enough g(u) < c−R/2. Then f ′(u) = Rf(u)− g(u) > c−R/2. This contradicts

that f(u) is bounded.

We now have to consider the cases with and without investment separately.

Lemma 3. Suppose investment is allowed. Then

i) For any ε, β, x0 > 0 there exists x ≥ x0 such that g(u) > Rζ − ε for all u ∈

[x− β, x].

ii) We have limu→∞ f(u) = ζ.

iii) For any ε, β, x0 > 0 there exists x ≥ x0 such that f(u) > ζ−ε for all u ∈ [x−β, x].

Proof. i) If g(u) is ultimately monotone then g(u) is converging and the assertion

is trivial. We therefore assume that g(u) is not ultimately monotone. Suppose first

G(β/b∗) < 1. Choose 0 < χ < ε/3 to be determined later. Let η = infy≤β eRy(1 −

G(y/b∗)). We can then find x ≥ x0 such that g(x) > Rζ−χ, g′(x) ≥ 0, g(z) < Rζ+χ

for all z ≥ x− β, and

φ(x) := 2Rζλ

∫ ∞

x

eRy(1−G(y/b∗)) dy + λδ(0)eRx(1−G(x/b∗)) < χ .

Then

λ

∫ x

0

(g(x− y)− g(x))eRy(1−G(y/b∗)) dy > −χ .

Suppose now g(x − y) ≤ Rζ − ε for some y ≤ β. We have that g′(z) ≤ Rg(z) ≤

R(Rζ +χ). Thus g(z) < Rζ − 2ε/3 for all z ∈ [y, y+ ε/(3R(Rζ +χ))]. That means

we can estimate the integral above

λ2χ

∫ ∞

0

eRy(1−G(y/b∗)) dy − ληε2

9R(Rζ + χ)
> −χ .

If one chooses χ small enough one obtains a contradiction. This proves the result if

G(β/b∗) < 1.
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Suppose the result is proven in the sense of the construction above for β̃ = 2β/3.

There exits χ̃ such that whenever g(u) > Rζ − χ̃, g′(u) ≥ 0, g(z) < Rζ + χ̃ for all

z ≥ u− 2β and φ(u) < χ̃ then g(z) > Rζ − ε for all z ∈ [u− 2β/3, u]. Choose now

x ≥ x0+β such that g′(x) ≥ 0, g(z) > Rζ− χ̃ for all z ∈ [x−2β/3, x], g(z) < Rζ+ χ̃

for z ≥ x− 3β, and φ(z) < χ̃ for z > x− β. If there is x̃ ∈ [x− 2β/3, x− β/3) such

that g′(x̃) ≥ 0 the result follows from the proof above. If there is no such x̃ then g(z)

is decreasing on [x−2β/3, x−β/3]. If g(z) is also decreasing on [x−β, x−2β/3] the

result follows. Otherwise z0 := sup{z ≤ x− 2β/3 : g(z) = 0} exists, and the result

follows from the considerations above. This proves the assertion if G(2β/(3b∗)) < 1.

In the same way the result follows if G((2/3)nβ/b∗) < 1 by induction.

ii) Denote by η = limu→∞ f(u). Note there must be points where f ′(u) is ar-

bitrarily close to zero and f(u) is close to η. Because g(u) = Rf(u) − f ′(u) we

must have η ≤ ζ. Suppose η < ζ. Recall that g′(z) < Rg(z). By i) there exits

x such that g(z) > (η + 2ζ)R/3 for z ∈ [x − 2/(R(ζ − η)), x]. On this interval

f ′(z) = Rf(z) − g(z) < −R(ζ − η)/2. This implies that f(x) < 0, which is a con-

tradiction.

iii) There is x ≥ x0 + 2ζ/(εR) such that g(z) > R(ζ − ε/2) for all z ∈ [x − β −

2ζ/(εR), x]. If for some y ∈ [x − β − 2ζ/(εR), x − 2ζ/(εR)] we had f(y) ≤ ζ − ε

then f ′(y) = Rf(y) − g(y) < −Rε/2 would be decreasing. Thus f(z) ≤ ζ − ε

for z ∈ [y, x]. This would imply that f(x) < 0. Therefore f(y) > ζ − ε for all

y ∈ [x− β − 2ζ/(εR), x− 2ζ/(εR)]. �

In a similar way one can prove the corresponding result for the case without

investment.

Lemma 4. Consider the case without investment. Then

i) For any ε, δ, β, x0 > 0 there exists x ≥ x0 such that
∫ β

0
1Ig(x−z)≤Rζ−ε dz < δ.

ii) We have limu→∞ f(u) = ζ.
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iii) For any ε, β, x0 > 0 there exists x ≥ x0 such that f(u) > ζ−ε for all u ∈ [x−β, x].

�

This enables to prove our main result.

Theorem 1. There exists a constant ζ ∈ (0, 1) such that limu→∞ ψ(u)eRu = ζ.

Proof. Choose ε, β > 0. Then there is x0 ≥ β such that f(u) > ζ − ε for

u ∈ [x0 − β, x0]. Suppose x ≥ 2x0 and let T = inf{t > 0 : Xt < x0}. Note that

IIP∗[T <∞] = 1. From (6) it follows that

f(u) = IIE∗
[
exp

{
RXτ +

∫ τ

0

θ(Xs) ds
}]

= IIE∗
[
f(XT ) exp

{∫ T

0

θ(Xs) ds
}]

.

In particular,

f(u) ≥ (ζ − ε)IIP∗[x0 −XT ≤ β] .

By choosing β appropriately one can obtain IIP∗[x0 − XT ≤ β] > 1 − ε, see also

the proof of Proposition 3. Thus f(u) ≥ (ζ − ε)(1 − ε). Because ε is arbitrary we

have limu→∞ f(u) ≥ ζ = limu→∞ f(u). That ζ ∈ (0, 1) follows from Propositions 2

and 3. �

4. Convergence of the strategies

From the proof of Theorem 1 we see that
∫ T

0
θ(Xs) ds has to be close to zero.

That means that {(A(Xs), b(Xs))} should most of the time be close to (A∗, b∗). We

therefore expect the functions A(u) and b(u) to converge to A∗ and b∗, respectively.

We start proving convergence of the derivatives of f(u).

Lemma 5. It holds that limu→∞ f
′(u) = 0. If investment is possible then also

limu→∞ f
′′(u) = 0.

14



Remark. The above lemma means that derivatives and limit can be interchanged,

i.e. ψ′(u) ∼ −ζRe−Ru and ψ′′(u) ∼ ζR2e−Ru. �

Proof. From Lemmata 3 and 4 and Theorem 1 we find

lim
u→∞

f ′(u) = lim
u→∞

Rf(u)− lim
u→∞

g(u) = 0 .

We first consider the case with investment. Suppose limu→∞ f
′(u) = ε > 0. Then

limu→∞ g(u) = Rζ − ε. Because g′(u) < Rg(u) we have g′(u) < Rζε/2 for infinitely

many intervals of length δ = ε/(3R sup g(z)). Thus f ′(u) > ε/2 for infinitely many

intervals of length δ. But this contradicts that f(u) is converging. Note that we

obtain limu→∞ g(u) = Rζ.

Choose a sequence {un} tending to infinity such that f ′′(un) converges to some

value κ. Note that limn→∞ g
′(un) = −κ. By restricting to a subsequence we can

also assume that b(un) converges to a value b0. The limit of (10) is

− µ2

2σ2

R2ζ2

R2ζ + κ
− (c− c(b0))Rζ + λ(MY (b0R)− 1)ζ = 0 .

Replacing b0 by b∗ yields, see (5),

− µ2

2σ2

R2ζ

R2ζ + κ
− (c− c(b∗))R + λ(MY (b∗R)− 1) ≤ 0 .

By the definition of the Lundberg exponent the latter inequality is

µ2

2σ2
≤ µ2

2σ2

R2ζ

R2ζ + κ
.

We conclude that −R2ζ ≤ κ ≤ 0. Letting n→∞ in (12) gives

µ2

2σ2R

Rζκ

Rζ + κ
≥ 0 .

Thus κ ≥ 0. This shows that κ = 0, i.e. lim f ′′(u) = 0.

Consider now the case without investment. Because b(u) is bounded away from

zero and f(u) converges to ζ we conclude from (10) that

(c− c(b(u)))(f ′(u)−Rζ) + λζ(MY (Rb(u))− 1) < ε

15



for u large enough. We conclude that

(c− c(b(u)))f ′(u) < −ζθ(u) + ε .

Because limu→∞(c−c(b(u)))f ′(u) = 0 we conclude that limu→∞(c−c(b(u)))f ′(u) = 0.

Moreover, ζθ(u) < 2ε for u large enough. Choosing ε small enough this proves that

c− c(b(u)) is bounded away from zero. Therefore f ′(u) converges to zero. �

In [5] it is shown that the strategy A(u) converges in the case without reinsurance.

In [10, 12] it was conjectured that the strategy b(u) converges to the asymptotically

optimal b∗. This is motivated by the optimal rate e−Ru which corresponds to the

strategy (A∗, b∗). It is clear that, if b(u) converges, the limit must be b∗. We now

prove convergence of the strategy (A(u), b(u)).

Theorem 2. Suppose investment is possible. Then limu→∞A(u) = A∗. Suppose

that b∗ is uniquely defined. Then limu→∞ b(u) = b∗.

Proof. By the definition of the function A(u) we find

lim
u→∞

A(u) = − lim
u→∞

µψ′(u)

σ2ψ′′(u)
= lim

u→∞

µ

σ2

Rf(u)− f ′(u)

R2f(u)− 2Rf ′(u) + f ′′(u)
=

µ

Rσ2
= A∗ .

Let {un} be a sequence such that limn→∞ b(un) = b0 for some b0 ∈ [0, 1]. By

Lemma 5 and Theorem 1 the limit of (10) is

−µ
2ζ

2σ2
− (c− c(b0))Rζ + λ(MY (b0R)− 1)ζ = 0 .

By (5) and because b0 is unique we have b0 = b∗. �

Remark. If b∗ is not unique b0 can be any of the points where R(A∗, b) is maximal.

In order to find the limit of b(u) (if a limit exists) one needs to determine close to

which point of maximisation b(u) lies for large u. �
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