Nachklausur 28. September 2009

1. Sei $\{X_n\}$ ein Prozess (in diskreter Zeit) mit unabhängigen und stationären Zuwächsen, der nicht konstant ist. Das heisst, es gibt ein $\varepsilon > 0$, so dass

$$\mathbb{P}[|X_{n+1} - X_n| > \varepsilon \mid \mathcal{F}_n] = \delta > 0 ,$$

wobei $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$. Sei $X_0 = x \geq 0$ deterministisch. Wir definieren die Ruinzeit $\tau = \inf\{n : X_n < 0\}$. Sei $f : \mathbb{R} \to [0, \infty)$ eine wachsende Funktion mit f(x) = 0 für x < 0, die auf $[0, \infty)$ echt wachsend ist. Wir nehmen an, dass $\{f(X_{\tau \wedge n})\}$ ein Martingal ist. Wir bezeichnen mit $f(\infty) = \lim_{x \to \infty} f(x) \in (0, \infty]$.

- a) Zeigen Sie, dass $\lim_{n\to\infty} f(X_{\tau\wedge n})$ existiert.
- b) Zeigen Sie, dass

$$\mathbb{P}[\{\tau < \infty\} \cup \{\lim_{n \to \infty} X_n = \infty, \tau = \infty\}] = 1.$$

- c) Zeigen Sie,
 - i) Ist $f(\infty) = \infty$, so ist $\mathbb{P}[\tau < \infty] = 1$.
 - ii) Ist $f(\infty) < \infty$, so ist $\mathbb{P}[\tau < \infty] = 1 f(x)/f(\infty)$.
- 2. Sei $\{N_t\}$ ein Erneuerungsprozess mit Eintrittszeiten $\{T_k\}$. Wir nehmen an, dass die Verteilung F(t) der Zwischenankunftszeiten nicht arithmetisch ist und endlichen Erwartungswert λ^{-1} hat. Seien $\{E_k\}$ unabhängige exponentialverteilte Zufallsvariablen mit Mittelwert 1, unabhängig von $\{N_t\}$. Bezeichnen wir mit $S(t) = \sum_{k=1}^{\infty} \mathbb{I}_{t-1 < T_k + E_k \le t}$ die Anzahl der Punkte $T_k + E_k$, die im Intervall (t-1, t] liegen. Sei weiter $f(t) = \mathbb{E}[S(t)]$.
 - a) Zeigen Sie, dass f(t) die Erneuerungsgleichung

$$f(t) = z(t) + \int_0^t f(t-s) \, \mathrm{d}F(s)$$

mit

$$z(t) = \int_0^{(t-1)^+} (e^{-(t-1-s)} - e^{-(t-s)}) dF(s) + \int_{(t-1)^+}^t (1 - e^{-(t-s)}) dF(s)$$

erfüllt.

- b) Zeigen Sie, dass $\int_0^t e^{-(t-s)} dF(s)$ direkt Riemann integrierbar ist. **Hinweis:** Teilen Sie das Integral in die Integrationsbereiche (0, t/2] und (t/2, t] auf und schätzen Sie den Integranden so ab, dass der Rest integrierbar bleibt.
- c) Zeigen Sie, dass z(t) direkt Riemann integrierbar ist.
- d) Zeigen Sie, dass f(t) konvergiert und bestimmen Sie den Grenzwert.
- **3.** a) Seien G und H zwei Verteilungen, wobei G stetig ist. Zeigen Sie, dass die Faltung $G*H(x)=\int_{-\infty}^{\infty}G(x-y)\,\mathrm{d}H(y)$ stetig ist.

Sei $S_n = \sum_{k=1}^n X_k$ eine Irrfahrt. Die Verteilung F(x) von X habe eine symmetrische Verteilung, die mit Ausnahme der Punkte $\{-a,a\}$ (a>0) stetig sei. Es gelte $\mathbb{P}[X_k=a]=\mathbb{P}[X_k=-a]=\beta\in(0,\frac{1}{2}]$. Wir interessieren uns für $h(x)=\sum_{n=1}^\infty x^n\mathbb{P}[\tau_1^+=n]$.

b) Zeigen Sie, dass

$$\mathbb{P}[S_{2n} = 0] = \binom{2n}{n} \beta^{2n}$$

und $\mathbb{P}[S_{2n-1} = 0] = 0$ für $n \in \mathbb{N}$.

c) Zeigen Sie, dass

$$h(x) = 1 - \sqrt{\frac{2(1-x)}{1+\sqrt{1-4\beta^2x^2}}}.$$

Hinweis: Es gilt für $|x| \le 1/4$

$$\sum_{k=1}^{\infty} \frac{1}{n} \binom{2n}{n} x^n = -2 \log(\frac{1}{2} + \frac{1}{2} \sqrt{1 - 4x}) .$$