G. Concave and Convex Functions

In this appendix we let I be an interval, finite or infinite, but not a singleton.

Definition G.1. A function $u : I \to \mathbb{R}$ is called (strictly) concave if for all $x, z \in I$, $x \neq z$, and all $\alpha \in (0, 1)$ one has

$$u((1 - \alpha)x + \alpha z) \geq (>) (1 - \alpha)u(x) + \alpha u(z).$$

u is called (strictly) convex if $-u$ is (strictly) concave.

Because results on concave functions can easily translated for convex functions we will only consider concave functions in the sequel.

Concave functions have nice properties.

Lemma G.2. A concave function $u(y)$ is continuous, differentiable from the left and from the right. The derivative is decreasing, i.e. for $x < y$ we have $u'(x-) \geq u'(x+) \geq u'(y-) \geq u'(y+)$. If $u(y)$ is strictly concave then $u'(x+) > u'(y-)$.

Remark. The theorem implies that $u(y)$ is differentiable almost everywhere. ■

Proof. Let $x < y < z$. Then

$$u(y) = u\left(\frac{z - y}{z - x}x + \frac{y - x}{z - x}z\right) \geq \frac{z - y}{z - x}u(x) + \frac{y - x}{z - x}u(z)$$

or equivalently

$$(z - x)u(y) \geq (z - y)u(x) + (y - x)u(z). \tag{G.1}$$

This implies immediately

$$\frac{u(y) - u(x)}{y - x} \geq \frac{u(z) - u(x)}{z - x} \geq \frac{u(z) - u(y)}{z - y}. \tag{G.2}$$

Thus the function $h \mapsto h^{-1}(u(y) - u(y - h))$ is increasing in h and bounded from below by $(z - y)^{-1}(u(z) - u(y))$. Thus the derivative $u'(y-)$ from the left exists. Analogously, the derivative from the right $u'(y+)$ exists. The assertion in the concave case follows now from (G.2). The strict inequality in the strictly concave case follows analogously. □

Concave functions have also the following property.
Lemma G.3. Let $u(y)$ be a concave function. There exists a function $k : I \rightarrow \mathbb{R}$ such that for any $y, x \in I$

$$u(x) \leq u(y) + k(y)(x - y).$$

Moreover, the function $k(y)$ is decreasing. If $u(y)$ is strictly concave then the above inequality is strict for $x \neq y$ and $k(y)$ is strictly decreasing. Conversely, if a function $k(y)$ exists such that (G.3) is fulfilled, then $u(y)$ is concave, strictly concave if the strict inequality holds for $x \neq y$.

Proof. Left as an exercise. □

Corollary G.4. Let $u(y)$ be a twice differentiable function. Then $u(y)$ is concave if and only if its second derivative is negative. It is strictly concave if and only if its second derivative is strictly negative almost everywhere.

Proof. This follows readily from Theorem G.2 and Lemma G.3. □

The following result is very useful.

Theorem G.5. (Jensen’s inequality) The function $u(y)$ is (strictly) concave if and only if

$$\mathbb{E}[u(Y)] \leq (<) u(\mathbb{E}[Y])$$

for all I-valued integrable random variables Y with $\mathbb{P}[Y \neq \mathbb{E}[Y]] > 0$.

Proof. Assume (G.4) for all random variables Y. Let $\alpha \in (0, 1)$. Let $\mathbb{P}[Y = z] = 1 - \mathbb{P}[Y = x] = \alpha$. Then the (strict) concavity follows. Assume $u(y)$ is strictly concave. Then it follows from Lemma G.3 that

$$u(Y) \leq u(\mathbb{E}[Y]) + k(\mathbb{E}[Y])(Y - \mathbb{E}[Y]).$$

The strict inequality holds if $u(y)$ is strictly concave and $Y \neq \mathbb{E}[Y]$. Taking expected values gives (G.4).

Also the following result is often useful.
Theorem G.6. (Ohlin’s lemma) Let $F_i(y), i = 1, 2$ be two distribution functions defined on I. Assume

$$\int_I y \, dF_1(y) = \int_I y \, dF_2(y) < \infty$$

and that there exists $y_0 \in I$ such that

$$F_1(y) \leq F_2(y), \quad y < y_0,$$
$$F_1(y) \geq F_2(y), \quad y > y_0.$$

Then for any concave function $u(y)$

$$\int_I u(y) \, dF_1(y) \geq \int_I u(y) \, dF_2(y)$$

provided the integrals are well defined. If $u(y)$ is strictly concave and $F_1 \neq F_2$ then the inequality holds strictly.

Proof. Recall the formulae $\int_0^\infty y \, dF_i(y) = \int_0^\infty (1 - F_i(y)) \, dy$ and $\int_{-\infty}^0 y \, dF_i(y) = -\int_{-\infty}^0 F_i(y) \, dy$, which can be proved for example by Fubini’s theorem. Thus it follows that $\int_I (F_2(y) - F_1(y)) \, dy = 0$. We know that $u(y)$ is differentiable almost everywhere and continuous. Thus $u(y) = u(y_0) + \int_{y_0}^y u'(z) \, dz$, where we can define $u'(y)$ as the right derivative. This yields

$$\int_{-\infty}^{y_0} u(y) \, dF_i(y) = u(y_0)F_i(y_0) - \int_{-\infty}^{y_0} \int_{y}^{y_0} u'(z) \, dz \, dF_i(y)$$
$$= u(y_0)F_i(y_0) - \int_{-\infty}^{y_0} F_i(z)u'(z) \, dz.$$

Analogously

$$\int_{y_0}^{\infty} u(y) \, dF_i(y) = u(y_0)(1 - F_i(y_0)) + \int_{y_0}^{\infty} (1 - F_i(z))u'(z) \, dz.$$

Putting the results together we find

$$\int_{-\infty}^{\infty} u(y) \, dF_1(y) - \int_{-\infty}^{\infty} u(y) \, dF_2(y) = \int_{-\infty}^{\infty} (F_2(y) - F_1(y))u'(y) \, dy.$$

If $y < y_0$ then $F_2(y) - F_1(y) \geq 0$ and $u'(y) \geq u'(y_0)$. If $y > y_0$ then $F_2(y) - F_1(y) \leq 0$ and $u'(y) \leq u'(y_0)$. Thus

$$\int_{-\infty}^{\infty} u(y) \, dF_1(y) - \int_{-\infty}^{\infty} u(y) \, dF_2(y) \geq \int_{-\infty}^{\infty} (F_2(y) - F_1(y))u'(y_0) \, dy = 0.$$

The strictly concave case follows analogously. □
Corollary G.7. Let X be a real random variable taking values in some interval I_1, and let $g_i : I_1 \to I_2$, $i = 1, 2$ be increasing functions with values on some interval I_2. Suppose
\[\mathbb{E}[g_1(X)] = \mathbb{E}[g_2(X)] < \infty. \]

Let $u : I_2 \to \mathbb{R}$ be a concave function such that $\mathbb{E}[u(g_i(X))]$ is well-defined. If there exists x_0 such that
\[g_1(x) \geq g_2(x), \quad x < x_0, \quad g_1(x) \leq g_2(x), \quad x > x_0, \]
then
\[\mathbb{E}[u(g_1(X))] \geq \mathbb{E}[u(g_2(X))]. \]

Moreover, if $u(y)$ is strictly concave and $\mathbb{P}[g_1(X) \neq g_2(X)] > 0$ then the inequality is strict.

Proof. Choose $F_i(y) = \mathbb{P}[g_i(X) \leq y]$. Let $y_0 = g_1(x_0)$. If $y < y_0$ then
\[F_1(y) = \mathbb{P}[g_1(X) \leq y] = \mathbb{P}[g_1(X) \leq y, X < x_0] \leq \mathbb{P}[g_2(X) \leq y, X < x_0] \leq F_2(y). \]

If $y > y_0$ then
\[1 - F_1(y) = \mathbb{P}[g_1(X) > y, X > x_0] \leq \mathbb{P}[g_2(X) > y, X > x_0] \leq 1 - F_2(y). \]

The result follows now from Theorem G.6. \qed