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Abstract

Let F be the distribution function of a positive random variable X and assume

that F̄ (x)−1F̄ (x + y) converges to a strictly positive value as x →∞. It is shown

that the right end point R of the interval where the moment generating function

exists is finite and that the distribution function of erX is regularly varying with

coefficient −R/r. Hence Hill’s estimator is proposed for estimation of R.
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1. Introduction

Recently Embrechts and Schmidli (1994) considered an insurance risk model (Rt :

t ≥ 0) where interest and borrowing is present. In this model, ruin occurs if the

paying for interest for borrowed money becomes larger than the premium income.
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They derived a Lundberg type inequality for the probability of ultimate ruin;

lim
u→∞

P [τ <∞ | R0 = u]eru =

{
0 if r < R

∞ if r > R

where τ denotes the epoch of ruin and

R := sup{r ∈ IR :

∫ ∞

0

erx dF (x) <∞}

is the abscissa of convergence of the moment generating function of the claim size

distribution F . Hence it would be interesting to estimate R.

In the classical Sparre Andersen model (1957) the Lundberg coefficient can be

estimated via order statistics, see for instance Csörgőand Steinebach (1991) or Em-

brechts and Mikosch (1991) and references therein. The rate of convergence of the

estimator to the true value is typically 1/ log n, where n denotes the sample size.

It will turn out that for estimating the abscissa of convergence order statistics also

play an important role and we will also get a 1/ log n rate of convergence.

Another area where one wants to estimate the abscissa of convergence is in

connection with empirical Laplace transforms (see Csörgőand Teugels (1990)). This

was the motivation of Hall et al. (1992) for considering the problem. They showed

that on a certain set of distribution functions the best possible rate of convergence

is 1/ log n for any estimator.

A third application are stochastic approximation procedures involving Laplace-

Stieltjes transforms. An interval to which the procedure is restricted is needed. This

interval should lie in the domain where the Laplace-Stieltjes transform is defined.

See for instance Herkenrath (1986).

In the present paper we restrict attention to the class of distribution functions F

such that F̄ (log x) is regularly varying, where F̄ := 1−F denotes the tail probability.

It will turn out that the set of distribution functions considered in Hall et al. (1992)

is contained in this class. We will show that the problem of estimating the abscissa of
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convergence is equivalent to the problem of estimating the corresponding exponent

of regular variation.

In the sequel we consider a sequence (Xi : i ∈ IIN) of iid. random variables with

distribution function F . For any n ∈ IIN we denote by X1:n ≤ X2:n ≤ . . . ≤ Xn:n the

order statistics of the first n elements.

2. Main result

Theorem 1. Let X be a positive random variable with distribution function F .

Denote by R := sup{r ∈ IR : E[erX ] < ∞} the abscissa of convergence of the

moment generating function. Then the following conditions are equivalent:

i) lim
x→∞

F̄ (x+ yi)

F̄ (x)
∈ (0,∞) for at least two numbers y1, y2 6= 0 such that y1/y2 /∈ Q.

ii) R <∞ and lim
x→∞

F̄ (x+ y)

F̄ (x)
= e−Ry for all y ∈ IR.

iii) The tail of the distribution function of erX is regularly varying for some r > 0.

iv) R <∞ and the tail of the distribution function of erX is regularly varying with

index −R/r for all r > 0.

If R 6= 0 then each of the following two conditions is equivalent to i) – iv):

v) E[X − x | X > x] converges to ρ−1 for some ρ > 0.

vi) R <∞ and E[X − x | X > x] converges to R−1.
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Remarks.

i) Consider the case

lim
x→∞

F̄ (x+ y0)

F̄ (x)
= 1

for some y0 6= 0. We can assume that y0 > 0. For any y ∈ [−y0, y0]

1 = lim
x→∞

F̄ (x+ y)

F̄ (x+ y + y0)
≥ lim

x→∞

F̄ (x+ y)

F̄ (x)
≥ lim

x→∞

F̄ (x+ y0)

F̄ (x)
= 1

hence condition i) of the above theorem is fulfilled. Hence by ii) E[erX ] = ∞ for

all r > 0.

ii) Note that the mean residual life condition v) usually is used to decide whether

F belongs to a heavy-tailed distribution function or not. Hence v) is a natural

condition in the case 0 < R <∞.

iii) Condition (4) of Hall et al. (1992) is stronger than vi). Hence the class F of

functions considered in Hall et al. (1992) is contained in the class of distribution

functions fulfilling one of the equivalent conditions of Theorem 1. �

In order to prove the Theorem we need the following well-known

Lemma 1. Let G be a distribution function with G(0) = 0 such that Ḡ is

regularly varying with index −ρ for some % ≥ 0.

i) If % > 1 then
∫∞

0
Ḡ(x) dx <∞.

ii) If % < 1 then
∫∞

0
Ḡ(x) dx = ∞.
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Proof. i) Let % > 1. By Bingham et al. (1987, p.23) there exists a non-increasing

function ψ such that Ḡ(x) ∼ x−%x(%−1)/2ψ(x). Hence there exists a constant C such

that for x ≥ 1 Ḡ(x) ≤ Cx−(1+%)/2 from which the assertion follows.

ii) We prove the converse statement. Let
∫∞

0
Ḡ(x) dx < ∞ and denote by Ĝ(s) :=∫∞

0
e−sx dG(x) the Laplace-Stieltjes-transform of G. By L’Hospital’s rule we get

lim
s↓0

1− Ĝ(sλ)

1− Ĝ(s)
= λ lim

s↓0

Ĝ′(sλ)

Ĝ′(s)
= λ .

Hence it follows from Bingham et al. (1987, p.334) that % ≥ 1. 2

Proof of Theorem 1. Let r > 0 and denote by Gr(x) := F (r−1 log x) the distri-

bution function of erX . Set λi := eyi .

ii) ⇒ i) and iv) ⇒ iii) are trivial.

i) ⇒ iv) The limits

lim
x→∞

Ḡ1(λix)

Ḡ1(x)
= lim

x→∞

F̄ (log x+ yi)

F̄ (log x)

exist in (0,∞) for i ∈ {1, 2}. By Bingham et al. (1987, p.18) there exist a constant

% ∈ [0,∞) such that

lim
x→∞

Ḡ1(λx)

Ḡ1(x)
= λ−%

for all λ ∈ IR. Note that for r > 0

lim
x→∞

Ḡr(λx)

Ḡr(x)
= lim

x→∞

Ḡ1(λ
1/rx1/r)

Ḡ1(x1/r)
= λ−%/r .

If 0 < r < R then by Lemma 1 %/r ≥ 1 and hence R ≤ %. If R < r then again by

Lemma 1 %/r ≤ 1 and hence R ≥ %. Therefore R = % <∞.

iii) ⇒ ii) Let r be fixed. Denote by −%/r the coefficient of regular variation of the

tail of the distribution function of erX . Then

lim
x→∞

F̄ (x+ y)

F̄ (x)
= lim

x→∞

Ḡr(e
rxery)

Ḡr(erx)
= (ery)−%/r = e−%y .

Hence i) is fulfilled and it follows from iv) that % = R.

Assume now R 6= 0.
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vi) ⇒ v) is trivial.

v) ⇒ iii) Note that

lim
x→∞

∫∞
x
Ḡρ(z) dz/z

Ḡρ(x)
= ρ lim

x→∞
E[X − ρ−1 log x | X > ρ−1 log x] = 1 .

It follows from Karamata’s Theorem (Bingham et al. (1987, p.30))that Ḡρ(x) is

regularly varying with index -1.

iv) ⇒ vi) follows from Karamata’s Theorem (Bingham et al. (1987, p.28)) and

E[X −R−1 log x | X > R−1 log x] = R−1

∫∞
x
ḠR(z) dz/z

ḠR(x)
.

2

By Theorem 1 the problem of estimating the abscissa of convergence of the

moment generating function is translated to the problem of estimation the coefficient

of regular variation for the distribution function of eX . This problem is discussed a

lot in the literature. A convenient estimator for R−1 is the Hill estimator (1975)

ĉn :=
1

kn

kn∑
i=1

Xn−i+1:n −Xn−kn:n ,

where (kn) is a sequence of natural numbers. As a consequence we get the following

Corollary which is proved for the Hill estimator in Deheuvels et al. (1988).

Corollary 1. Let (Xi : i ∈ IIN) be an iid. sequence of positive random variables

with distribution function F such that R > 0. Assume that the equivalent conditions

of Theorem 1 are fulfilled and that kn → ∞ and n−1kn → 0 as n → ∞. Then,

whenever kn/ log log n→ λ ∈ [0,∞] as n→∞,

lim
n→∞

±ĉn = ±R−1(1 + α±λ ) a.s.

where α±∞ = 0, α−0 = −1, α+
0 = ∞ and −1 < α−λ < 0 < α+

λ are the roots of the

equation

α− log(1 + α) = λ−1

if λ ∈ (0,∞). 2
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Hence ĉn is strongly consistent if and only if lim
n→∞

kn/ log log n = ∞ and lim
n→∞

kn/n =

0.

3. The case R = ∞

It may be possible that there exists a y0 > 0 such that

lim
x→∞

F̄ (x+ y)

F̄ (x)
= 0(1)

for all y ≥ y0. Note that it is enough to assume that (1) holds for y = y0. Because

F̄ tends to 0 very quickly one expects that R = ∞. That this holds is shown by the

following

Lemma 2. Let X be a random variable with distribution function F . Assume

that there exist a y > 0 such that (1) holds. Then R = ∞.

Proof. Let n ∈ IIN be arbitrary and set λ = ey. Assume that

lim
x→∞

xn+2F̄ (log x) = ∞ .

We want to show that this cannot hold. Define for i ∈ IIN the increasing sequence

xi := inf{x > 0 : xn+2F̄ (log x) ≥ i}. Because F̄ is a non-increasing function

xn+2
i F̄ (log xi) = i. Then

1 =
1

i
xn+2

i F̄ (log xi) =
1

i

(xi

λ

)n+2

F̄ (log(xi/λ)) λn+2 F̄ (log xi)

F̄ (log xi − y)

< λn+2 F̄ ((log xi − y) + y)

F̄ (log xi − y)
.

But the right-hand side converges to 0 as i → ∞ which is a contradiction. Hence

there exists a constant K such that xn+2F̄ (log x) ≤ K and xnF̄ (log x) is integrable

over the interval (0,∞). Hence E[e(n+1)X ] <∞ which proves the assertion. 2

In order to prove the next Theorem we need the following
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Lemma 3. Let (Xi : i ∈ IIN) be a sequence of iid. positive random variables with

distribution function F . Let (kn : n ∈ IIN) be a sequence of natural numbers such

that kn/n→ 0 as n→∞. Then

i) if x0 := sup{x ≥ 0 : F (x) < 1} <∞ then

lim
n→∞

Xn−kn:n = x0 a.s.,

ii) if F (x) < 1 for all x ∈ IR then

lim
n→∞

Xn−kn:n = ∞ a.s..

Proof. Choose ` ∈ IR such that 0 < F (`) < 1. Note that the case Xi = x0 a.s. is

trivial. Because kn/n→ 0 there exists a n0 ∈ IIN such that (1+n−1)F (`) ≤ 1−n−1kn

and hence(
n

i

)
F̄ (`)iF (`)n−i ≤

(
n

i+ 1

)
F̄ (`)i+1F (`)n−i−1 ≤

(
n

kn

)
F̄ (`)knF (`)n−kn

for all 1 ≤ i < kn if n ≥ n0. Now∑
n≥n0

P [Xn−kn:n ≤ `] =
∑
n≥n0

kn∑
i=0

(
n

i

)
F̄ (`)iF (`)n−i

≤
∑
n≥n0

(kn + 1)

(
n

kn

)
F̄ (`)knF (`)n−kn .

Note that by Stirling’s formula there exist a constant K such that(
n

kn

)
≤ K

nn+ 1
2 e−n

k
kn+ 1

2
n e−kn(n− kn)n−kn+ 1

2 e−(n−kn)

= Kn−
1
2

(
kn

n

)−(kn+ 1
2
) (

1− kn

n

)−(n−kn+ 1
2
)

.

Because

lim
n→∞

(
(n+ 1)

(
n

kn

)
F̄ (`)knF (`)n−kn

)1/n

= F (`)

it follows that
∞∑

n=1

P [Xn−kn:n ≤ `] <∞ .

By the Borel-Cantelli Lemma lim
n→∞

Xn−kn:n ≥ ` a.s.. 2
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The question arises what is happening with the estimator ĉn if R = ∞. We hope

that it will converge to 0 as n→∞. That this holds is shown in the following

Theorem 2. Let (Xk) be a sequence of iid. random variables with distribution

function F such that (1) holds for all y > 0 or such that F (x0) = 1 for some x0 > 0.

Then

lim
n→∞

ĉn = 0 a.s..

Remark. In i) of Theorem 1 it was enough to assume that a non-zero limit

exists for two numbers yi. If (1) holds on [y0,∞) for a number y0 > 0 we cannot

conclude that it holds for all y ∈ IR+. Hence we have to assume that (1) holds for

all y > 0. �

Proof. The case F (x0) = 1 follows immediately from Lemma 3. Hence we can

assume that F (x) < 1 for all x > 0. Let β > 0 be an arbitrary constant. It follows

from Bingham et al. (1987) (Proposition 2.2.4 (iv) and (2.4.8)) that

lim
x→∞

sup
y≥0

eβyF̄ (x+ y)

F̄ (x)
= 1 .

Thus

lim
x→∞

∞∫
0

F̄ (x+ y)

F̄ (x)
dy ≤

∞∫
0

e−βy dy = β−1 .

Because β was arbitrary we can conclude that

lim
x→∞

∞∫
0

F̄ (x+ y)

F̄ (x)
dy = 0.

Analogously we can see that
∫∞

0
yF̄ (x+ y)/F̄ (x) dy is bounded uniformly in x.

We now condition on Xn−kn:n. Let (Yi : 1 ≤ i ≤ kn) be a sequence of iid.

random variables with distribution function 1 − F̄ (· + Xn−kn:n)/F̄ (Xn−kn:n). Then
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(Y1:kn , . . . , Ykn:kn) and (Xn−kn+1:n−Xn−kn:n, . . . , Xn:n−Xn−kn:n) have the same con-

ditional distribution given Xn−kn:n. Hence

E[ĉn | Xn−kn:n] = E

[
1

kn

kn∑
i=1

Yi

∣∣∣∣∣ Xn−kn:n

]
=

∞∫
0

F̄ (Xn−kn:n + y)

F̄ (Xn−kn:n)
dy

which converges to 0 a.s. as n→∞ by Lemma 3. Furthermore

E[(ĉn)2 | Xn−kn:n] ≤ E[(Yi)
2 | Xn−kn:n] =

∞∫
0

2yF̄ (Xn−kn:n + y)

F̄ (Xn−kn:n)
dy

and thus E[(ĉn)2] is bounded uniformly in n. Therefore ĉn is uniformly integrable

and

E[ lim
n→∞

ĉn] = lim
n→∞

E[ĉn] = E[ lim
n→∞

E[ĉn | Xn−kn:n]] = 0 .

Because ĉn ≥ 0 the assertion follows. 2

4. Final remarks

In order to estimate the abscissa of convergence R of the moment generating function

a lot of data are needed. The relation to the problem of estimating the coefficient

of regular variation shows that an estimator converges only slowly to the true value

if the sample size tends to infinity.

Discussions of the properties of estimators for R can be found in the literature.

For Hill’s estimator see for instance Hill (1975), Haeusler and Teugels (1985), Beir-

lant and Teugels (1986), Deheuvels et al. (1988) and references therein. In particular

the problem how to choose the sequence (kn) in an optimal way is discussed. For al-

ternative methods for the estimation see for instance Hall (1982) and Smith (1987).

A simulation study can be found in Keller and Klüppelberg (1991).
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Keller, B. and Klüppelberg, C. (1991) Statistical estimation of Large
Claim Distributions. Schweiz. Verein. Versicherungsmath. Mitt., 203–216.

Smith, R.L. (1987) Estimating Tails of Probability Distributions. Ann. Sta-
tist. 15, 1174–1207.

11


