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1. Introduction

When actuaries realised that a single catastrophe could ruin the whole insurance

world one started to look for alternative possibilities to transfer catastrophic risk.

Because the daily standard deviation of the trading volume at the US financial

markets is about the size of a worst possible catastrophe the financial world could

easily take over catastrophe risk, see [14]. A first product introduced at the Chicago

Board of Trade in 1992 was the CAT-Future. Models for the ISO index underlying

the CAT future were introduced in [7], [1], [10] and [4]. Because of the way the

product was constructed it never became popular amongst investors.

In 1995, the CAT future was replaced by the PCS option. This new product

meets the criticism against the CAT future. A PCS option works as follows. There

are several PCS indices representing catastrophic losses in different areas. Each
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of the indices measures catastrophic losses occurred by a well-defined catastrophic

event (such as hurricanes, earthquakes etc.) in a predefined region (eastern, western,

California, etc.). If a catastrophe occurs, and is identified as a catastrophe by PCS

(Property Claim Services) — a statistical agent ‘independent’ of the insurance world

— the losses incurred are estimated by PCS. A first estimate is announced within 48

- 72 hours after the occurrence of the catastrophe. Then PCS continues to estimate

and re-estimate the losses. The PCS index is then the accumulated loss estimates

for all identified catastrophes in the region for catastrophes occurred in the period

under consideration, called the occurrence period. A PCS option is a spread on one

of the PCS indices, with a maturity date at least 6 months after the occurrence

period. That there is a development period after the occurrence period gives the

possibility to get a clearer picture on catastrophes occurring late in the occurrence

period. The PCS indices are announced daily.

Models for PCS options were introduced in [13] and [2]. A problem for modelling

is that even for fairly simple models the pricing problem becomes quite complicated.

The simple multiplicative index introduced in the papers mentioned above models

catastrophes to be more severe if the index already is large. The motivation for

the model comes from the possibility to use the Esscher transform for pricing. This

seems reasonable for the price of a share but does not make sense for the PCS index.

One problem is that the severity of a catastrophe occurring at time t depends on the

index at time t. We will in this paper define an index for each single catastrophe and

model this individual index similarly as in [2]. The drawback of this model will be

that it only becomes possible to calculate prices (numerically) in a simple way if the

individual indices can be observed. A survey on securitization and more references

can be found in [3] and [6].

The outline of the paper is as follows. In Section 2 we introduce a model of

the PCS index under the physical measure. The pricing measure is introduced in
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Section 3. In Section 4 we discuss how to approximate the option prices and we give

an example. In Section 5 we extend the model to allow some of the parameters to

be stochastic. The paper ends with a conclusion and the proofs of the lemmata.

2. A model for the PCS index under the physical measure

Let 0 < T1 < T2 be two real numbers. The occurrence period is the interval

(0, T1], and the development period is (T1, T2]. Catastrophes occur according to a

point process at times 0 < τ1 < τ2 < · · · . To each of the catastrophes we model

an individual index {Li
t}. The number of catastrophes in (0, t] is denoted by Nt,

i.e. {Nt = n} = {τn ≤ t < τn+1}. The PCS index at time t is then

Lt =

Nt∧T1∑

i=1

Li
t .

A PCS option is a spread with underlying LT2
, i.e. the payoff of the option is

FT2
= min{max{LT2

− K, 0}, A} = (LT2
− K)+ − (LT2

− K − A)+ ,

where K, A ≥ 0.

We make the following assumptions:

• There is a probability space {Ω,F , IIP} containing all quantities defined below.

The information is contained in a filtration {Ft}, which is right-continuous but

not necessarily complete.

• N is an inhomogeneous Poisson process with rate λ(t), i.e. the process has in-

dependent increments and Nt − Ns is for t ≥ s Poisson distributed with mean
∫ t

s
λ(u) du.

• The individual indices {Li
τi+t : t ≥ 0} are independent and independent of N .

• The processes {Li
τi+t : t ≥ 0} are identically distributed.

3



• Li
t = 0 for t < τi.

• There exists a function σ(s) ≥ 0 on IR+, iid strictly positive variables {Yi} and

independent Brownian motions {W i} such that

Li
τi+t = Yi exp

{∫ t

0

σ(s) dW i
s − 1

2

∫ t

0

σ(s)2 ds
}

. (1)

We assume
∫
∞

0
σ(u)2 du < ∞.

The variable Yi denotes the first estimate of the losses from the i-th catastrophe.

After the first estimate the loss is re-estimated continuously. This is of course an

idealisation. In reality, after a refined estimate within one month after the catas-

trophe the individual index will only be changed about every two months. We can

take this into account by the choice of σ(u). Typically, σ(u) will be large for small

u and small for larger u. The fluctuations from the Brownian motions are mod-

elled exponentially. That is, the index will fluctuate stronger for a larger individual

index. It seems reasonable that the estimation error is relative and not absolute.

Note that {Li
τi+t : t ≥ 0} is a martingale. This should be the case, otherwise PCS’s

estimate would be biased. The Poisson assumption for N is standard in actuarial

mathematics. It has moreover the advantage that the distribution of LT2
becomes

compound Poisson, as will be seen below.

That catastrophes will be independent is also an idealisation and is used here as

a first approximation to reality. For earthquakes this assumption seems reasonable.

With an earthquake usually a series of earthquakes occurs that can be considered as

a single event. Different events will then be so far apart that it is difficult to believe

that they are dependent. On the other hand, frequently used models in earthquake

modelling state that the interoccurrence time is positively correlated to the severity

of an earthquake. However, because most likely at most one earthquake occurs

affecting the index this dependence may be neglected. In practice information from
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earthquake prediction should be reflected in the choice of the parameters of our

model.

The severity of hurricanes depends on climatic variables. A phenomena like El

Niño shows that there is dependence for windstorm losses. On the other side, it

is unlikely that in a period several events hit heavily populated areas. One could

also assume that whether such a phenomenon is present or not is known by climatic

researchers beforehand, and can therefore widely taken into the modelling through

the distribution of Yi and the choice of λ(t).

That W i is independent of Yi seems reasonable. The first estimate should in

some sense reflect the actual loss and the quality of the work of PCS should not

be influenced by how large the actual loss or the first estimate are. Clearly, the

estimation error should be relative and not absolute.

The insurance world will besides the PCS option also have the insurance losses

in their portfolio. In order that the PCS option is of any value for an insurer it has

to reflect the actual losses. We assume that, if PCS would estimate the losses for

a sufficient time the loss index Li would become the actual loss Xi, i.e. Xi = Li
∞

.

Clearly, the losses Xi will have an influence on the price of the security. This fact

will be taken into account when defining the pricing measure in Section 3 below.

For modelling catastrophic losses one typically assumes that the distribution of

Xi is heavy-tailed, see [9]. Because the lognormal distribution is heavy-tailed, this

is automatically fulfilled for our model. Data moreover imply that the distribution

tail of Xi is regularly varying. It is therefore natural to assume that Yi possesses

a regularly varying distribution tail. Note that this does not imply that Xi has a

regularly varying distribution tail, but the asymptotic behaviour is at least similar.

Even if the distribution tail is not regularly varying our model is consistent with

data.
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3. The pricing measure

In the market there exist the following securities. A riskless zero coupon bond with

maturity T2 and with price Bt = e−δ(T2−t) for some δ > 0 (or alternatively a bank

account), insurance contracts to cover the catastrophe risk and the PCS option.

Then there is a pricing measure IIP∗ such that the price of the PCS option becomes

Ft = Bt IIE∗[FT2
| Ft] = Bt IIE

∗[min{max{LT2
− K, 0}, A}} | Ft] .

Alternatively, the option price can be written as

Ft = Bt

∫ K+A

K

(1 − FL,t(y)) dy , (2)

where FL,t(y) = IIP∗[LT2
≤ y | Ft] is the conditional distribution function of LT2

under IIP∗. The actual price is 200Ft because a basic point is worth $200. Because

the insurance losses are part of the same market the aggregate premium of all the

insurance contracts is obtained as

Π = IIE∗[L∞] .

If the insurance premiums are known then the above equation can be seen as a side

condition the Radon-Nikodym derivative dIIP∗/dIIP has to fulfil.

The information at time ∞ is contained in the first estimates Yi and the Brownian

motions W i determining the development of the individual indices. Thus the Radon-

Nikodym derivative dIIP∗/dIIP must be a functional of Yi and W i.

In principle, any price Ft ∈ (0, ABt) would be possible. In contrast to the usual

option pricing theory the index Lt is not traded. That is, arbitrage pricing theory

does not apply. If the insurance market was liquid (i.e. it is possible to sell and buy

parts of the portfolio without any restriction) one could consider the market value

of the insurance contracts Πt = IIE∗[L∞ | Ft] as the price of an asset. If there would

be enough reinsurance contracts (meaning that it is possible to reinsure the whole
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portfolio even though the agent does not hold the whole risk) it would be possible

to duplicate Πt by reinsurance strategies. This market value should be close to

the price of the index IIE∗[LT2
| Ft], i.e. a portfolio of PCS options. These prices

are not the same because LT2
= IIE[L∞ | FT2

], i.e. the physical measure is used for

evaluation. If we assume that the insurance risk can be traded the PCS index could

be approximated by an insurance portfolio. Therefore we use an equivalent measure

for evaluation. An equivalent measure would also appear in a utility approach. Note

that {Lt} is not a martingale under IIP∗, but IIE∗[LT2
| Ft] is.

The measure IIP∗ represents the market’s view of the securities in the market. In

order to determine possible measures IIP∗ we have to define the type of model a risk

neutral representative agent sees. The author believes that under IIP∗ the ‘same type’

of model as under IIP should appear. We therefore look for measures IIP∗ under which

N remains a Poisson process, and W i, N and {Yi} remain mutually independent.

If N would not be a Poisson process it would be possible to obtain information

under IIP∗ on the occurrence of the next catastrophe. This seems to be strange.

If Yi and W i would be dependent after the change of measure the agents would

agree upon that PCS estimates differently for different first estimates. This is only

possible, if the general believe in the market would change because of a catastrophe.

This could for example be the case if new research discovers some until present

unknown influence on catastrophes. Then the parameters of the model have to be

changed. Modelling the stochastic quantities independent under IIP∗ means that we

do not incorporate the parameter risk in our model.

The problem of changing the measure for a compound Poisson process such that

the process remains compound Poisson is investigated in [8]. The Radon-Nikodym

derivative must therefore be of the form

dIIP∗

dIIP
= exp

{NT1∑

k=1

β(Yi, W
i, τi) −

∫ t

0

λ(s)IIE[exp{β(Y, W, s)} − 1] ds
}

,
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where β(Y, W, t) is a functional depending on the first estimate Y , the Brownian

motion W and the occurrence time of the catastrophe. We drop the index if we

speak about a generic varible. In order that the formula makes sense we assume

that IIE[exp{β(Y, W, s)}] < ∞. In order that Yi and W i remain independent the

functional has to be of the form

β(Y, W, t) = β(Y, t) +

∫
∞

0

γ(s, t) dWs .

The dependence on time indicates that the agents do value catastrophes occurring

early and late in the occurrence period differently. For a PCS option, however, the

development period is chosen in such a way that Li
T2−τi

should be close to the real

loss. Therefore in our model we expect
∫
∞

T2−T1
σ(s)2 ds to be small. If the latter

quantity was zero there would be no reason to use time dependence. Hence it is at

least not a large loss of generality to assume that β(Y, W, t) does not depend on t.

We therefore choose

dIIP∗

dIIP
= exp

{( Nt∑

k=1

β(Yi) +

∫
∞

0

γ(s) dW i
s

)
−

∫ t

0

λ(s)IIE[Γ exp{β(Y )} − 1] ds
}

, (3)

where Γ = exp{ 1
2

∫
∞

0
γ(t)2 dt}. In particular, we have to assume that

∫
∞

0
γ(t)2 dt <

∞ and IIE[exp{β(Y )}] < ∞.

We obtain the following law for the process under IIP∗.

Lemma 1. Under the measure IIP∗ the claim number process N is a (inhomoge-

neous) Poisson process with rate λ∗(t) = ΓIIE[exp{β(Y )}]λ(t). The first estimates

Yi are iid with distribution function

dF ∗

Y (y) =
eβ(y) dFY (y)

IIE[exp{β(Y )}] ,

and the process W i becomes an Itô process satisfying

W i
t = W̃ i

t +

∫ t

0

γ(s) dt ,
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where W̃ i are independent standard Brownian motions under IIP∗ independent of

{Yi} and N .

The proof is given in Section 7.

The stochastic integral in (1) can be written as

∫ t

0

σ(s) dW i
s =

∫ t

0

σ(s)γ(s) ds +

∫ t

0

σ(s) dW̃ i
s .

Hence the market adds a drift to the re-estimates. This drift can be seen as the

price for the risk an investor takes over.

4. The option price

The PCS index LT2
can for t < T2 be written as

LT2
=

Nt∧T1∑

k=1

Lk
t exp

{∫ T2−τk

t−τk

σ(s) dW k
s − 1

2

∫ T2−τk

t−τk

σ(s)2 ds
}

+

NT1∑

k=Nt∧T1
+1

Lk
T2

. (4)

In the following discussion we suppose that the present time is t and that Lk
t is

observable for all catastrophes occurred until time t. If t < T1 then the second sum
∑NT1

k=Nt+1 Lk
T2

is compound Poisson distributed. The first sum is a sum of indepen-

dent lognormally distributed random variables. Its distribution can be calculated

numerically if Nt∧T1
is small, i.e. in practice smaller than three. This will usually not

be a problem, because there will typically not be more than three catastrophes in the

occurrence period contributing to the index. For the compound Poisson distribution

there are no closed expressions. Its distribution can theoretically be approximated

by Panjer recursions, see [11] or [12], or by approximations. Convolution of the two

distributions, however, is a numerical problem unless Nt ∈ {0, 1}. We therefore

discuss here approximations only. Another problem with Panjer recursion is, that

the distribution of the summands is an average over τ ∈ (t, T1) of the distribution

of the individual index of a catastrophe occurring at time τ .
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Most approximations to distribution functions are based on moments. Let us

therefore calculate the conditional moments of LT2
under IIP∗ given the information

up to time t. Because the expressions for the sum over claims occurred and claims

occurring in the future are independent it is enough to determine the moments of

the two sums in (4) separately.

The summands in

Nt∧T1∑

k=1

Lk
t exp

{∫ T2−τk

t−τk

σ(s) dW k
s − 1

2

∫ T2−τk

t−τk

σ(s)2 ds
}

are independent. The n-th moment of Lk
t exp{

∫ T2−τk

t−τk
σ(s) dW k

s − 1
2

∫ T2−τk

t−τk
σ(s)2 ds} is

mk
n = (Lk

t )
n exp{1

2
n(n−1)

∫ T2−τk

t−τk
σ(s)2 ds+n

∫ T2−τk

t−τk
σ(s)γ(s) ds}. For the compound

Poisson sum we obtain from the general formula the cumulants

κ0
n =

∫ T1

t

λ∗(s)IIE∗[Y n] exp
{

1
2
n(n − 1)

∫ T2−s

0

σ(u)2 du + n

∫ T2−s

0

σ(u)γ(u) du
}

ds .

Note that the moments are m0
1 = κ0

1, m0
2 = κ0

2 + κ0
1
2
, m0

3 = κ0
3 + 3κ0

1κ
0
2 + κ0

1
3
,

m0
4 = κ0

4 + 4κ0
3κ

0
1 + 3κ0

2
2
+ 6κ0

2κ
0
1
2
+ κ0

1
4
, etc.

The conditional moments of LT2
can now be obtained from

mn =
∑

k0,...,kn
k0+···+kn=n

(
n

k0, · · · , kn

)
m0

k0
· · ·mn

kn
,

where mi
0 = 1 and

(
n

k0,··· ,kn

)
is the multinomial coefficient.

Alternatively, the cumulants κk
n of Lk

t exp{
∫ T2−τk

t−τk
σ(s) dW k

s − 1
2

∫ T2−τk

t−τk
σ(s)2 ds}

could be calculated. The cumulants of the distribution of interest are then just the

sums of the cumulants.

We next describe some possible approximation methods.

The normal approximation The simplest approximation uses a normal distri-

bution with the same mean value and the same variance as LT2
. The option price
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is

Bt

( σ√
2π

(e−(K−m1)2/(2σ2) − e−(K+A−m1)2/(2σ2))

+ (K + A − m1)Φ(−(K + A − m1)/σ) − (K − m1)Φ(−(K − m1)/σ)
)

,

where σ2 = m2 −m2
1 denotes the variance. Because the exact distribution is heavy-

tailed we do not expect the normal approximation to perform well.

The translated gamma approximation The distribution is approximated by

k + Z, where k ∈ IR and Z is Γ(g, a) distributed. The parameters are chosen such

that the first three moments coincide. Then

g =
4(m2 − m2

1)
3

(m3 − 3m2m1 + 2m3
1)

2
, a =

2(m2 − m2
1)

m3 − 3m2m1 + 2m3
1

, k = m1 −
g

a
.

The option price is then approximated by

Bt

(∫ K+A−k

K−k

∫
∞

y

ag

Γ(g)
zg−1e−az dz dy

)
. (5)

Experience shows that this approximation works very well as long as the interval

[K, K + A] is not far out in the tail. The reason is that the skewness is caught well

by the approximation.

The Edgeworth approximation The idea of the Edgeworth approximation is

to consider a variable Z = (LT2
− m1)/

√
m2 − m2

1, and then to approximate its

moment generating function by IIE[erZ] ≈ er2/2(1 + a3r
3/6 + a4r

4/24 + a2
3r

6/72),

where a3 and a4 are the third and fourth cumulant of Z, respectively. Here

a3 =
m3 − 3m2m1 + m3

1

(m2 − m2
1)

3/2
, a4 =

m4 − 4m3m1 + 6m2m
2
1 − 3m4

1

(m2 − m2
1)

2
− 3 .

The corresponding distribution function is

FL,t(y) = Φ(y) − a3

6
Φ(iii)(y) +

a4

24
Φ(iv)(y) +

a2
3

72
Φ(vi)(y) ,
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where Φ(y) is the distribution function of the standard normal distribution and

Φ(n)(y) is its n-th derivative. From this the price can be calculated from (2). The

motivation for the approximation is to make a Taylor approximation to log IIE[erZ ]

around r = 0. Theoretically, such an approximation is not possible because the

radius of convergence is zero. But it turns out that the approximation works well.

The disadvantage is that the fourth moment has to exist. Data, however suggest

that this is (under the physical measure) not the case if t < T1. For t ≥ T1 moments

of all orders exist, and therefore the approximation is applicable.

The corrected log-normal approximation An alternative to the approach

above is to expand log IIE[erLT2 | Ft] − log IIE[erZ̃] into a Taylor series, where Z̃ is

a log-normal distribution with the same mean value and variance as LT2
. The

approach is similar to the Edgeworth approximation, but instead of the normal dis-

tribution the log-normal distribution and its derivatives appear. We do not work

out the details here. Because this approximation has a heavy tail one can expect it

to work well.

A problem with the approximations is that between two and four moments have

to exist. Typically, only the first moment will be finite. In order to get around this

problem one could also approximate Yi by Yi ∧ m(K + A) for some value m. The

value m is chosen such that

IIP∗

[∫ t

0

σ(s) dW̃ i
s +

∫ t

0

(σ(s)γ(s) − 1
2
σ(s)2) ds < − log m

]

becomes small enough for all t ∈ [T2−T1, T2]. By doing so we assure that all moments

exist. The upper bound does not have a large influence because if Yi > m(K + A)

it is very likely that LT2
≥ (K + A). If this is not the case one can at least expect

that LT2
is close to K + A.

Example 1. As an example suppose T1 = T2/2 = 1, λ(t) = 1, IIP[Y > y] = y−5∧1,
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K/A 4/0.25 4.25/0.25 4.5/0.25 4.75/0.25 5/0.25 5.25/0.25 5.75/0.25

MC 8.35 7.41 6.58 5.86 5.20 4.62 4.12

tG 8.16 7.31 6.55 5.88 5.26 4.71 4.23

Table 1: Translated gamma approximations to undiscounted option prices and

Monte Carlo simulation values

and σ(s) = e−s. We choose β(y) = 1
2
log y and γ(s) = 0.06 e−0.01s. Then the expected

value of Lt for t > T1 under the physical measure is 1.25.

We start by calculating the parameters under IIP∗. The density of the claim size

distribution is proportional to

exp{1
2
log(y)}y−61Iy>1 = y−5.51Iy>1 .

Thus IIP∗[Y > y] = y−4.5 ∧ 1 and IIE[exp{β(y)}] = 5/4.5 = 10/9. The parameter Γ

becomes 1.5. Thus λ∗(t) = 5/3. The Brownian motion is then W i
t = W̃ i

t + 6(1 −

e−0.01t).

For the premium Π we obtain

Π =

∫ T1

0

5

3

4.5

3.5
exp

{∫
∞

0

e−u0.06 e−0.01u du
}

ds =
45

21
e6/101 = 2.27401 .

We calculate the price at time zero. The distribution of LT2
is compound Poisson.

The cumulants are then

κ0
n =

22.5

13.5 − 3n

∫ 1

0

exp
{n(n − 1)

4
(1 − e−2(2−s)) +

6n

101
(1 − e−1.01(2−s))

}
ds

=
22.5

13.5 − 3n

∫ 2

1

exp
{n(n − 1)

4
(1 − e−2s) +

6n

101
(1 − e−1.01s)

}
ds

=
22.5

13.5 − 3n
en(101n−77)/404

∫ 2

1

exp
{
−n(n − 1)

4
e−2s − 6n

101
e−1.01s

}
ds .

These expressions have to be calculated numerically. We find κ0
1 = 2.24327, κ0

2 =

5.26574 and κ0
3 = 23.5908. The parameters of the translated gamma approximation
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become g = 4κ0
2
3
/κ0

3
2

= 1.04942, a = 2κ0
2/κ

0
3 = 0.446422 and k = κ0

1 − g/a =

−0.107472.

Table 1 gives prices of the PCS option calculated by Monte Carlo simulations

for different K and A = 0.25 and the price obtained by the translated gamma

approximation. Discounting is not taken into account (i.e. B0 = 1). The value given

in (5) is multiplied by 200, because a basic point is worth 200.

The approximation works quite well. The difference between the approximation

and the Monte-Carlo price is less than 3%. This is because the translated gamma

approximation catches the skewness of the distribution quite well. �

5. Doubly stochastic occurrences

A drawback of the model presented in Section 2 is that phenomena like El Niño

not are taken into account. In this section we show how the model can be changed

in order to model periods with more or more severe catastrophes. The problem is

that we introduce two more random variables. The model therefore becomes quite

easily over-specified, and estimation from data becomes a problem. Of course, a

better fit is obtained, but choosing the correct model may be a problem because of

overparametrisation.

To keep the model simple we choose an intesity of the form Λλ(t), where Λ

is stochastic and λ(t) is a given function. This means that we multiply an aver-

age intensity λ(t) by a constant that is different every period. If in a period the

catastrophe intensity is larger then it is larger all the period.

Let so Λ ∈ (0,∞) and θ ∈ IRd be two random variables. These two variables

may be dependent. We change the assumptions of Section 2 in the following way:

• The variables (Λ, θ) have distribution function H(`, ϑ).

14



• Given (Λ, θ), the occurrence process N is conditionally an inhomogeneous Pois-

son process with rate Λλ(t).

• Given (Λ, θ), the first estimates are conditionally iid with distribution function

Fθ(y).

Through this construction the occurrence times become dependent, the first esti-

mates (and thus the aggregate claims) become dependent, and the number of claims

and their sizes may be dependent.

The chosen model is Baysian. One should therefore try to choose distributions

such that conditioned on the observations the posterior distribution is of the same

type, see [5]. This means that Λ should follow a gamma distribution. For our setup

a nice model is for instance θ follows a gamma distribution and Yi is conditioned on θ

exponentially distributed with parameter θ. Then the unconditional distribution of

Yi is the Pareto law. This approach is well-known in actuarial mathematics, where

it is called ‘credibility’.

The natural extension of the Radon-Nikodym derivative (3) to the present model

is

dIIP∗

dIIP
= exp

{
h(Λ, θ) +

( Nt∑

k=1

β(Yi) +

∫
∞

0

γ(s) dW i
s

)

− Λ

∫ t

0

λ(s)IIE[Γ exp{β(Y )} − 1 | θ] ds
}

(IIE[eh(Λ,θ)])−1 .

Here h(`, ϑ) is a function such that IIE[eh(Λ,θ)] < ∞. Under the measure IIP∗ we have

a process of the same type.

Lemma 2. Under the measure IIP∗ the variables (Λ, θ) have distribution function

dH∗(`, ϑ) =
eh(`,ϑ) dH(`, ϑ)

IIE[eh(Λ,θ)]
.
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Given (Λ, θ) the claim number process N is conditionally a Poisson process with

rate λ∗(t) = ΛΓIIE[exp{β(Y )} | θ]λ(t). The first estimates Yi have conditional dis-

tribution function

dF ∗

Y (y) =
eβ(y) dFθ(y)

IIE[exp{β(Y )} | θ]
,

and the process W i becomes an Itô process satisfying

W i
t = W̃ i

t +

∫ t

0

γ(s) dt ,

where W̃ i are independent standard Brownian motions under IIP∗, independent of

Λ, θ, {Yi} and N .

The proof is given in Section 7.

6. Conclusion

In this paper we proposed a model for the PCS index based on individual indices

for each single catastrophe. Aiming to obtain the same type of model under the

pricing measure IIP∗, we found the Radon-Nikodym derivative and calculated the

parameters of the PCS index under the pricing measure. Calculation of prices can

then be done by approximation or by simulation.

In practice the individual indices are not published. Denote by FL
t the smallest

right continuous filtration which Lt is adapted to. By conditioning on FL
t and by the

independence assumptions made in the model the value Lk
t has then to be replaced

by IIE[Lk
t | FL

t ]. Note that the PCS index only is announced daily. This simplyfies

the problem. We can write Lk
t = Lk

τk
Zk

1 · · ·Zk
(t−τk)/∆, where ∆ is one day measured

in the used time unit. One has therefore only a finite number of random variables to

condition upon. It should also be noted that typically the number of catastrophes

covered by the index is small.

The same result may be applied to price some sorts of catastrophe bonds with

triggering events based on the PCS index. Suppose the catastrophe bond promises

16



to pay back one unit if the PCS index does not exceed K, and the payoff is linearly

reduced thereafter until the PCS index reaches K + A. Then the payoff is

max{min{1 − (LT2
− K)/A, 1}, 0} = 1 − min{max{LT2

− K, 0}, A}/A .

The price can therefore easily be obtained from the discounting factor Bt and the

price of a PCS option with strike price K and cap A.

This paper does not address the problem of statistical inference. Before applying

the theory the quantities involved have to be estimated. The parameters of the

physical model are not a big problem because one has the PCS indices following

the law IIP since 1995. The parameters of the Radon-Nykodym derivative have to

be estimated from the PCS index and the actually observed prices. This may be

the main problem in practice. On one hand it is possible that market prices are

misspecified, and therefore are observed with errors. On the other hand the product

is not intensively traded. One therefore may have missing data.

7. Proofs of the results

Proof of Lemma 1. Let n ∈ IIN and Σ be a Borel set of (τ1, . . . , τn). Let Bi

be real Borel sets and Ai be Borel sets of C[0,∞)(IR), the space of continuous real
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functions endowed with the usual metric. Then

IIP∗[NT1
= n, (τ1, . . . , τn) ∈ Σ, Yi ∈ Bi, W

i ∈ Ai]

= IIE
[dIIP∗

dIIP
; NT1

= n, (τ1, . . . , τn) ∈ Σ, Yi ∈ Bi, W
i ∈ Ai

]

= IIE
[
exp

{( n∑

i=1

β(Yi) +

∫
∞

0

γ(s) dW i
s

)}
;

NT1
= n, (τ1, . . . , τn) ∈ Σ, Yi ∈ Bi, W

i ∈ Ai

]

× exp
{
−

∫ T1

0

λ(s)IIE[Γ exp{β(Y )} − 1] ds
}

=
(ΓIIE[exp{β(Y )}]

∫ T1

0
λ(s) ds)n

n!
exp

{
−ΓIIE[exp{β(Y )}]

∫ T1

0

λ(s) ds
}

× IIP[(τ1, . . . , τn) ∈ Σ | NT1
= n]

×
n∏

i=1

IIE[exp{β(Yi)}; Yi ∈ Bi]

IIE[exp{β(Yi)}]
IIE[exp{

∫
∞

0
γ(s) dW i

s}; W i ∈ Ai]

Γ
.

This shows that N , {Yi} and {W i} remain independent. It also shows that NT1

follows a Poisson distribution with parameter
∫ T1

0
λ∗(t) dt, and that Yi follows dis-

tribution F ∗

Y (y). Conditioned on NT1
= n, the occurrence points have the same

distribution as the order statistics of n iid variables τ̃i with density

λ(t)
∫ T1

0
λ(s) ds

=
λ∗(t)

∫ T1

0
λ∗(s) ds

,

see also [12, Thm. 12.2.1]. Thus N is an inhomogeneous Poisson process with rate

λ∗(t). The law of W i follows from the Girsanov theorem. �

Proof of Lemma 2. We use the same notation as in the proof of Lemma 1. Let

L and T be Borel sets. Calculation of

IIE
[dIIP∗

dIIP
; NT1

= n, (τ1, . . . , τn) ∈ Σ, Yi ∈ Bi, W
i ∈ Ai

∣∣∣ Λ, θ
]
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yields as in the proof of Lemma 1

(ΛΓIIE[exp{β(Y )} | θ]
∫ T1

0
λ(s) ds)n

n!
exp

{
−ΛΓIIE[exp{β(Y )} | θ]

∫ T1

0

λ(s) ds
}

× IIP[(τ1, . . . , τn) ∈ Σ | NT1
= n]

×
n∏

i=1

IIE[exp{β(Yi)}; Yi ∈ Bi | θ]

IIE[exp{β(Yi)} | θ]

IIE[exp{
∫
∞

0
γ(s) dW i

s}; W i ∈ Ai]

Γ

× eh(Λ,θ)

IIE[eh(Λ,θ)]
.

The assertion follows now readily from

IIP∗[Λ ∈ L, θ ∈ T , NT1
= n, (τ1, . . . , τn) ∈ Σ, Yi ∈ Bi, W

i ∈ Ai]

= IIE
[
IIE

[dIIP∗

dIIP
; NT1

= n, (τ1, . . . , τn) ∈ Σ, Yi ∈ Bi, W
i ∈ Ai

∣∣∣ Λ, θ
]
; Λ ∈ L, θ ∈ T

]
.

�
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