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Preface

I started to work in risk theory at the beginning of my PhD studies at ETH Zürich.

The subject interested me so strongly that I decided to remain in academia for some

longer time. A grant from the Swiss National Foundation gave me the opportunity

to spend a year at Aarhus University. The earliest papers included in this thesis are

from that time. The material included in this thesis was produced during the years

1993 – 1999.

I included ten papers in the present thesis. Together with some papers I wrote

with co-authors they build the main part of my publications. The starting point

for my interest in risk theory was Paul Embrechts’ suggestion to consider general

risk models using piecewise deterministic Markov processes. A collaboration with

Jan Grandell turned my interests to Cox risk processes. Many of the papers in this

thesis are motivated by problems arriving by considering Cox risk models.

The papers were written at the Department for Theoretical Statistics and Opera-

tions Research at Aarhus University and at the Department for Actuarial Mathemat-

ics and Statistics at Heriot-Watt University in Edinburgh, where I was employed

during the academic year 1994/95. I want to take the opportunity to thank my

colleagues at these two departments for the excellent scientific environment and

atmosphere they created. Especially I thank Jens Ledet Jensen for his useful com-

ments on a first version of this thesis. And most importantly, I thank Monika and

Eliane that they let me pursue an academic career far away from Switzerland.
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Dansk sammendrag

I forsikringsmatematik modelleres overskud af en bestemt type af forsikringskon-

trakter som overskud = startkapital+ indtægter−udgifter. Den første model

blev indført af Filip Lundberg [38] i sin PhD-afhandling. Han brugte en sammensat

Poissonproces som model for udgifterne og en lineær deterministisk indkomst. Hans

arbejde blev generaliseret af Harald Cramér [9] and [10]. Denne model blev grundlag

for næsten alle modeller inden for risiko teori.

Startkapitalen er det beløb, et forsikringsselskab vil riskere i et bestemt omr̊ade.

Ruintidspunktet er det tidspunkt, hvor for første gang startkapitalen er tabt. Ru-

insandsynligheden er sandsynligheden for, at ruin sker i endelig tid. De klassiske

arbejder beskæftiger sig mest med af finde ruinsandsynligheden, grænser for eller

approksimationer til ruinsandsynligheden.

I denne afhandling ser vi p̊a den klassiske model og nogle generaliseringer. For

den klassiske model løser vi nogle problemer inden for omr̊adet, som ikke har været

løst før. I [I] finder vi fordelingen af overskuddet lige før og lige efter ruin, hvis ruin

sker. I [I] ser vi ogs̊a p̊a tilfældet, hvor den sædvanlige nettoprofit betingelse ikke er

opfyldt; det vil sige tilfældet, hvor ruin altid sker i endelig tid. I [X] finder vi optimale

genforsikringsstrategier for den klassiske model og for en diffusionaapproksimation

til denne.

Det er mange muligheder for at generalisere den klassiske model. Den mest

naturlige generalisering er at tillade indkomsten at have en mere generel form. I

[II] viser vi, hvordan Markov procesteori kan bruges til at finde information om

ruinsandsynligheden. Eftersom det ikke er nemt at finde numeriske metoder til

at regne ruinsandsynligheden ud, er man ogs̊a interesseret i approksimationer. En

mulighed er diffusionsapproksimationer. I [III] viser vi, hvordan korrigerede diffu-

sionsapproksimationer kan bruges.

En støjfyldt risikomodel er en model plus en uafhængig proces. For modeller

støjfyldt med en Brownsk bevægelse finder vi i [IV] Cramér-Lundberg approksima-

tionen til ruinsandsynligheden, det vil sige, vi finder den eksponentielle rate, med

hvilken ruinsandsynligheden kovergerer mod nul, n̊ar startkapitalen vokser mod uen-

delig. I stedet for en Brownsk bevægelse kan man ogs̊a tage en Lévy proces. I [V]

generaliserer vi et arbejde af Furrer [23]. Vi finder fordelingen af trappehøjden for

en stationær støjfyldt risikoproces.

En af mine hovedinteresser ind for omr̊adet har været Cox risiko processer. Man

kan forstille sig en Cox risiko proces p̊a følgende m̊ade. Først valges en stokastisk

intensitetsfunktion. Denne funktion bruges derefter til at skifte tid i en sammensat

Poissonproces. Processen der fremkommer modellerer nu udgifterne i selskabet. Det

betyder, at n̊ar intensitetsfunktionen stiger stærkt, forventer man mange skader.

I [VII] er indført og undersøgt en model, hvor intensitetsfunktionen er stykkevis

lineær. Denne model indeholder to vigtige modeller som eksempler: Björk-Grandell

modellen [8] og den Markov modulerede Poissonmodel [2]. Cox risikomodeller har



x

den ulempe, at man ikke kan bruge de klassiske metoder til at finde ruinsandsyn-

ligheder eller approximationer til disse. I [VI] udvikler vi et værktøj, som ofte

kan bruges til at finde Cramér-Lundberg approksimationer. Eksponenten i Cramér-

Lundberg approksimationen er en slags m̊al for risiko. I praksis kender man jo ikke

modellens parametre. Derfor vil man gerne estimere dem. I [VIII] finder vi en

stokastisk procedure til at estimere eksponenten.

I praksis modellerer man ofte skader som værende Pareto eller lognormalt fordelt.

Disse fordelingsfunktioner tilhører en klasse af funktioner, some man kalder subek-

sponentielle fordelingsfunktioner. Her kan den klassiske teori, som beskæftiger

sig med små skader, ikke anvendes . En approksimation til ruinsandsynligheden

i den klassiske model for stor startkapital blev fundet af Embrechts og Veraver-

beke [20]. Mere generelle modeller tillader ofte regenereringstider. I mange tilfælde

kan man finde en approksimation til ruinsandsynligheden ved kun at betragte pro-

cessen p̊a disse regenereringstider. Men s̊a skal man vise at tilvæksten mellem to

regenereringstider er subexponentiel. Dette lader sig ofte gøre ved at se p̊a en

sammensat sum. I [IX] finder vi betingelser for, at en sammensat sum har en subex-

ponentiel fordeling.
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1. Introduction

We start this thesis by introducing some basic terms, explaining what Ruin Theory

deals with, and giving an overview over the results collected in this thesis.

The surplus of a certain branch of non-life insurance can be described as

Surplus = Initial capital + Income−Outflow.

The first one who considered a model of this type in non-life insurance was Filip

Lundberg [38] in his thesis. His work was then generalized by Harald Cramér [9] and

[10]. Therefore the model is called Cramér-Lundberg model or classical risk model.

The surplus is modelled as

Xt = u+ ct−
Nt∑

k=1

Yk , (1.1)

where u ≥ 0 is the initial capital, c > 0 is the premium rate, N is a Poisson process

with rate λ, see [41], modelling the number of claims in (0, t] and (Yk : k ∈ IIN) is

an iid sequence of positive random variables independent of N , modelling the claim

sizes. Here, and in all this thesis, all stochastic objects are assumed to be defined

on a complete probability space (Ω,F , P ). For simplicity we let Y = Y1 be a generic

random variable and we denote the distribution function of Y by G. In this model

the time of ruin

τ = τ(u) = inf{t ≥ 0 : Xt < 0} (1.2)

is the first time where the surplus becomes negative. As usual we let τ = ∞ if

inf{Xt : t ≥ 0} ≥ 0. Ruin is considered as a technical term. It does not mean that

the company becomes bankrupt. The initial capital has interpretation as the capital

the company is willing to risk. If ruin occurs, this is interpreted that the company

has to take action in order the make the business profitable.

We usually work with the filtration (Ft), which is assumed to be the smallest

right-continuous filtration such that the stochastic process considered, here X, is

adapted. Note that we do not assume (Ft) to be complete. This is important

because we later want to change the measure, see [I], [IV], [VI], [VII] and [VIII].

Hence we will define a measure on Ft for each t and then extend these measures to

the whole σ-algebra F . This will only be possible, if the filtration is not completed.

Assuming that (Ft) is right-continuous implies that τ is a stopping-time, see for

instance [21]. The martingale approach of [II], [IV], [VI], [VII] and [VIII] can only

be applied if τ is a stopping-time.

The quantities of interest in ruin theory are the ruin probabilities

ψ(u) = P [τ <∞], ψ(u, t) = P [τ ≤ t] . (1.3)

In order that ψ(u) 6= 1 one has to assume that c > λµ where µ = E[Y ]. The safety

loading (c − λµ)/(λµ) is the risk premium per unit time. In the classical work, a
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light tail condition (small claims) on the distribution tail of Y is assumed. Suppose

there is a solution R > 0, called the adjustment coefficient, to the equation

λ(MY (r)− 1)− cr = 0 (1.4)

where MY (r) = E[exp{rY }] is the moment generating function of Y . Then

ψ(u) < e−Ru . (1.5)

Equation (1.5) is called Lundberg’s inequality. It can be sharpened to

a−e
−Ru ≤ ψ(u) ≤ a+e

−Ru

with

a− = inf
0≤x<rG

eRx
∫∞

x
G(y) dy∫∞

x
eRyG(y) dy

, a+ = sup
0≤x<rG

eRx
∫∞

x
G(y) dy∫∞

x
eRyG(y) dy

where G(x) = 1−G(x) denotes the distribution tail of Y and rG = sup{x : G(x) <

1} is the right end point of the support of G, see [41]. Moreover, the asymptotic

behaviour of ψ(u) is found to be

lim
u→∞

ψ(u)eRu =
c− λµ

λM ′
Y (R)− c

=: C (1.6)

where the right-hand side has to be interpreted as zero if M ′
Y (R) = ∞. If C 6= 0

this gives rise to an approximation to the ruin probability, ψ(u) ≈ Ce−Ru. This

approximation is called the Cramér-Lundberg approximation.

In actuarial mathematics the small claim condition often is not fulfilled. Many

claim size distributions of interest do not have exponential moments, such as the

Pareto distribution (G(x) = 1− (1 + x/β)−α) or the lognormal distribution (G(x) =

Φ((logx−m)/s)). The latter two distributions are popular in insurance, for instance

for industrial fire insurance or third liability car insurance. Most heavy tailed distri-

butions (large claims) of interest belong to the class of subexponential distributions.

A distribution is called subexponential if

lim
x→∞

G∗2 (x)

G(x)
= 2 . (1.7)

Here G∗n(x) denotes the n-fold convolution of G. Because P [max{Y1, Y2} > x] =

1− (1−G(x))2 ∼ 2G(x) where f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1 it follows

that for large x with large probability the sum Y1 + Y2 exceeds the level x only

if one of the variables Y1 and Y2 exceeds the level x. Moreover, to say that G is

subexponential is for each integer n ≥ 2 equivalent to

lim
x→∞

G∗n (x)

G(x)
= n .

This indicates that with large probability the sum of n random variables can only

exceed the level x if one of the n variables exceeds the level x. This is indeed often
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observed in actuarial applications. The aggregate loss is determined by the largest

loss. Another property of a subexponential distribution is

lim
x→∞

G(x+ z)

G(x)
= 1

for all z ∈ IR. This means that for all z, given that Y > x for a large level x, then

also Y > x+ z with a large probability.

The asymptotic behaviour of ψ(u) in the large claim case was found by Embrechts

and Veraverbeke [20]. Assume that the distribution GI(x) = µ−1
∫ x

0
G(y) dy, also

called the integrated tail distribution, is subexponential. Then

lim
u→∞

ψ(u)∫∞
u
G(x) dx

=
λ

c− λµ
. (1.8)

For large initial capital u this gives an approximation in the heavy tailed case.

An interesting question in this model is then, what happens if ruin occurs, and

how ruin does occur. Segerdahl [57] considers the question: when does ruin occur

provided ruin occurs. Dufresne and Gerber [16] and Dickson [15] consider the ques-

tion: what is the capital just prior to and at ruin, if ruin occurs. In [I] their results

are generalized and also the cases of negative safety loading and of no safety loading

are considered. Explicit expressions in terms of ruin probabilities are obtained for

the joint distribution of the surplus prior and after ruin. From that approximations

for both small and large initial capital can be obtained for all cases of interest. No

safety loading or even negative safety loading can occur in a free market, where

one insurance type, for example motor insurance, is used to attract customers, who

then also will sign contracts for other types of insurance, even though their premi-

ums are “too” high. Note also that the premiums considered here do not include

administration costs. Administration costs have to be added to the premium later.

The classical risk model serves now as a skeleton for more realistic risk models.

We consider here mainly two types of generalizations. The first type includes in-

vestment and borrowing into the model. The classical risk model considers the case

where the interest rate and the inflation rate cancel, and where the premium rate

increases with inflation. For a discussion of this fact see [44]. In reality, however,

the return from the investment of an insurance company is larger than the loss by

inflation. In [II] and [III] a risk model with a constant difference between interest

and inflation is considered. Moreover, borrowing is allowed. The latter may be

considered as borrowing from another branch of the same insurance company. This

means that “ruin” has to be replaced by “absolute ruin”, the first time where the

outgo for interest becomes larger than the premium income. Methods from Markov

process theory that allow an analytical treatment of the model are described in [II].

An invariance principle to get a diffusion approximation to the model is obtained

in [45]. That is, one considers a sequence of risk processes converging weakly to

a diffusion process. One can show that the ruin probabilities in finite time then
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converge to the ruin probability in finite time of the diffusion process. Considering

classical risk processes, also the ruin probabilities in infinite time converge to the

ruin probability in infinite time of the diffusion process. The diffusion process is then

considered as a approximation to the original risk model. In [III] a method going

back to Siegmund [58], called corrected diffusion approximation, gives a refinement

of the classical invariance principle introduced by Iglehart [35].

Investigation of real data shows that for some branches of insurance the classical

risk model only does fit if the number of individual contracts is very large. In

many branches, statistical testing shows that the Poisson distribution does not fit.

The actuaries therefore started to use a negative binomial distribution (P (N =

n) =
(−α

n

)
p−α(p − 1)n) for the number of claims in a certain time interval. The

main reason for the good fit is that there are two parameters in this model. We

therefore have to construct a point process with negative binomially distributed

increments, or increments that approximately are negative binomially distributed.

An observation is then that a negative binomial distribution can be obtained by

choosing a parameter λ from a gamma distribution, and then, conditioned on λ,

the number of claims is Poisson distributed with parameter λ. This is a special

case of a mixed Poisson distribution. As a generalization, any distribution could

be used for mixing. This indicates that a mixed Poisson process, also called Pólya

process, has the right properties. That is, the Poisson parameter λ is stochastic.

A comprehensive treatment of mixed Poisson processes can be found in the recent

book [31].

Unfortunately, the mixed Poisson process is useless for our purposes. Indeed, we

have that Nt/t converges almost surely to λ, which means that after some time t,

(Nt+s −Nt : s ≥ 0) behaves almost like a Poisson process. What is needed is some

variability that the Poisson process does not have. If we now let (λt) be a stationary

process, and N conditioned on (λt : 0 ≤ t < ∞) be an inhomogeneous Poisson

process, see [41], we get increments that are nearly negative binomially distributed,

but the variability does not vanish.

Such a process was first considered by Ammeter [1] as early as 1948. He let the

intensity process be constant over one year and be Γ distributed. The level of the

intensity was assumed to be independent in different years. This allowed him to get

a negative binomial distribution for the annual number of claims. This model was

then generalized by Björk and Grandell [8]. They let the time in which the intensity

is constant have an arbitrary distribution. The pair (level, duration) was assumed

to build an iid sequence of vectors. They obtained Lundberg’s inequality. The

Cramér-Lundberg approximation was obtained in [VI]. A mathematical definition

of the model will be given in Section 4.1.

Janssen [36] considered a semi-Markovian model, i.e. the time till the next claim

and the claim size depend on an environmental Markov chain in discrete time with

a finite state space, i.e. the time between the j − 1-st and the j-th claim and the

j-th claim size given the environmental Markov chain are conditionally independent
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of the other inter-arrival times and the other claim sizes. And the claim size dis-

tribution depends on the Markov chain via the chain at time j only. Asmussen [2]

formulated the process as a Markov modulated risk model, i.e. a Cox model where

the intensity is a Markov chain in continuous time. The intensity then also works

as an environmental process, and the claim sizes are dependent on the present level

of the intensity. The model will be defined in Section 4.1.

A generalization containing both the Björk-Grandell model and the Markov mod-

ulated model was constructed in [VII]. Here the intensity process is a Markov chain

in continuous time with state space [0,∞). As in the Markov modulated risk model

the claim sizes can depend on the level of the intensity. Lundberg bounds are ob-

tained under some regularity conditions similar to the ones used in [8]. With the

tools from [VI] one may also obtain a Cramér-Lundberg approximation in this model.

In order that this is possible, regeneration points have to exist. Regeneration points

are time instants, after which the process is dependent on the past via the state at

regeneration point only, and follows the same law between regeneration points. For

the construction of regeneration points the notion of petite sets may be useful, see

for instance [39].

Alternatively, reality can be seen as the Cramér-Lundberg model plus an error.

BecauseX is a Lévy process (a process with independent and stationary increments),

the natural way to describe such a perturbation, is to add an independent Lévy pro-

cess B to X. Gerber [25] uses a Brownian motion to perturb the risk process.

Furrer and Schmidli [24] generalize this to other risk models. They obtain exponen-

tial bounds for the ruin probability. In [IV] also Cramér-Lundberg approximations

are obtained. Furrer [23] uses an α-stable Lévy motion as a perturbation. A nice

Pollaczek-Khinchin type formula is obtained. An attempt to understand what is

behind this formula is given in [V]. Moreover, it is shown that the exponentially

distributed time between claims is crucial for obtaining the Pollaczek-Khinchin for-

mula.

In praxis, the claim size distributions and the intensity process have to be esti-

mated. A small error in the estimation of the claim size distribution may yield a

large error in the adjustment coefficient. Thus methods to estimate the adjustment

coefficient are called for. Grandell [30] used the empirical distributions of a Cramér-

Lundberg model to estimate the adjustment coefficient. Csörgő and Steinebach [11]

estimated the adjustment coefficient of a Cramér-Lundberg model via order statis-

tics of certain cycles. In the case of a Markov modulated risk model a similar method

is successful, see [VIII]. Here time is reversed, which yields a storage model, see [5].

Then the maxima between two times where the content is empty is considered. The

tail of the distribution of these maxima decreases then exponentially with the ad-

justment coefficient of the risk model as decay rate. Thus the problem is similar to

the estimation of the coefficient of regular variation. In fact, Hill’s estimator (see

Chapter 6) turns out to be strongly consistent in this case. Moreover, it seems as

though the estimator can also be used in the Cox model with a piecewise constant
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small
claims

large
claims

properties
at ruin

reinsurance estimation

classical [I] [I] [I] [X]

interest [II], [III] [II]

diffusion
approximation

[III] [X]

perturbed [IV], [V] [V]

Cox models [VI], [VII] [IX] [VIII]

Table 1: Overview of the subjects of the papers

intensity of [VII].

For the Cox models described above the small claim case is more or less solved.

Thus the question arises, what happens in the large claim case. This question was

solved under some regularity conditions in [6]. Consider the aggregate claim between

two regeneration points. In [6] conditions are given that assure that this distribution

determines the tail of the increment between two regeneration points. Assume that

both the aggregate claim size distribution and its integrated tail distribution are

subexponential. Then the ruin probability behaves for large initial capital as the

ruin probability of the discrete version of the model obtained by only observing

the process at the regeneration times. Thus it is important to know whether the

distribution of a a compound sum, its integrated tail distribution, respectively, is

subexponential. If one of the distributions of the summands or the number of the

summands is subexponential and the other is light tailed, it is shown in [IX] that

then the compound distribution is subexponential.

Recently, methods from stochastic control theory were applied to actuarial prob-

lems, see Asmussen and Taksar [7], Højgaard and Taksar [33], [34], and Hipp and

Taksar [32]. A decision actuaries have to take is to determine a retention level in

reinsurance. Preferably, an optimal level should be determined. Waters [61] con-

siders the asymptotically best strategy if the ruin probability has to be minimized.

Højgaard and Taksar [33] maximize the mean discounted future surplus. In [X] the

ruin probability is minimized where the reinsurance strategy for a proportional rein-

surance treaty can be adapted continuously. This yields a risk process where the

premium income depends on the present surplus.

A summary on the models and the subjects found in the papers [I] – [X] is given

in Table 1.

Let us end this introduction by an overview of the remaining parts of the thesis.

In Chapter 2 we will consider a classical risk model and investigate the surplus prior

and after ruin. Chapter 3 deals with the classical risk model where interest and

borrowing is included. First, the Markov process method is explained (Section 3.1),

and then, the model with interest and borrowing is investigated (Section 3.2). Fi-

nally, corrected diffusion approximations are discussed (Section 3.3). In Chapter 4
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we consider perturbed risk models. First, we find Cramér-Lundberg approximations

for risk models perturbed by Brownian motion in the small claim case (Section 4.1).

Then we generalize results by Dufresne and Gerber [17] and by Furrer [23] on the

distribution of the modified “ladder heights” in perturbed risk models (Section 4.2).

The Cox risk models are discussed in Chapter 5. We start by giving an extension

to the renewal theorem, that can be used for obtaining Cramér-Lundberg approx-

imations in Cox models (Section 5.1), and then we introduce a quite general Cox

risk model (Section 5.2). An estimation procedure for inference on the adjustment

coefficient is given in Chapter 6. Criteria for subexponentiality of compound sums

are derived in Chapter 7. Finally, in Chapter 8 the optimal reinsurance strategies for

a diffusion approximation (Section 8.1) and for the classical risk model (Section 8.2)

are found.
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2. Classical risk models

Consider now a classical risk model (1.1), where N is a Poisson process with rate

λ and (Yk : k ∈ IIN) is an iid sequence of positive random variables independent of

N . We use the notation introduced in Section 1. In [I] we are not only interested in

the ruin probabilities, but in the joint distribution that ruin occurs, that the capital

after ruin is below some level −x and that just prior to ruin, the capital was above

the level y. If Xτ− is small, one may recognize ruin before it occurs, and thus take

action to prevent ruin. If ruin usually will happen from a high surplus Xτ−, there

is no way to react before ruin has occurred, except by underwriting reinsurance. If

−Xτ will be small then ruin is not a severe event, but if −Xτ is large the whole

insurance company may become bankrupt. Even a reinsurer could be affected.

The distributions considered here were introduced by Dufresne and Gerber [16]

and also investigated by Dickson [15]. In their work they assumed absolute conti-

nuity of the claim size distribution and positive safety loading. In [I] the claim size

distribution can be arbitrary and no positive safety loading condition is assumed.

By Markov process theory or directly, as in [I], it follows that f(u;x, y) = P [τ <

∞, Xτ < −x,Xτ− > y] is absolutely continuous with respect to u and its density

fulfils the equation

cf ′(u;x, y) + λ
(∫ u

0

f(u− z;x, y) dG(y) + 1Iu≥yG(u+ x)− f(u;x, y)
)

= 0 (2.1)

where the derivative is taken with respect to u. From this the following two equations

follow

f̂(s;x, y) =

∫ ∞

0

e−suf(u;x, y) du =
cf(0; x, y)− λ

∫∞
y
G(z + x)e−sz dz

cs− λ(1−MY (−s))
, (2.2)

where as before MY (r) is the moment generating function, and

c(f(u;x, y)−f(0; x, y)) = λ

∫ u

0

f(u−z, x, y)G(z) dz−1Iu>yλ

∫ u

y

G(z+x) dz . (2.3)

Equation (2.2) is obtained by multiplying (2.1) by e−su and then integrating over

(0,∞), and equation (2.3) is just obtained by integration over (0, u]. The equations

above constitute the key point in analysing the function f(u;x, y).

2.1. Positive safety loading

First we have to find f(0; x, y) in the case c > λµ. Because f(u;x, y) ≤ ψ(u) → 0

as u→∞ we obtain

f(0; x, y) =
λ

c

∫ ∞

y

G(z + x) dz
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by letting u→∞ in (2.3). Using f(u; 0, 0) = ψ(u) the Laplace transform (2.2) can

be inverted and yields

f(u;x, y) =
λ

c− λµ

(
ψ (u)

∫ ∞

y

G(z + x) dz − 1Iu>y

∫ u

y

ψ (u− z)G(z + x) dz
)

(2.4)

where ψ (u) = 1 − ψ(u). Equation (2.4) does not give an explicit expression for

f(u;x, y). However, there is a large literature on the calculation of ψ(u), which can

then also be used to calculate f(u;x, y).

Often, one is interested in f(u;x, y) for large u. A limit can be found if for each

z ∈ IR the limit

γ(z) = lim
u→∞

ψ(u+ z)

ψ(u)

exists. In this case

lim
u→∞

f(u;x, y)

ψ(u)
=

1

c− λµ

(
cγ(x)− λ

∫ y+x

0

γ(x− z)G(z) dz − λ

∫ ∞

x+y

G(z) dz
)
. (2.5)

The cases where the limit γ(z) is known are described in [20]. Namely, in the small

claim case γ(z) = e−Rz for some R > 0, where R is the adjustment coefficient in

the Cramér case. The most interesting case is the subexponential case. Assume the

distribution function GI(u) = µ−1
∫ u

0
G(z) dz is subexponential. Then γ(z) = 1 for

all z ∈ IR. This gives immediately that f(u;x, y) ∼ ψ(u), so for fixed x and y we do

not get any information on (Xτ−,−Xτ ). Let us try with x = 0 and y = u. Then

f(u; 0, u) =
λ

c− λµ
ψ (u)

∫ ∞

u

G(z) dz ∼ ψ(u)

as u → ∞. Thus for large u we have Xτ− > u with a large probability. Trying

functions x(u) and y(u) ≥ u we get

f(u;x(u), y(u)) =
λ

c− λµ
ψ (u)

∫ ∞

x(u)+y(u)

G(z) dz ∼ ψ(x(u) + y(u)) .

The asymptotic behaviour of f(u;x, y) can now be found for the two main classes

of subexponential distributions.

Regularly varying tail Assume that G(z) = L(z)z−α for some α ≥ 1 and some

slowly varying function L(z), i.e. L(tz)/L(z) converges to one as z → ∞. Then

ψ(u) ∼ CL(z)u−(α−1) for some constant C and

lim
u→∞

f(u; au, bu)

ψ(u)
= (a+ b)−(α−1)

provided a ≥ 0 and b ≥ 1.
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Maximum domain of attraction of the Gumbel distribution A distribution

function G is said to belong to the maximum domain of attraction of a extremal

distribution H if there exist numbers an and bn such that (G(anx+ bn))n converges

pointwise to H(x). For an introduction to extremal theory see [18]. If the tail of G

is not regularly varying, then under mild assumptions, see [29], we find that G is in

the maximum domain of attraction of the Gumbel distribution (H(x) = exp(−e−x)).

In this case, with a(z) = E[Y − u | Y > u], we have

lim
u→∞

f(u;x(u), u+ za(u)− x(u))

ψ(u)
= e−z

provided x(u) ≤ za(u).

2.2. Negative safety loading

Assume now c < λµ, with the possibility that µ = ∞. This situation may occur in

practise. An insurance company does not know the exact claim size distribution nor

the claim arrival intensity. To estimate the claim arrival intensity is no problem. The

estimator Nt/t converges exponentially fast. The situation is completely different for

the mean value µ. The mean value may be determined by the distribution function

far out in the tail, a region where one usually not does have any observations.

Therefore, the premium estimate of the insurance company might give a premium

that yields negative safety loading. In this case we do not know beforehand whether

f(u;x, y) converges as u→∞. Thus f(0; x, y) cannot be found from (2.3) by simply

considering the limit as u → ∞. Note that the numerator of (2.2) has a strictly

positive root R, i.e. cR − λ(1 −MY (−R)) = 0. Because f̂(R;x, y) ≤ R−1 we must

have that also the denominator is zero. This yields

f(0; x, y) =
λ

c

∫ ∞

y

G(x+ z)e−Rz dz . (2.6)

Introducing the distributionGQ(z) = (MY (−R))−1
∫ z

0
e−Rv dG(v) and the parameter

λQ = MY (−R)λ we get a risk model X̃ with claim intensity λQ and claim size

distribution GQ(z). This model may also be obtained by a change of measure

argument. In this model c > λQµQ, and thus its ruin probability ψQ(u) < 1.

Inversion of (2.2) yields then

f(u;x, y) =
λeRu

c− λM ′
Y (−R)

(
(1− ψQ(u))

∫ ∞

y

G(z + x)e−Rz dz

− 1Iu>y

∫ u

y

(1− ψQ(u− z))G(x+ z)e−Rz dz
)
. (2.7)

Besides the value at zero we also can find f(u;x, y) for large initial capital, namely

lim
u→∞

f(u;x, y) =
λ

λµ− c

∫ ∞

y

(1− e−Rz)G(x+ z) dz

if µ <∞ and limu→∞ f(u;x, y) = 1 if µ = ∞.
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2.3. No safety loading

If c = λµ then 0 ≤ sf̂(s;x, y) ≤ 1, from which we find

f(0; x, y) =
1

µ

∫ ∞

y

G(z + x) dz . (2.8)

Plugging this into (2.3) gives

f(u;x, y) =
1

µ

∫ u

0

f(u− z;x, y)G(z) dz +
1

µ

∫ ∞

u∨y

G(x+ z) dz . (2.9)

The latter is an ordinary renewal equation. For an introduction to renewal theory

see for instance [22] or [41]. In this case GI(z) is the ladder-height distribution. We

find

f(u;x, y) =
1

µ

(∫ ∞

y+x

G(z) dz U(u)− 1Iu>y

∫ u

y

U(u− z)G(z + x) dz
)

(2.10)

where U(z) =
∑∞

k=0G
∗k
I (z) is the renewal measure.

The value of f(u;x, y) for large u follows then from the key renewal theorem. If

E[Y 2] <∞, i.e. if GI(z) is a distribution with finite mean we have

lim
u→∞

f(u;x, y) =

∫∞
y
zG(z + x) dz∫∞
0
zG(z) dz

.

If E[Y 2] = ∞ then limu→∞ f(u;x, y) = 1. Note that the behaviour is similar to the

negative safety loading case. However, finite second moment is needed in order to

obtain a non-trivial limit, whereas in the negative safety loading case only finite first

moment was required. This has to do with the ladder-height distributions (2.8) and

(2.6). The former has finite mean iff the claim size distribution has finite second

mean, the latter iff the claim size distribution has finite mean.
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3. Risk models with interest and borrowing

3.1. The Markov process method

In [II] and [III] the classical risk model is enlarged to allow for interest and borrow-

ing. The tool used for the analysis are the piecewise deterministic Markov processes

(PDMP) introduced in [13] and [14]. Let us first recall some facts from Markov pro-

cess theory. Let X be a Markov process with (full) generator A. The full generator

A is the set of functions (f, g) such that

(
f(Xt)− f(X0)−

∫ t

0

g(Xs) ds
)

is a martingale. The domain of the generator is the set D(A) = {f : ∃g, (f, g) ∈ A}.
We often write Af for a version g of all the functions g such that (f, g) ∈ A. Let

f(x) ≥ 0 be an increasing function with Af(x) = 0 and f(x) = 0 for x < −b, for

some value b ∈ IR. In particular, we assume that f ∈ D(A). For a PDMP this

means that f must be absolutely continuous along the deterministic paths, has to

fulfil some boundary condition and an integration condition, see [13]. In this case,

the equation Af(x) = 0 is just an integro-differential equation, as for example (2.1)

with x = y = 0. We now have that (f(Xt)1Isup{Xs:0≤s≤t}≥−b) is a martingale.

Let τ = inf{t ≥ 0 : Xt < −b} denote the first passage time of the boundary

−b. Because the martingale (f(Xτ∧t)) is positive, it follows by the martingale con-

vergence theorem that f(Xτ ) = limt→∞ f(Xτ∧t) exists and is integrable. For the

processes considered here one has that Xt → ∞ on {τ = ∞}. This implies that

either f(∞) < ∞ or P [τ < ∞] = 1. If f(∞) < ∞ then the martingale stopping

theorem yields

f(X0) = E[f(Xτ )] = f(∞)P [τ = ∞]

because by the choice of f , f(Xτ ) = 0 on {τ <∞}. This shows that any solution to

Af(x) = 0 is a multiple of P [τ = ∞]. So the problem left is just to determine the

solution to Af(x) = 0 and to verify that f ∈ D(A). Note that f ∈ D(A) will auto-

matically follow if the solution f is bounded and fulfils the boundary conditions, see

[12]. Martingale methods were introduced to actuarial mathematics by Gerber [27].

An approach similar to the one presented above can also be found in [28].

3.2. A model with interest and borrowing

Let (Ct) be a classical risk model (1.1). We consider the process (Xt) fulfilling

dXt = 1IXt≥∆β1(Xt −∆) dt+ 1IXt<0β2Xt dt+ dCt

where β1 is the interest short rate paid for surplus above the level ∆ ≥ 0 and β2 is

the interest short rate that has to be paid for borrowed money. For surplus in [0,∆]



15

no interest is paid. The level ∆ can be interpreted as the amount the company

wants to keep as a liquid reserve, and therefore has to be invested at a lower return.

As time of ruin we consider here the time τ = inf{t : β2Xt ≤ −c}, called absolute

ruin time, where the outgo for interest becomes larger than the premium income.

Note that almost surely {τ <∞} = {limt→∞Xt = −∞}.
A special case is the model considered by Gerber [26]. He let ∆ = 0 and β1 = β2.

Another special case is the model considered by Dassios and Embrechts [12]. They

let ∆ = ∞.

The model was considered in [44] and [19]. It was observed there, that the solu-

tion can be found in three steps. First, find the solution to Gerber’s model, yielding

the solution for negative x. Second, find the solution to the Dassios-Embrechts

model, yielding the solution for x ≤ ∆. Third, find the solution to the model con-

sidered here. The method is illustrated for exponentially distributed claim sizes.

For general claim size distributions the Laplace transforms of the desired functions

f(x) = 1I−c/β2≤x<0f3(x) + 1I0≤x<∆f2(x) + 1Ix≥∆f1(x)

are found in [19],

f̂3(s) = K
1

s
exp

{ cs
β2

− λ

β2

∫ s

0

1−MY (−ξ)
ξ

dξ
}
, (3.1)

f̂2(s) =
cf3(0)− h2(s)

cs− λ(1−MY (−s))
, s > s0,

where h2(s) =
∫∞

0

∫ x+c/β2

x
f3(x − y) dG(y)e−sx dx and s0 = sup{s ≥ 0 : cs − λ(1 −

MY (−s)) = 0},

f̂1(s) =
exp{β−1

1 (cs− λ
∫ s

0
1−MY (−ξ)

ξ
dξ)}

β1se∆s

∫ ∞

s

cf2(∆)− h1(η)e
∆η

exp{β−1
1 (cη − λ

∫ η

0
1−MY (−ξ)

ξ
dξ)}

dη ,

where

h1(s) = λ

∫ ∞

∆

[∫ x

x−∆

f2(x− y) dG(y) +

∫ x+c/β2

x

f3(x− y) dG(y)
]
e−sx dx .

Here the functions are considered to be defined on the intervals [−c/β2,∞), [0,∞)

and [∆,∞), respectively.

In [II] we find finally an explicit inversion formula for the Laplace transform for

Gerber’s model, which is the function f3. Moreover, a dual shot-noise process is

found. We observe that

{τ ≤ t} =
{ Nt∑

k=1

Yke
−β2Tk > u+

c

β2

}
where (Tk) are the claim times. The quantity

St =
Nt∑

k=1

Yke
−β2Tk
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has the same distribution as a shot-noise process at time t, starting at zero. Thus

the finite time ruin probability can be found via shot-noise theory. In particular,

S = S∞ has the stationary distribution of a shot noise process. From (3.1) we obtain

the well-known characteristic function of the stationary distribution of a shot-noise

process

ψS(ϑ) = E[eiϑS] = exp
{
− λ

β2

∫ ϑ

0

1− ψY (ξ)

ξ
dξ

}
(3.2)

where ψY (ξ) = E[eiξY ] is the characteristic function of Y . Using the well-known

inversion formula for the characteristic function — some technical condition has to

be verified — we find

f3(x− c/β2) =
1

π

∫ ∞

0

(1− cosϑx

ϑ
sinD(ϑ) +

sinϑx

ϑ
cosD(ϑ)

)
e−C(ϑ) dϑ (3.3)

where

C(ϑ) =
λ

β2

∫ ϑ

0

∫ ∞

0

1− cos ξz

ξ
dG(z) dξ

and

D(ϑ) =
λ

β2

∫ ϑ

0

∫ ∞

0

sin ξz

ξ
dG(z) dξ .

This formula may be useful for numerical calculation of f3.

3.3. Diffusion approximations

Because it is difficult to obtain explicit expressions for the ruin probabilities, ap-

proximations are called for. A nice approximation is the diffusion approximation,

introduced to actuarial mathematics by Iglehart [35], see below. Unfortunately, dif-

fusion approximations do not work well, unless the safety loading (c − λµ)/(λµ) is

very small. In queueing theory such approximations are called heavy traffic approx-

imations. In [45] it is, however, shown that for the risk model with interest and

borrowing, diffusion approximations work reasonably well. These approximations

were improved in [III]. The reason that diffusion approximations work better in the

case with interest than without interest is that the ruin probabilities decrease very

fast. Hence approaching the region, where the diffusion approximation is far from

the correct value, the ruin probability is very small anyway.

Let now ((C
(n)
t ) : n ∈ IIN) be a sequence of classical risk models. Assume that

(C
(n)
t ) converges weakly to a diffusion process (Ct), that is limn→∞E[f(C(n))] =

E[f(C)] for all bounded continuous (with respect to the topology on the space of

cadlag functions) functionals f . For classical diffusion approximations the param-

eters are chosen as c(n) = c + λµ(
√
n − 1), λ(n) = nλ and G(n)(x) = G(x

√
n). If

E[Y 2] < ∞ then the limit process (Ct) exists and is a Brownian motion with drift

parameter c− λµ and diffusion parameter λE[Y 2].
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Consider now the corresponding processes with the possibility of investment and

borrowing

dX
(n)
t = δ(X

(n)
t ) dt+ dC

(n)
t ,

dXt = δ(Xt) dt+ dCt ,

where δ(x) = 1Ix<0β2x + 1Ix≥∆β1(x − ∆). It is shown in [45] that then (X
(n)
t ) con-

verges weakly to (Xt). Denoting the absolute ruin times by τ (n) = inf{t ≥ 0 :

X
(n)
t < c(n)/β2} we observe that almost surely {τ (n) < ∞} = {X(n)

t → −∞}. Be-

cause for a non-degenerated diffusion process absolute ruin is difficult to define, we

consider {Xt → −∞} as the event that ruin occurs. Then, see [45], it follows that

limn→∞ P [X
(n)
t → −∞] = P [Xt → −∞] provided that limn→∞ λ

(n)E[(Y
(n)
1 )2] <∞.

The latter condition is very weak. Indeed, if λ(n)E[(Y
(n)
1 )2] is unbounded, the vari-

ance of C
(n)
1 would be unbounded and a diffusion approximation would not make

sense.

Let θ(r) = λ(MY (r)−1)−cr and assume that there is a R0 such that θ′(R0) = 0.

We assume that M ′′
Y (R0) < ∞. R0 is uniquely defined, because θ(r) is a strictly

convex function. Siegmund [58] suggested the following corrected diffusion approxi-

mation. Let c(n) =
√
nc, λ(n) = λnMY ((1− n−

1
2 )R0) and

G(n)(x) =

∫ √nx

0
e(1−n−1/2)R0y dG(y)

MY ((1− n−1/2)R0)
.

The idea is the following. Assume for the moment that the adjustment coefficient

R exists. For simplicity let u = 0. For −R0 ≤ r ≤ R−R0 we have that the process

(Lt = e−(r+R0)Ct−θ(r+R0)t) is a martingale with mean value one. We can define the

new measure Pr via dPr/dP = Lt on Ft. This measure is independent of the choice

of t and can be extended to a measure on F . On F , however, Pr and P are singular,

except if r = −R0. Note that P = P−R0 . For an introduction to change of measure

techniques see [41]. It turns out that under the measure Pr the process (Ct) remains

a classical risk model. Under the measure Pr the intensity is λr = λMY (R0 + r)

and the claim size distribution is Gr(x) =
∫ x

0
e(R0+r)y dG(y)/MY (R0 + r). The ruin

probability in finite time can be expressed as

P [τ ≤ t] = Er[e
(R0+r)Cτ+θ(R0+r)τ ; τ ≤ t] e−(R0+r)u .

In particular, the expression is useful, if r = R − R0 because θ(R) = 0. For the

measure Pr the corresponding function θr(s) is given by θr(s) = θ(R0 + r + s) −
θ(R0 + r). For each r < 0 there exists an r′ > 0 such that θ(R0 + r) = θ(R0 + r′).

Assume now r changes also with n, that is we have a sequence rn < 0. In a classical

diffusion approximation rn = −R0 for all n. Inspired by the classical case we choose

λ(n) = nλrn and G(n)(x) = Grn(
√
nx). The ruin probability is then expressed as

Prn [τ (n) ≤ t] = Er′n [e(r
′
n−rn)C(n)(τ (n)); τ (n) ≤ t] . (3.4)
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Now

Er′n [C
(n)
t ] = c(n) − λ(n)µ(n) = c(n) −

√
nλM ′

Y (rn) .

This indicates that c(n) should increase at rate
√
n. Otherwise, we cannot get weak

convergence. This is fulfilled for a classical diffusion approximation. The idea of the

corrected diffusion approximation is, that the exponent in (3.4) does not explode.

Therefore r′n − rn should decrease at rate n−1/2. This is obtained by the choice

above.

We get that (C(n)) converges weakly to a Brownian motion C with drift coefficient

λR0M
′′
Y (R0) and diffusion coefficient λM ′′

Y (R0). This limiting process has a larger

drift and a larger diffusion coefficient than the classical diffusion approximation.

Indeed,

λ

∫ ∞

0

R0x
2eR0x dG(x) > λ

∫ ∞

0

x(eR0x − 1) dG(x) = c− λµ

and M ′′(r) is strictly increasing in r.

In [III] the ruin probabilities of the Cramér-Lundberg model with exponential

claim sizes are compared with ruin probabilities of the corresponding diffusion ap-

proximations. It turns out that the error is quite small as long as the exact ruin

probability is not too small.

Unfortunately, the method can only be applied if the claim size distribution al-

lows exponential moments. In many cases of interest, this is not the case. Therefore

the method can only be used in the small claim case.
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4. Perturbed risk models

Let (Ct) be a risk model. We introduce another source of randomness, a Lévy

process (Bt), and consider the perturbed risk model X defined as Xt = Ct + ηBt

where η > 0. It is assumed that C and B are independent. The model with η = 0

is called the unperturbed risk model.

The case where C is a Cramér-Lundberg model and B is a Brownian motion

was considered in [25], [17], and [60]. Exponential inequalities for the probability of

ruin for more general models C were obtained in [24]. More general perturbation

processes B were considered in [23] and [43].

4.1. Cramér-Lundberg approximations

For the perturbed Cramér-Lundberg model the Cramér-Lundberg approximation

was already obtained in [25]. Furrer and Schmidli [24] conjectured, that a Cramér-

Lundberg approximation also holds for other models, where a Cramér-Lundberg

approximation in the unperturbed case holds. Indeed, this approximation can be

proved via change of measure. Let us explain the method in the case of a perturbed

Cramér-Lundberg model.

In order to avoid ψ(u) = 1 for all u we have to assume the net profit condition

c > λµ. The adjustment coefficient is the strictly positive solution R to

λ(MY (R)− 1)− cR + 1
2
η2R2 = 0

provided such a solution exists. The process (e−R(Xt−u)) is then a martingale with

mean value one. Let (Ft) be the smallest (uncompleted) right-continuous filtration

such that ((Ct, Bt)) is adapted. On Ft the new measure Q defined as Q[A] =

EP [e−R(Xt−u);A] is well-defined. Moreover, the martingale property implies that

the definition is independent of t. The choice of the filtration implies that these

measures can be extended to a measure Q on F . However, P and Q are singular on

F . Moreover, if T is a stopping-time and A ∈ FT , A ⊂ {T <∞}, then one obtains

from the optional sampling theorem the useful formula Q[A] = EP [e−R(XT−u);A].

Thus the ruin probability can be expressed as

ψ(u) = EP [e−R(Xτ−u)eR(Xτ−u); τ <∞] = EQ[eRXτ ; τ <∞]e−Ru .

For an introduction to change of measure techniques see for instance [41]. Investi-

gation on the law of X under Q shows that the process is a perturbed classical risk

model with parameters λ̃ = λMY (R), G̃(x) =
∫ x

0
eRx dG(x)/MY (R) and c̃ = c−η2R.

Note that, in contrast to the unperturbed case, the premium rate c changes. This

is a consequence of Girsanov’s theorem. The process has negative safety loading,

implying Q[τ <∞] = 1. This simplifies the ruin probability to

ψ(u) = EQ[eRXτ ]e−Ru .
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As a consequence, Lundberg’s inequality ψ(u) ≤ e−Ru follows immediately.

Dufresne and Gerber [17] considered the probabilities ψd(u) = P [τ <∞, Xτ < 0]

and ψc(u) = P [τ <∞, Xτ = 0]. Then by change of measure we find the expressions

ψd(u) = EQ[eRXτ ;Xτ < 0]e−Ru ,

ψc(u) = EQ[eRXτ ;Xτ = 0]e−Ru = Q[Xτ = 0]e−Ru .

In order to obtain Cramér-Lundberg approximations we only have to show that

fd(u) = EQ[eRXτ ;Xτ < 0] and fc(u) = Q[Xτ = 0] converge to non-zero limits as

u→∞.

Let T1, T2, . . . be the claim arrival times. We define τ+ = inf{Ti : i > 0, XTi
<

inf{Xs : 0 ≤ s < Ti}}, the (modified) ladder epoch, Lc = sup{u −Xt : 0 ≤ t < τ+}
and if τ+ <∞ let Ld = u−Xτ+−Lc. Then Lc +Ld is the (modified) ladder-height if

τ+ <∞, Lc is the part of the ladder-height due to the perturbation, Ld the part due

to the jump. Note that Lc is defined also on {τ+ = ∞}, and that Q[τ+ < ∞] = 1.

Denoting by H(x, y) = Q[Lc ≤ x, Ld ≤ y], Hc(x) = Q[Lc ≤ x], Hd(x) = Q[Ld ≤ x]

and H̃(x) = Q[Ld + Lc ≤ x] the ladder-height distributions we obtain the following

renewal equations

fd(u) =

∫ u

0

fd(u− x) dH̃(x) +

∫ u

0

∫ ∞

u−x

eR(u−x−y)H(dx, dy) ,

fc(u) =

∫ u

0

fc(u− x) dH̃(x) + 1−Hc(u) .

That the limits exist is then obtained from the key renewal theorem, see [22] or [41],

and can be expressed as

lim
u→∞

EQ[eRXτ ;Xτ < 0] =
1− EQ[e−RLd ]

REQ[Ld + Lc]
,

lim
u→∞

Q[Xτ = 0] =
EQ[Lc]

EQ[Ld + Lc]
.

In order that the limits will be different from zero we have to assume that EQ[Y ] <

∞. The constants can be obtained from

EQ[f(Lc, Ld)] = EP [f(Lc, Ld)e
R(Lc+Ld); τ+ <∞] .

Note that the explicit distribution of (Lc, Ld) under P is obtained in Section 4.2.

If one goes away from the Cramér-Lundberg model for the unperturbed risk

process the situation becomes harder. The process X is not Markovian anymore.

The trick is to Markovize the process, i.e. to introduce new variables, such that the

extended process becomes Markovian. But then the martingale becomes more com-

plicated. In order that a Cramér-Lundberg approximation exists extra conditions

have to be introduced.

Consider a renewal risk model. This is a model C of the form (1.1) where (Yk) is

an iid sequence of positive random variables independent of N and N is a renewal
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process, see [22] or [41]. Let T1, T2, . . . denote the claim arrival times. For simplicity

we only consider the ordinary case, that is we assume there is a claim at T0 = 0. Let

T = T1 and denote its distribution function by F . The natural way to Markovize

the process would be to consider the process ((Xt,Wt)) where Wt = t − TNt . But

it turns out that this is not convenient. In order to apply the method one would

have to assume that F is (piecewise) absolutely continuous and the martingale to

consider would be very complicated. An alternative is to consider ((Xt, Vt)) with

Vt = TNt+1 − t. Note that the filtration (Ft) is then different from the natural

filtration (FX
t ) of X. In fact, at any time it is known when the next claim will

arrive. Even though this filtration is not observable the method yields the desired

results.

Let R be the strictly positive solution to MY (R)MT (η2R2/2− cR) = 1, provided

such a solution exists. Here MT (r) = E[erT ] is the moment generating function of

T . R is then called the adjustment coefficient. The process

Lt = MY (R) e−(cR−η2R2/2)Vte−R(Xt−u)

is a martingale with mean value one. As before we define the new measure Q

via Q[A] = EP [Lt;A] for A ∈ Ft. Note that Q can be extended to F . Un-

der the measure Q the process X is again a perturbed renewal risk model, with

parameters c̃ = c − η2R, G̃(x) = MT (η2R2/2 − cR)
∫ x

0
eRy dG(y) and F̃ (t) =

MY (R)
∫ t

0
e−(cR−η2R2/2)s dF (s). This implies that, under the measure Q the process

X has negative drift, and therefore Q[τ <∞] = 1.

As in the perturbed Cramér-Lundberg model the ruin probabilities can be ex-

pressed as

ψd(u) = MY (R)EQ[e(cR−η2R2/2)Vτ eRXτ ;Xτ < 0]e−Ru = EQ[eRXτ ;Xτ < 0]e−Ru ,

ψc(u) = MY (R)EQ[e(cR−η2R2/2)Vτ ;Xτ = 0]e−Ru .

As in the Cramér-Lundberg case it follows that

lim
u→∞

ψd(u)e
Ru =

1− EQ[e−RLd ]

REQ[Ld + Lc]
= Cd

and the limit is different from zero if EQ[Y ] <∞. The limit for ψc(u)e
Ru is harder to

obtain. The problem is, that we have to estimate EQ[e(cR−η2R2/2)Vτ ;Xτ = 0], but we

do not know the distribution of Vτ on the set {Xτ = 0}. In order to get around the

problem, we condition on τ , Nτ and {T1, T2, . . . , TNτ} . Then Vτ has conditionally

the same distribution as T − x given T > x with x = τ − TNτ . This yields the

condition

sup
x≥0

EQ[e(cR−η2R2/2)(T−x) | T > x] <∞

or equivalently

inf
x≥0

EP [e−(cR−η2R2/2)(T−x) | T > x] > 0 . (4.1)
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In [IV] the stronger (but easier to verify) condition

sup
x≥0

EP [T − x | T > x] <∞

is used. Under condition (4.1) we find that the limit

lim
u→∞

ψc(u)e
Ru = Cc

exists. Note that in general neither Cc nor Cd can be found in closed form. The

above results are the Cramér-Lundberg approximations.

If we only assume that R exists it is without further assumptions possible to

show that

lim
u→∞

ψ(u)e(R−ε)u = 0 ,

lim
u→∞

ψ(u)e(R+ε)u = ∞ ,

for any ε > 0. The first result is obtained by considering inter-arrival times with

distribution F (n)(x) = P [T ∧ n ≤ x], see [24]. The second result is proved by

considering the ruin time τ̃ = inf{Tk : XTk
< 0}. It readily follows that τ̃ ≥ τ . If

EQ[Y ] <∞ then the approach above shows that

lim
u→∞

P [τ̃ <∞]eRu

exists and is strictly positive. If EQ[Y ] = ∞ the result follows from considering the

model X(n) with claim size distribution G(n)(x) = P [Y ∧n ≤ x]. The corresponding

adjustment coefficients fulfil Rn ↓ R as n→∞. Clearly the ruin probabilities fulfil

ψn(u) ≤ ψ(u). If we now choose n such that Rn −R < ε then it follows that

ψ(u)e(R+ε)u ≥ ψn(u)e(Rn+ε−(Rn−R))u →∞

which extends Theorem 2 of [IV].

Next we consider the perturbed Björk-Grandell model. For simplicity we only

consider the ordinary case. In general, the variable (L1, σ1) considered below could

have a distribution different from (Li, σi), where i ≥ 2. Let ((Li, σi) : i ∈ IIN) be a

sequence of iid vectors with distribution function F (`, s). By (L, σ) = (L1, σ1) we

denote a generic vector. By Si =
∑i

j=1 σj we denote the times where the intensity

changes and the intensity process λ is defined as λt = Li for Si−1 ≤ t < Si. Let Ñ

be a Poisson process with rate one independent of ((Li, σi)). Then the claim arrival

process N is Nt = Ñ(
∫ t

0
λs ds). The claim sizes (Yi : i ∈ IIN) are assumed to be iid

and independent of λ and N . The net profit condition cEP [σ] > EP [Lσ] is assumed

in the sequel. The process C is again defined by (1.1).

The adjustment coefficient R is the strictly positive solution to

EP [exp{(L(MY (R)− 1)− cR + η2R2/2)σ}] = 1 ,
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provided such a solution exists. We now assume that R exists. It can be shown that

R is uniquely determined. Let Vt = Si − t for Si−1 ≤ t < Si be the time remaining

till the next change of the intensity. The process L defined as

Lt = e(λt(MY (R)−1)−cR+η2R2/2)Vte−R(Xt−u)

is then a martingale, with respect to the filtration (Ft) generated by (Xt, λt, Vt).

Again we use L to change the measure and get that X is a perturbed Björk-

Grandell model under the measure Q with negative drift, i.e. Q[τ < ∞] = 1.

The parameters are G̃(x) =
∫ x

0
eRy dG(y)/MY (R), c̃ = c − η2R and F̃ (`, s) =∫ `/MY (R)

0

∫ s

0
e(`(MY (R)−1)−cR+η2R2/2)w F (dl, dw).

The ruin function can now be expressed as

ψ(u) = EQ[e−(λτ (MY (R)−1)−cR+η2R2/2)Vτ eRXτ ]e−Ru

and a Cramér-Lundberg approximation is possible if the limit of the expected value

exists and is non-zero. This problem is solved, via a different technique in [VI]. In

[IV] it is shown that for any ε > 0

lim
u→∞

ψ(u)e(R−ε)u = 0 ,

lim
u→∞

ψ(u)e(R+ε)u = ∞ ,

provided that

inf
v≥0

EP [e(L(MY (R)−1)−cR+η2R2/2)(σ−v) | σ > v] > 0

and EQ[|Xσ1 |] < ∞. In [IV] stronger conditions are used because also finite time

Lundberg inequalities are considered.

As a last model we consider the perturbed Markov modulated risk model. This

model is similar to the Björk-Grandell model, but the process λ is a Markov chain

in continuous time and the size of a claim at time t can depend on λt. More

specifically, let Z be an irreducible Markov chain in continuous time on the state

space {1, 2, . . . ,J } with intensity matrix Λ and stationary distribution π. Let S0 =

0, S1, S2, . . . denote the times where Z changes. Let (λi : i ≤ J ) be non-negative

numbers and (Gi(x) : i ≤ J ) be distribution functions. The claim number process

is then defined by

Nt = Ñ
(∫ t

0

λZs ds
)

where Ñ is a Poisson process with rate 1. Let (Ti) denote the claim times. Let (Ỹi)

be a sequence of iid uniformly on (0, 1) distributed random variables independent of

Z and N . Then the claim sizes are Yi = G←ZTi
(Ỹi) where G←j (y) = inf{x : Gj(x) ≥ y}

is the generalized inversion of the distribution function Gj. We assume the net profit

condition c >
∑J

j=1 πjλj

∫∞
0
y dGj(y). The process C is then defined by (1.1).

We denote by S(r) the diagonal matrix with Sii = λi(Mi(r) − 1) − cr + η2r/2

where Mi(r) =
∫∞

0
ery dGi(r) is the moment generating function of the claim sizes in
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state i and let L(r) = Λ+S(r). Letting θ(r) be the logarithm of the spectral radius

of exp{L(r)} it can be shown that θ(r) is a convex function and that θ′(0) < 0

under the net profit condition. Because L(0) = Λ we have θ(0) = 0. A possible

second solution R to θ(R) = 0 must therefore be positive. Let us assume that such

a solution exists. We call R the adjustment coefficient. By the Frobenius theorem

one is an eigenvalue of exp{L(R)}, it is the only eigenvalue with absolute value one

and the corresponding eigenvector (Ci) is the only eigenvector with strictly positive

entries. We normalize (Ci) such that
∑J

j=1 πjCj = 1. Then the process L defined

via

Lt = CZte
−R(Xt−u)/E[CZ0 ]

is a martingale with mean one. As before, the martingale is used to change the

measure. Under the new measure Q the process X is a perturbed Markov modulated

risk model with negative drift, i.e. Q[τ < ∞] = 1. The parameters are Λ̃ij =

C−1
i CjΛij, i 6= j, λ̃i = λiMi(R), G̃i(x) =

∫ x

0
eRy dGi(y)/Mi(R) and c̃ = c − η2R.

Then we find the expressions

P [τ <∞, Xτ = 0] = EP [CZ0 ]EQ[1/CZτ ]e
−Ru ,

P [τ <∞, Xτ < 0] = EP [CZ0 ]EQ[eRXτ/CZτ ]e
−Ru .

These are the Cramér-Lundberg approximations. Because there are only a finite

number of states it is possible to show that there are constants C(c) and C(d) such

that

lim
u→∞

P [τ <∞, Xτ = 0]eRu = EP [CZ0 ]C
(c)

lim
u→∞

P [τ <∞, Xτ < 0]eRu = EP [CZ0 ]C
(d) .

Here the modified ladder-heights are defined as in the perturbed Cramér-Lundberg

model but with the additional condition that Z has to be in a fixed state i at a

ladder time. The state i is chosen such that λi > 0. In order that the constants

C(c) and C(d) are different from zero one needs that EQ[Yj] <∞ for all j such that

λj 6= 0.

4.2. The distribution of the ladder-heights

We here assume for simplicity that u = 0. Let τ+, Lc and Ld be as in Section 4.1

and Z+ = Lc +X(τ+)− if τ+ <∞. The claim leading to a new ladder-height has then

size U+ = Ld +Z+. We here want to study the distributions of the above quantities

in a quite general model. Note that in [V] the process (−Xt) is considered, so that

the formulae look a little bit different here.

For simplicity let us assume that c = 1. We consider a quite general model.

Assume M = ((Ti, Yi,Mi) : i ∈ ZZ) is an ergodic stationary marked point process

(smpp) with event times · · · < T−1 < T0 ≤ 0 < T1 < T2 < · · · and marks (Yi,Mi) ∈
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(0,∞)×E. Here (Yi) are the claim sizes and E is a Polish space with Borel σ-algebra

E . The Mi are interpreted as environmental marks. The claim number process is

Nt =

{∑∞
i=1 1I0<Ti≤t, if t > 0,

−
∑0

i=−∞ 1It<Ti≤0, if t ≤ 0.

The environmental mark at the ladder time is M+ = MNτ+
if τ+ < ∞. We let

λ = E[N1] be the intensity of the smpp and µ = λ−1E[
∑N1

i=1 Yi] be the mean of a

typical claim. We assume the net profit condition ρ = λµ ≤ c = 1, which implies

that limt→∞Xt = ∞.

We also allow for a more general perturbation process B than Brownian motion.

Here B is a Lévy process with no upward jumps, E[|B1|] <∞ and E[B1] = 0. The

main result of [V] are the following formulae. Let H be the distribution function of

− inft>0(t+ηBt). Let P 0 denote the Palm probability measure, see for instance [41].

Intuitively, this is the conditional measure given T0 = 0. Let Y = Y0 and M = M0.

Then
P [τ+ <∞,M+ ∈ F,Lc > `c, Ld > `d, Z+ > z]

= λ(1−H(`c))

∫ ∞

`d+z

P 0[Y > x,M ∈ F ] dx
(4.2)

for every `d, z ≥ 0 and F ∈ E . Note that the formula also holds in the unperturbed

case η = 0 where P [Lc = 0] = 1. For the event τ+ = ∞ we obtain

P [τ+ = ∞, Lc > `c] = (1− ρ)(1−H(`c)) . (4.3)

Note that (4.2) implies P [τ+ <∞] = ρ.

The proof of (4.2) is based on Campbell’s formula. For any measurable non-

negative measurable functional φ we have

E
[ ∞∑
k=−∞

φ(M, σk)
]

= λE0
[∫ ∞

−∞
φ(M◦Θ−t, t) dt

]
,

where Θ−t is the shift operator, i.e. −t is the new origin. If we choose the functional

φ(M, s) = P [M+ ∈ F,Lc > `c, Ld > `d, Z+ > z, τ+ = s | M]

then

P [M+ ∈ F,Lc > `c, Ld > `d, Z+ > z, τ+ <∞] = E
[ ∞∑
k=−∞

φ(M, σk)
]
.

The latter can then by Campbell’s formula be written as

λ

∫ ∞

0

P 0[At] dt = λE0
[∫ ∞

0

1IAt dt
]

for some events At. After reversion of time S̃t = −St− the event At can be expressed

with the process (S̃t). What we are interested in, is the expected Lebesgue measure
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of the times where the condition At is fulfilled. At is of the form At = (Ât, Ãt)

for some events Ât and Ãt. One of the conditions, Ãt say, is not fulfilled after a

jump until the time, the process reaches the level again at which it was immediately

before the jump. Because all jumps are downwards, the process will reach this level

level exactly. Thus it is possible to cut out all the pieces where condition Ãt is not

fulfilled. Because B has independent and stationary increments, the process left

follows the same law as (t+ ηBt). This procedure has then removed the smpp. The

rest of the proof is just to calculate the remaining expression for the perturbation

process B.

The proof of (4.3) uses similar ideas. The main idea is to consider the time

reversed process (S̃t). Then the pieces just after a jump are cut out. We start with

the removing procedure in −∞. Then it is observed, that τ+ = ∞ if and only if

the origin is not cut out. The remaining process has then again the same law as

(t+ ηBt).

A special case is if (Ct) is a Cramér-Lundberg model. Because a Cramér-Lundberg

model is in its stationary state at any time point, one can define ladder-heights (L
(k)
c )

and (L
(k)
d ), which all have the same distribution and are independent. The number

K of ladder-heights has then a geometric distribution with parameter ρ. The ruin

probability can therefore be expressed as

ψ(u) = 1− (1− ρ)
∞∑

n=0

ρn(G∗nI ∗H∗(n+1))(u)

where GI(x) = µ−1
∫ x

0
G(y) dy denotes the integrated tail distribution. This expres-

sion was obtained in [17] for the perturbation by Brownian motion and in [23] for

perturbation by α-stable Lévy motion. However, in [23] the interpretation in terms

of ladder-heights could not be obtained by the methods used in [23].

As an application of the ladder-height distribution we show that, under some

technical conditions, ruin is more likely in a perturbed Markov modulated risk model

than in the perturbed classical model with the same intensity and the same marginal

claim size distribution. The proof is analogous to the proof of the result for the

unperturbed model in [3].
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5. Cox risk processes

A Cox risk process or doubly stochastic risk process is constructed in the following

way. There is an intensity process λ with state space [0,∞) and an independent

Poisson process Ñ with rate 1. The claim number process N is defined as Nt =

Ñ(
∫ t

0
λs ds). The risk process is of the form (1.1), where the claim sizes may depend

on λ. Usually, it is assumed that λ is ergodic. If λ is not ergodic it will be difficult to

consider Cramér-Lundberg approximations and exponential inequalities will always

be determined by the worst case.

Most Cox risk models considered in the literature have a piecewise constant

intensity. The first model of this type was considered by Ammeter [1]. His model

was generalized by Björk and Grandell [8], see Section 4.1. Another model of this

type is the Markov modulated risk model, see Section 4.1.

In [VI] a result is proved, that for instance is useful for obtaining Cramér-

Lundberg approximations in Cox risk models. In [VII] a Cox risk model with a

piecewise constant intensity is considered, that contains both the Björk-Grandell

model and the Markov modulated risk model as special cases.

5.1. An extension to the renewal theorem

In applied probability one often has to deal with equations of the form

Z(u) =

∫ u

0

Z(u− y)(1− p(u, y)) dB(y) + z(u) (5.1)

where B(y) is a proper distribution function on (0,∞), z(u) is a measurable function

and the perturbation factor p(u, y) converges to zero as u → ∞. We call (5.1) an

ordinary renewal equation if p(u, y) = 0 for all u, y, a perturbed renewal equation

otherwise. A situation, where a perturbed renewal equation occurs is when a sto-

chastic process with imbedded regeneration points is considered. Recall that at a

regeneration point the process is dependent on its past via the present state only,

and follows the same law afterwards. If we are interested in a certain event, this

event may or may not occur in a regeneration epoch. But we are not able to decide

whether the event has occurred or not by considering the process at the regener-

ation points only. In this case p(u, y) is the probability that the event of interest

has occurred in the first regeneration epoch, but cannot be observed from the state

at the regeneration point. The function z(u) is then the part of the equation that

corresponds to occurrence of the event of interest before the regeneration point. Be-

cause (5.1) is quite close to an ordinary renewal equation one would expect, that

under appropriate conditions limu→∞ Z(u) exists.

Let us assume that 0 ≤ p(u, y) ≤ 1. Then one can show that there is a unique

solution to (5.1) that is bounded on bounded intervals. Uniqueness is proved as for

the ordinary renewal theorem. A solution is constructed as the limit of a recursion
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sequence, where the recursion equation has a single fixed point. Moreover, z(u) ≥ 0

implies Z(u) ≥ 0 and the solution is bounded by the solution to the ordinary renewal

equation. If z(u) is continuous then Z(u) is cadlag.

Assume now in addition that p(u, y) is continuous in u and that
∫ u

0
p(u, y) dB(y)

is directly Riemann integrable, see [22] or [41]. If z(u) is directly Riemann integrable

then there exist the limits limu→∞ Z(u) if B(u) is not arithmetic and limn→∞ Z(x+

nγ) ifB(u) is arithmetic with span γ. Arithmetic with span γ means that all points of

increase of the distribution function B(x) are in the set {. . . ,−2γ,−γ, 0, γ, 2γ, . . .}
and γ is the largest number with this property. It is an open question how the

limiting value of Z(u) can be determined in general.

It is enough to prove the result for z(u) ≥ 0. First it is proved for a continuous

function z(u). This follows readily from rearranging the terms in (5.1)

Z(u) =

∫ u

0

Z(u− y) dB(y) +
(
z(u)−

∫ u

0

Z(u− y)p(u, y) dB(y)
)

by noting that z(u)−
∫ u

0
Z(u− y)p(u, y) dB(y) is directly Riemann integrable under

the present assumptions. For arbitrary directly Riemann integrable functions z(u)

one only has to approximate z(u) appropriately.

As an application we consider the Björk-Grandell model. For the definition and

the notation see Section 4.1. Let

φ(ϑ, r) = E[exp{(L(MY (r)− 1)− cr − ϑ)σ}] .

For r ∈ IR let θ(r) be the solution to φ(θ(r), r) = 1 if such a solution exists. We

assume that there is a strictly positive solution R to φ(0, R) = 1 and that there is

an r > R and B > 0 such that φ(0, r) <∞ and almost surely

E[exp{(L(MY (r)− 1)− cr − θ(r))(σ − v)} | σ > v, L] ≥ B .

Let us denote by (Si) the times where the intensity changes. In order to get a

renewal type equation we have to define regeneration points. The natural choice for

the regeneration points are the times (Si). Let therefore τ1 = inf{Si : XSi
< u}

and B(x) = P [τ1 < ∞, u −Xτ1 ≤ x]. Then for p(u, y) = P [τ ≤ τ1 | τ1 < ∞, X0 =

u,Xτ1 = u− y] we find

ψ(u) =

∫ u

0

ψ(u− y)(1− p(u, y)) dB(y) + P [τ ≤ τ1, τ <∞ | X0 = u] .

This is not an equation of type (5.1) because B(x) is not a proper distribution. But∫∞
0
eRy dB(y) = 1, so

ψ(u)eRu =

∫ u

0

ψ(u−y)eR(u−y)(1−p(u, y))eRy dB(y)+P [τ ≤ τ1, τ <∞ | X0 = u]eRu

is a renewal equation of type (5.1). It is now just a technical matter to prove that

the conditions on p(u, y) and z(u, y) are fulfilled. Therefore the limit of ψ(u)eRu

exists.
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5.2. A cox model with a piecewise constant intensity

The obvious way to generalize the Björk-Grandell model, such that the Markov

modulated risk model is contained as a special case is to introduce an environmental

process with an infinite state space. For simplicity we let in [VII] the intensity levels

(Li) take over this rôle. The (discrete time) process ((Li, σi)) is defined via

P [(Li, σi) ∈ A×B | Li−1 = `] =

∫
A

∫
B

dFl(v)f(l; `) dF 0(l)

and

P [(Li, σi) ∈ A×B | (Lk, σk); k < i] = P [(Li, σi) ∈ A×B | Li−1] .

This means in particular that the conditional distribution of Li given Li−1 is abso-

lutely continuous with respect to F 0. We assume that (Li) is ergodic, and assume

that F 0 is its stationary distribution. Let E0 be the support of F 0. For ` ∈ E0 let

X(`) be a Cramér-Lundberg model with initial capital 0, premium rate c, intensity

` and claim size distribution G`(x). The corresponding claim arrival process is N (`).

We let Si = σ1 + · · · + σi be the times where the intensity changes and λt = Li,

Xt = X(Si−1)− +X
(Li)
t −X

(Li)
Si−1

and Nt = N(Si−1)− + N
(Li)
t − N

(Li)
Si−1

if Si−1 ≤ t < Si.

We define X0− = u and N0− = 0. Then X is a Cox risk model with intensity process

λ and claim arrival process N .

Let M`(r) =
∫∞

0
ery dG`(y) be the moment generating function of the claim sizes

if the intensity level is `. We define the following quantity

M(ϑ, r) = ess sup
`∈E0

∫
E0

∫ ∞

0

exp{(l(M`(r)− 1)− ϑ− cr)v} dFl(v)f(l; `)dF 0(l) .

Let L(E0) be the space of all bounded continuous real functions on E0. For (ϑ, r)

such that M`(r) <∞ (F 0-a.s.) and M(ϑ, r) <∞ we define the operator K(ϑ, r) on

L(E0) by

K(ϑ, r)h(`) =

∫
E0

h(l)

∫ ∞

0

exp{(l(Ml(r)− 1)− ϑ− cr)v} dFl(v)f(l; `)dF 0(l) .

We need the following technical assumptions:

• the family (f(`; ·) : ` ∈ E0) is equicontinuous,

• there is no sequence (`n) in E0 such that f(l; `n) converges to 0 for all l ∈ E0.

These assumptions assure that K(ϑ, r) is a continuous compact linear operator.

Jentzsch’s theorem, see [42, p.337], implies that the spectral radius spr(K(ϑ, r)) of

K(ϑ, r) is an eigenvalue and that there is a unique eigenfunction h̃(`;ϑ, r), which

can be chosen such that h̃(`;ϑ, r) > 0, F 0-a.s. Moreover, h̃(·;ϑ, r) is bounded away

from zero on compact subsets of E0 by continuity.

We denote by V (t) the time remaining at time t till the next change of the inten-

sity, i.e. V (t) = Si− t if Si−1 ≤ t < Si. We try to find a martingale f(Xt, λt, V (t), t)
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of the form f(x, `, v, t) = g(`, v) exp{−θt − rx}. Markov process theory gives then

that

−θg(`, v)− crg(`, v)− ∂

∂v
g(`, v) + `(M`(r)− 1)g(`, v) = 0 .

The above equation has the solution

g(`, v) = h(`) exp{−(θ + cr − `(M`(r)− 1))v}

where h(`) is an arbitrary function. Moreover, because of the previsible jumps at Si,

the boundary condition h(`) = K(θ, r)h(`) has to be fulfilled. This means, h(`) is an

eigenfunction and 1 is an eigenvalue. For our purposes we need a positive function.

This means that θ has to be chosen in such a way that spr(K(θ, r)) = 1. One can

show that there is at most one θ(r) such that spr(K(θ(r), r)) = 1. If we write h(`; r)

for the corresponding eigenfunction then

h(λt; r) exp{(λt(Mλt(r)− 1)− θ(r)− cr)Vt − θ(r)t− rXt} (5.2)

is a martingale, provided its initial value is integrable. We normalize the function

h(`; r) such that
∫

E0
h(`; r) dF 0(`) = 1.

The function θ(r) is convex and θ(0) = 0. If the net profit condition∫
E0

(c− `µ`)

∫ ∞

0

v dF`(v) dF
0(`) > 0

is fulfilled, where µ` =
∫∞

0
y dG`(y), we also have θ′(0) < 0. Thus there might be a

strictly positive solution R to θ(R) = 0. Let us assume that R, called the adjustment

coefficient, exists. Because for proving Lundberg’s inequality in the Björk-Grandell

model there is an additional condition needed we also need an additional condition

here. For instance, this condition can be formulated in the following way. Assume

there exists B > 0 such that

inf
v≥0

E[exp{(`(M`(R)− 1)− cr)(σ1 − v)} | σ1 > v,L1 = `] ≥ B

for F 0 almost all `. Then there exits a constant C such that

ψ(u) ≤ Ce−Ru .

Under a similar condition also a lower Lundberg bound

ψ(u) ≥ Ce−Ru

can be obtained.

As a last topic we consider Cramér-Lundberg approximations. In order to apply

the results of [VI] one needs regeneration points, (τi) say. Such times can for instance

be obtained
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• if there exists `0 such that F 0(`0) − F 0(`0−) > 0. Then the times Si with

Li = `0 are regeneration points. If, moreover, `0 > 0 and the corresponding σ

is exponentially distributed, then τi = inf{t > τi−1 : λt = `0, Xt < infs<tXs}
can be chosen. In the latter case an ordinary renewal approach may lead to the

Cramér-Lundberg approximation.

• if there exists a petite set for the Markov process (λt, Vt). For the definition of

petite sets see for instance [39].

In these cases one can verify the conditions given in [VI]. The function 0 ≤ p(u, x) ≤
1 will automatically be continuous in u. A condition like θ(r) exists for some r > R

usually yields the direct Riemann integrability conditions.

Unfortunately, there is an error in [VII]. The approach used to prove Theorem 4

does not work. However, the result holds. A similar proof as in [VI] in the case of

a Björk-Grandell model applies.
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6. Estimation of the adjustment coefficient

Let us consider a process (Xt) of the form (1.1) with some arbitrary claim number

process (Nt) and claims sizes (Yi). We assume that there exist constants C,R > 0

such that ψ(u)eRu → C as u → ∞. We consider here the problem of estimating

R. The adjustment coefficient R can be seen as a measure of risk. Waters [61]

maximizes R considered as a function of the retention level in order to optimize

reinsurance treaties. In fact, many decision problems have to be decided at the

beginning for the present surplus. Short time later the surplus has changed and the

decision may be different. Maximizing the adjustment coefficient can therefore be

seen as finding the asymptotically best decision.

Often, the calculation of R depends strongly on the choice of the model and the

distributions chosen. Thus choosing a model, estimating the distributions and then

calculating the adjustment coefficient may lead to an error. Therefore, procedures

for estimating the coefficient directly from data are called for.

The case of Cox risk model with an ergodic intensity process (λt) is of particular

interest. For simplicity assume that (λt) is a Markov process. Such a model can

be approximated by Cox models with a piecewise constant intensity, as considered

in [VII]. If (λt) is not a Markov process, but can be Markovized, then we should

use an environment process as underlying Markov process, see also the remark in

Section 6 of [VII]. If R exists, one may hope that the adjustment coefficients of

better and better approximations converge to R. We therefore consider models of

the type considered in [VII].

We make the slightly stronger assumption that the martingale (5.2) with r = R

exists and that for each initial value of (λ0, V0) the Cramér-Lundberg approximation

with a non-zero constant holds. Let us consider the following cycles. Define W0 = 0

and the stopping-times

wk+1 = inf{t > Wk : Nt > NWk
}, Wk+1 = inf{t > wk+1 : Xt = X(wk+1)−}.

The times (wk) are just defined in order to start a cycle at a claim arrival time. The

end of the cycle Wk is the first time the process reaches the level again the process

was at just before the jump. The quantity of interest is then

Zk = sup{Xwk
−Xt : wk ≤ t ≤ Wk} .

This procedure is similar to the one considered in [11]. It is then shown that

lim
x→∞

P [Zi > x | Λi = `, Ui = v]eRx = B(`, v) (6.1)

for some constants B(`, v) ∈ (0,∞) where Λk = λwk
and Uk = Vwk

. Thus the

problem looks similar to the problem of estimating the coefficient of regular variation.

Indeed, it would be the same problem if we considered the variables exp{Zk} instead.

The problem is extensively studied in the case where (Zk) is an iid sequence. This
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is not the case in our situation. But intuitively, if Zk is large, then Wk − wk will

be large. The next excursion Zi that will be large will not very strongly depend on

Zk. To prove such a statement seems, however, to be hard. We anyway suggest the

following Hill type estimator for R

R̂ =
( 1

k(n)

k(n)∑
j=1

Zj:n − Zk(n)+1:n

)−1

where Z1:n ≥ Z2:n ≥ · · · ≥ Zn:n is the order statistics of {Z1, . . . , Zn} and k(n) is a

sequence such that log log n = o(k(n)) and k(n) = o(n). It is conjectured, that R̂ is

a consistent estimator for R.

Consider now the special case of a Markov modulated risk model described in

Section 4.1. This is a special case of the model considered in Section 5.2. Here the

intensity levels only take values in a finite set {`1, `2, . . . , `J} and the conditional

distributions of the length of the interval in which the intensity is constant given

the intensity level is `j is exponentially distributed with parameter ηj. This has first

the consequence, that (6.1) can be sharpened to

lim
x→∞

P [Zi > x | Λi = `j]e
Rx = Cj

where

Cj =

∫ ∞

0

B(`j, v)ηje
−ηjv dv .

Because there is only a finite number of limits we obtain uniform convergence. For

a large threshold, x0 say, P [Zi − x0 > x | Zk > x0,Λi = `j]e
Rx ≈ 1. The strong

consistency follows now from comparison with exponentially distributed random

variables.
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7. Compound sums and subexponentiality

Recall that a positive distribution function G is called subexponential if (1.7) is

fulfilled. Working with processes (Xt) where Xτ1 − Xτ2 has a subexponential tail

and τ1 < τ2 are stopping-times, the problem may appear whether

SN =
N∑

i=1

Yi

is subexponential or not, see for instance [6]. Here N is a positive integer valued

random variable and the (Yi) are iid independent of N . Let us denote the class of

subexponential distributions by S. Sometimes, one needs not only G ∈ S but also

GI ∈ S where GI(x) = (
∫∞

0
G(y) dy)−1

∫ x

0
G(y) dy provided G has a finite mean.

Klüppelberg [37] introduced the class S∗ of distribution functions G with finite mean

µG such that

lim
x→∞

∫ x

0

G(x− y)

G(x)
G(y) dy = 2

∫ ∞

0

G(y) dy .

For G ∈ S∗ one can show that both G ∈ S and GI ∈ S. Let now G be the

distribution function of Y and F be the distribution function of SN . We assume

that Y > 0, i.e. G(0) = 0. The distribution of N is denoted by P [N = n] = pn. A

special case of is the mixed Poisson case where

pn =

∫ ∞

0

`n

n!
e−` dH(`)

for some mixing distribution function H with H(x) = 0 for all x < 0.

Let R ⊂ S∗ denote the subclass of distribution functions with a regularly varying

tail, i.e. G(x) = x−αL(x) where L(x) is slowly varying, that is L(tx)/L(x) → 1 as

x→∞ for all t > 0. The following was proved in [59]. Let L(x) be a slowly varying

function. Assume

lim
x→∞

L(x)xαG(x) = β , lim
n→∞

L(n)nαP [N > n] = γ ,

for some β, γ ∈ [0,∞). If E[Y ], E[N ] <∞ (this implies α ≥ 1), or if 0 ≤ α < 1 and

E[N ] <∞ (this implies γ = 0), or if 0 ≤ α < 1 and E[Y ] <∞ (this implies β = 0),

then

lim
x→∞

L(x)xαF (x) = γE[Y ]α + βE[N ] .

If the tail of the distribution of N is thicker than the tail of the distribution of Y

we have in the case N ∈ R

P [SN > x] ∼ γ(x/E[Y ])−α/L(x) ∼ γ(x/E[Y ])−α/L(x/E[Y ]) ∼ P [N > x/E[Y ]] .

This result tells us that SN only can become large if N becomes large, and that,

conditioned on SN > x, the conditional mean of Yi is asymptotically E[Y ]. Indeed,

for a large N the strong law of large number implies SN/N ≈ E[Yi | SN > x] given
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SN > x. In [31] (Proposition 8.4 and Corollary 8.5) it is shown that, for α 6= 1,

L(n)nαP [N > n] → γ as n → ∞ holds if N is mixed Poisson distributed with a

mixing distribution H satisfying H (`)L(`)`α → γ as `→∞, i.e. P [N > n] ∼ H (n).

Some related results can also be found in [40].

It seems natural to expect P [SN > x] ∼ P [N > x/E[Y ]] also in the case N ∈ S
or P [N > n] ∼ H (n) also in the case H ∈ S. But intuition fails, as it often happens

for subexponential distributions. A counterexample is given in [4], see also [IX].

However, it is possible to give conditions under which F ∈ S or F ∈ S∗. But the

explicit behaviour of the tail of F is not obtained.

We denote by Γ the class of distributions G with the property that either G(x0) =

1 for some x0 ∈ (0,∞) or

lim
x→∞

G∗(m+1) (x)

G∗m (x)
≥ a

for some a > 1 and all m ∈ IIN. All light-tailed distribution functions of practical

interest belong to Γ. Note that S ∩ Γ = ∅.
In [IX] conditions are found to assure that F ∈ S or F ∈ S∗. The following

conditions imply that F ∈ S.

• If G ∈ S and E[(1 + ε)N ] <∞, for some ε > 0. In this case F (x) ∼ E[N ]G(x).

• If G ∈ Γ and N ∈ S.

• If N is mixed Poisson distributed with mixing distribution H ∈ S then N ∈ S.

If in addition G ∈ Γ then F ∈ S.

If we consider the class S∗ then the following conditions imply F ∈ S∗.

• If G ∈ S∗ and E[(1 + ε)N ] <∞, for some ε > 0.

• If G ∈ Γ, E[Y − x | Y > x] ≤ B < ∞ for all x such that P [Y > x] > 0, and

N ∈ S∗.

• If N is mixed Poisson distributed with mixing distribution H ∈ S∗ then N ∈ S∗.
If in addition G ∈ Γ and E[Y − x | Y > x] ≤ B < ∞ for all x such that

P [Y > x] > 0, then F ∈ S∗.

The proof of the case G ∈ S is well-known and the case G ∈ S∗ follows readily.

Assume that N ∈ S. The proof in this case is based on the representation

P [SN > x] =
∞∑

n=0

P [N > n]
(
G∗n(x)−G∗(n+1)(x)

)
.

The quantity to consider is therefore

P [
∑N1+N2

i=1 Yi > x]

P [
∑N

i=1 Yi > x]
=

∑∞
n=0 P [N1 +N2 > n]

(
G∗n(x)−G∗(n+1)(x)

)∑∞
n=0 P [N > n] (G∗n(x)−G∗(n+1)(x))
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where N1, N2 are two independent copies of N . In a first step one shows that for

each fixed M ∈ IIN the limit of∑M
n=0 P [N1 +N2 > n]

(
G∗n(x)−G∗(n+1)(x)

)∑∞
n=0 P [N > n] (G∗n(x)−G∗(n+1)(x))

as x → ∞ is zero. Given ε > 0 the estimate P [N1 + N2 > n] < (2 + ε)P [N > n]

holds for n large enough. This leads to limx→∞ F
∗2 (x)/F (x) ≤ 2 + ε. Because ε is

arbitrary one has F ∈ S. The proof in the case N ∈ S∗ is similar.

The proof in the mixed Poisson case with H ∈ S is based on the representation

P [N > n] =

∫ ∞

0

xn

n!
e−xH (x) dx .

In order to show that N ∈ S one observes that

P [N1 +N2 > n]

P [N1 > n]
=

∫∞
0

(xn/n!)e−xH∗2 (x) dx∫∞
0

(xn/n!)e−xH (x) dx
.

One first shows that for any fixed `0 the limit of∫ `0
0

(xn/n!)e−xH∗2 (x) dx∫∞
0

(xn/n!)e−xH (x) dx

as x → ∞ is zero. The estimate H∗2 (x) < (2 + ε)H (x) for any ε > 0 and x large

enough yields then the result. For H ∈ S∗ the proof is similar.

The result is applied to a Björk-Grandell model with subexponential intensity

level distribution and light-tailed claim size distribution. Then the asymptotic be-

haviour of the ruin probabilities can be expressed in terms of the aggregate claims

in an interval with constant intensity.
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8. Optimal reinsurance

For an insurance company it is important to reinsure the claims, see for instance

[56]. A very popular reinsurance form is proportional reinsurance. For this form,

the insurer pays the proportion b of each claim, the reinsurer pays the proportion

1 − b. This is the most natural form of reinsurance. The idea of insurance is that

a number of people share their risks. The strong law of large numbers tells us, if

an insurance company has a lot of customers, then the aggregate claim amount per

customer is (almost) deterministic. In this sense, an insurance contract is something

like a reinsurance contract. The insurance company takes over the claims of a single

customer, but the customer pays a small part of the claims in the portfolio. With

proportional reinsurance, a larger number of customers participate in this game.

An insurance company has the possibility to choose between several retention

levels b offered by a reinsurance company. One therefore would like to choose the

optimal level. Often, a company will be interested to maximize the profit. Højgaard

and Taksar [33], [34] maximized the “expected future surplus” in the sense that

E
[∫ τ

0

Xse
−δs ds

]
became maximal. δ was a strictly positive discounting factor. Because the problem is

difficult to solve for a classical risk process they considered a diffusion approximation

to a risk model, see Section 3.3.

From a theoretical point of view it seems more natural to minimize the ruin

probability. Waters [61] minimized the ruin probability for large values of the initial

capital u in cases where the adjustment coefficient exists. He considered a general

model where (Xk −Xk−1 : k ∈ IIN) was iid distributed. Here k must not necessarily

denote time. He assumed that for each retention level b in a certain set there are

strictly positive constants R(b), C(b) and C (b) such that

C(b)e−R(b)u ≤ ψb(u) ≤ C (b)e−R(b)u

where ψb(u) is the ruin probability under reinsurance with retention level b. The he

showed that there is always a unique b0 maximizing R(b). This means that for each

b 6= b0 we have

lim
u→∞

ψb0(u)

ψb(u)
= 0 .

Two questions arise in this context: What to do if the adjustment coefficient does

not exist — as in the case of large claims — and what happens if the insurance

company can change the retention level periodically?

Instead of minimizing the ruin probability we can maximize the survival proba-

bility δb(u) = 1−ψb(u). We allow in this work any reinsurance strategy (bt), i.e. any

previsible process. The corresponding surplus process is denoted by (Xb
t ) and the

survival probability by δb(u). Our aim is to find

δ(u) = sup
(bt)

δb(u)



38

and, if it exists, an optimal reinsurance strategy.

We assume as in [61] that insurer and reinsurer use expected value principles with

safety loadings η and θ, respectively. That is the premium income of the insurer is

1 + η times the expected outflow and the reinsurance premium is 1 + θ times the

expected outflow of the reinsurer. In order not to have an arbitrage possibility we

have to assume θ ≥ η. Otherwise, the insurer would choose bt = 0 and would have

a profit without any risk. In order not to get the trivial solution ψ0(u) = 0 we have

to assume θ > η.

8.1. The diffusion case

We first consider the case of a diffusion approximation. Then we consider η to be

the drift of the surplus process without reinsurance (bt = 1) and θ to be the drift the

surplus of the reinsurer with maximal reinsurance (bt = 0). If a reinsurance strategy

(bt) is chosen, the corresponding surplus of the insurer becomes

Xb
t = u+

∫ t

0

(bsθ − (θ − η)) ds+ σ

∫ t

0

bs dWs

where σ > 0 denotes the diffusion coefficient in the approximation for the process

without reinsurance. The Hamilton-Jacobi-Bellman equation corresponding to this

problem is

sup
b∈[0,1]

(bθ − (θ − η))δ′(u) +
σ2b2

2
δ′′(u) = 0 . (8.1)

The solution to the above equation is δ(u) = 1− e−κu where

κ =

{
θ2

2σ2(θ−η)
, if η < θ < 2η,

2η
σ2 , if θ ≥ 2η.

This suggests that the optimal strategy is constant over time b∗t = 2(1 − η/θ) ∧ 1.

Using Itô’s formula and the fact that the suggested δ(u) solves (8.1) one can show

that indeed δ(u) solves our problem and (b∗t ) is an optimal strategy.

8.2. The Cramér-Lundberg case

In order to avoid technical difficulties we assume in this section that the claim size

distribution G(x) is continuous.

Let (Ti) be the occurrence times of the claims. Then, using the reinsurance

strategy (bt) in a classical risk model, the surplus process becomes

Xb
t = u+

∫ t

0

(bs(1 + θ)− (θ − η))λµ ds−
Nt∑
i=1

bTi
Yi .

In order that ruin does not occur almost surely we need that the income process

is strictly increasing. Otherwise, the process (Xb
t ) will have a bounded state space
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and therefore there will almost surely be a sequence of claims leading to ruin. Thus

we can restrict to strategies such that bt ∈ (b, 1] for b = (θ − η)/(1 + θ). The

corresponding Hamilton-Jacobi-Bellman equation is

sup
b∈(b,1]

(b(1 + θ)− (θ − η))µδ′(u) +

∫ u/b

0

δ(u− by) dG(y)− δ(u) = 0 . (8.2)

The solution of the above equation is hard. Let us reformulate the problem. If

the function δ(u) we are looking for is indeed a solution to (8.2) then the optimal

strategy will be of the form (b(Xb
t )), where b(u) is the argument maximizing the

left-hand side of (8.2). Because δ(u) is strictly increasing it follows that b(u) 6= b.

We can reformulate (8.2) to

δ′(u) =
δ(u)−

∫ u/b(u)

0
δ(u− b(u)y) dG(y)

(b(u)(1 + θ)− (θ − η))µ
.

Because δb(u) = 1−
∫∞

u
δ′b(x) dy, to maximize δb(u) is the same as to minimize δ′b(u).

We therefore conjecture that δ(u) satisfies

δ′(u) = inf
b∈(b,1]

δ(u)−
∫ u/b

0
δ(u− by) dG(y)

(b(1 + θ)− (θ − η))µ
. (8.3)

The above equation only determines a solution up to a multiplicative constant. The

solution looked for is determined by the boundary condition δ(∞) = limu→∞ δ(u) =

1. In order to solve (8.3) we can therefore fix an initial condition f(0), for example

f(0) = δ1(0) = η/(1 + η).

We discuss two examples. For exponentially distributed claims the optimal strat-

egy seems to have the form b(x) = 1Ix<m + bR1Ix≥m. Here bR is the value of b that

maximizes the adjustment coefficient corresponding to the risk process with con-

stant reinsurance strategy b(x) = b. To prove that the optimal strategy really has

this form is however not trivial. The ruin probability can be reduced considerably.

A comparison with the strategy b(x) = bR shows that the optimal strategy reduces

the ruin probability for small capital x, whereas for large capital x, b(x) = b∗(x) and

b(x) = bR yield almost the same ruin probability.

For large claims the situation is completely different. We consider Pareto dis-

tributed claim sizes. Here the optimal strategy b∗(x) seems to be continuous and

seems to approach a limiting value only very slowly. Also in this situation the

ruin probabilities of the optimal strategy and of the case with no reinsurance differ

considerably. If we choose the strategy b(x) = ba where ba is the value of b that

minimizes the ruin probability for very large x, b(x) = ba leads for not too large

x to a ruin probability that is even larger than for the case of no reinsurance. So

for surpluses of interest, the asymptotically optimal value of b is far from being an

optimal choice.
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process perturbed by α-stable Lévy motion. Research Report No. 394, Dept.
Theor. Statist., Aarhus University.



43

[53] Schmidli, H. (1999). On the distribution of the surplus prior and at ruin.
ASTIN Bull. 29, 227–244.

[54] Schmidli, H. (1999). Compound sums and subexponentiality. Bernoulli 5,
999–1012.

[55] Schmidli, H. (2000). Optimal proportional reinsurance policies in a dynamic
setting. Scand. Actuarial J., to appear.

[56] Schnieper, R. (1990). Insurance premiums, the insurance market and the
need for reinsurance. Schweiz. Verein. Versicherungsmath. Mitt. 90, 129–147.

[57] Segerdahl, C.-O. (1955). When does ruin occur in the collective theory of
risk?. Skand. Aktuar Tidskr., 22–36.

[58] Siegmund, D. (1979). Corrected diffusion approximation in certain random
walk problems. Adv. in Appl. Probab. 11, 701–719.

[59] Stam, A.J. (1973). Regular variation of the tail of a subordinated probability
distribution. Adv. in Appl. Probab. 5, 308–327.

[60] Veraverbeke, N. (1993). Asymptotic estimates for the probability of ruin in
a Poisson model with diffusion. Insurance Math. Econom. 13, 57–62.

[61] Waters, H.R. (1983). Some mathematical aspects of reinsurance insurance.
Insurance Math. Econom. 2, 17–26.



44

Index

∼ . . . . . . . . . . . . . . . . . . 4

A . . . . . . . . . . . . . . . . . 14
absolute ruin . . . . . . . . . . . 5, 15
adjustment coefficient

classical model . . . . . . . . . . 4
perturbed –

– Björk-Grandell model . . . . 22
– classical model . . . . . . . 19
– Cox model . . . . . . . . . 30
– Markov modulated model . . 24
– renewal model . . . . . . . 21

Ammeter model . . . . . . . . . 6, 27
arithmetic . . . . . . . . . . . . . 28

Björk-Grandell model . . . 6, 27, 28, 36
perturbed – . . . . . . . . . . 22

classical diffusion approximation . . . 16
classical risk model . . . . . . . . 3, 38

perturbed – . . . . . . . 7, 19, 26
corrected diffusion approximation . . 6, 17
Cox risk model . . . . . . . . . . . 27
Cramér-Lundberg approximation

classical model . . . . . . . . . . 4
Cox model . . . . . . . . . . . 30
perturbed –

– Björk-Grandell model . . . . 23
– classical model . . . . . . . 20
– Markov modulated model . . 24
– renewal model . . . . . . . 22

Cramér-Lundberg model
see classical risk model

D(A) . . . . . . . . . . . . . . . 14
Dassios-Embrechts model . . . . . . 15
diffusion approximation . . . . 6, 16, 38
directly Riemann integrable . . . . . 28
domain of the generator . . . . . . . 14
doubly stochastic risk model . . . . . 27

G(x) . . . . . . . . . . . . . . . . 4
GI(x) . . . . . . . . . . . . . . 5, 34
G∗n . . . . . . . . . . . . . . . . . 4
G←(y) . . . . . . . . . . . . . . . 23
generalized inversion . . . . . . . . 23
generator . . . . . . . . . . . . . 14
Gerber’s model . . . . . . . . . . . 15
Gumbel distribution . . . . . . . . . 12

Hill’s estimator . . . . . . . . . . 7, 33

inital capital . . . . . . . . . . . . . 3
integrated tail distribution . . . . . . . 5
intensity . . . . . . . . . . . . . . 27

ladder epoch . . . . . . . . . . . . 20
ladder-height . . . . . . . . . . . . 20

– distribution . . . . . . . . 13, 20
large claims . . . . . . . . . . . . . 4
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