Nachklausur 21. März 2013

1. Wir betrachten den messbaren Raum (\mathbb{R}, \mathcal{F}), wobei \mathcal{F} die Borel- σ -Algebra bezeichnet. Mit \mathcal{P} bezeichnen wir die Menge aller Wahrscheinlichkeitsmasse auf (\mathbb{R}, \mathcal{F}). $\mathcal{C} \subset \mathcal{F}$ ist die Menge aller abgeschlossenenen Teilmengen von \mathbb{R} . Für $F \in \mathcal{F}$ setzen wir

$$F^{\varepsilon} = \{x \in \mathbb{R} : \inf_{y \in F} |x - y| < \varepsilon\}$$

die ε -Umgebung von F. Wir definieren den Abstand zwischen zwei Wahrscheinlichkeitsmassen

$$\rho(\mathbb{P}, \mathbb{P}') = \inf\{\varepsilon > 0 : \mathbb{P}[F] \le \mathbb{P}'[F^{\varepsilon}] + \varepsilon \text{ für alle } F \in \mathcal{C}\}$$
.

- a) Für $\mathbb{P}, \mathbb{P}' \in \mathcal{P}$ und $\alpha, \beta > 0$ sei $\mathbb{P}[F] \leq \mathbb{P}'[F^{\alpha}] + \beta$ für alle $F \in \mathcal{C}$. Zeigen Sie: $\mathbb{P}'[F] \leq \mathbb{P}[F^{\alpha}] + \beta$ für alle $F \in \mathcal{C}$. Hinweis: Verwenden Sie, dass $F_2 = \mathbb{R} \setminus F_1^{\alpha} \in \mathcal{C}$ für $F_1 \in \mathcal{C}$ und zeigen Sie, dass $F_1 \subset \mathbb{R} \setminus F_2^{\alpha}$.
- **b)** Schliessen Sie, dass $\rho(\mathbb{P}, \mathbb{P}') = \rho(\mathbb{P}', \mathbb{P})$.
- c) Zeigen Sie: Aus $\rho(\mathbb{P}, \mathbb{P}') = 0$ folgt, dass $\mathbb{P} = \mathbb{P}'$.
- d) Zeigen Sie die Dreiecksungleichung $\rho(\mathbb{P}, \mathbb{P}'') \leq \rho(\mathbb{P}, \mathbb{P}') + \rho(\mathbb{P}', \mathbb{P}'')$. **Hinweis:** Verwenden Sie, dass $\overline{F^{\varepsilon^{\delta}}} = F^{\varepsilon + \delta}$.
- **2.** Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $\{\mathcal{F}_n\}$ eine Filtration. Sei \mathbb{P}^* ein Wahrscheinlichkeitsmass auf (Ω, \mathcal{F}) , so dass die Masse $\mathbb{P}|_{\mathcal{F}_n}$ und $\mathbb{P}^*|_{\mathcal{F}_n}$ für alle n äquivalente Masse auf \mathcal{F}_n sind. Zeigen Sie:
 - a) Für jedes n gibt es eine Variable $L_n > 0$ mit $\mathbb{E}[L_n] = 1$, so dass $\mathbb{P}^*[A] = \mathbb{E}[L_n; A]$ für alle $A \in \mathcal{F}_n$.
 - **b)** Der Prozess $\{L_n\}$ ist ein Martingal unter \mathbb{P} .
 - c) Gilt $L_{\infty} = \lim_{n \to \infty} L_n = 0$, so sind \mathbb{P} und \mathbb{P}^* singulär auf \mathcal{F} . **Hinweis:** $\{L_{\infty} = 0\} = \bigcap_{m \in \mathbb{I}\mathbb{N}} \bigcup_{k \in \mathbb{I}\mathbb{N}} \bigcap_{n \geq k} \{L_n \leq m^{-1}\}$. Verwenden Sie monotone Konvergenz unter \mathbb{P}^* .

- 3. Sei $\{N_t\}$ ein gewöhnlicher Erneuerungsprozess mit $\lambda > 0$ und $\{\tilde{N}_t\}$ der entsprechende stationäre Erneuerungsprozess mit $F_1(x) = \lambda \int_0^x (1 F(t)) dt$.
 - a) Zeigen Sie, dass

$$\mathbb{E}[\tilde{N}_t] = \lambda \int_0^t U(t-s)(1-F(s)) \, ds = \int_{0-}^t \lambda \int_0^{t-v} (1-F(s)) \, ds \, dU(v) .$$

b) Schliessen Sie, dass $Z(t) = \mathbb{E}[\tilde{N}_t]$ die (gewöhliche) Erneuerungsgleichung

$$Z(t) = \lambda \int_0^t (1 - F(s)) ds + \int_0^t Z(t - s) dF(s)$$

erfüllt.

c) Schliessen Sie, dass $\mathbb{E}[\tilde{N}_t] = \lambda t$.