Nachklausur 23. September 2014

1. a) Zeigen Sie, dass eine Beta-Verteilung $B(\alpha, \beta)$ mit der Dichte

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbb{I}_{(0,1)}(x)$$

Erwartungswert $\alpha/(\alpha+\beta)$ und Varianz $\alpha\beta/(\{\alpha+\beta\}^2\{\alpha+\beta+1\})$ hat. **Hinweis:** $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$.

Sei $p_0 \in (0,1)$ deterministisch, und p_{n+1} sei bedingt auf \mathcal{F}_n B $(10p_n, 10(1-p_n))$ verteilt, wobei $\mathcal{F}_n = \sigma(p_0, \dots, p_n)$.

- **b)** Zeigen Sie, dass $\{p_n\}$ ein Martingal ist.
- c) Konvergiert $\{p_n\}$. Falls ja, bestimmen Sie die Verteilung von p_{∞} .
- d) Bestimmen Sie den Varianz-Prozess von $\{p_n\}$.
- 2. Die Jahresergebnisse $\{Y_k\}$ eines Versicherungsvertrages seien unabhängig und identisch verteilt, mit $\mathbb{P}[Y_k < 0] > 0$ und $\mathbb{E}[Y_k] > 0$. Der Prozess $S_n = S_0 + \sum_{k=1}^n Y_k$ bezeichnet den Überschuss eines Versicherungsportfolios zum Zeitpunkt n, wobei S_0 eine Konstante ist. Wir interessieren uns für die Ruinwahrscheinlichkeit

$$\psi(x) = \mathbb{P}\left[\inf_{n} x + \sum_{k=1}^{n} Y_{k} < 0 \mid S_{0} = x\right].$$

Der Zeitpunkt $\tau = \inf\{n \geq 0 : S_n < 0\}$ (inf $\emptyset = \infty$) heisst Ruinzeitpunkt. Wir verwenden die natürliche Filtration $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$.

- a) Zeigen Sie, dass $\psi(x)$ eine fallende Funktion ist.
- **b)** Zeigen Sie, dass $\{\psi(S_{\tau \wedge n})\}$ ein Martingal ist (bezüglich der natürlichen Filtration), wobei $\psi(x) = 1$ für x < 0 und $\tau \wedge n = \min\{\tau, n\}$.

Wir definieren nun $\tau_a = \inf\{n : S_n \ge a\}$ für ein a > x und $T = \tau \wedge \tau_a$.

- c) Begründen Sie, wieso $\mathbb{P}[T < \infty] = 1$.
- **d)** Zeigen Sie, dass die Wahrscheinlichkeit a zu erreichen, bevor Ruin eintritt, die Ungleichung

$$\mathbb{P}[T = \tau_a \mid S_0 = x] \le \frac{1 - \psi(x)}{1 - \psi(a)}$$

erfüllt.

3. Seien $\{Y_i\}$ exponentialverteilt mit Parameter β , $\{Y'_n\}$ exponentialverteilt mit Parameter β' und $\{Z_i\}$ habe die Verteilung $\mathbb{P}[Z_i=1]=1-\mathbb{P}[Z_i=0]=p\in(0,1)$. Alle Variablen seien unabhängig. Wir nehmen $\beta\neq\beta'$ an. Wir definieren $T_0=0$ und

$$Y_1'$$
 Y_2' Y_3' Y_4 S_1
 0 T_1 T_2 T_3 T_4

 $T_n = T_{n-1} + Z_n Y_n + (1 - Z_n) Y_n'$. Das heisst, der Zuwachs ist Y_n falls $Z_n = 1$ und Y_n' falls $Z_n = 0$. Mit $N_t = \sup\{n \in \mathbb{I}\mathbb{N} : T_n \leq t\}$ bezeichnen wir den Zählprozess. Wir bemerken, dass N kein Erneuerungsprozess ist. Betrachten wir die Zeitpunkte T_n , für die $Z_n = 1$, also $S_0 = 0$ und $S_n = \inf\{T_k > S_{n-1} : Z_k = 1\}$. Die Zeitpunkte $\{S_n\}$ nennt man Regenerationszeitpunkte. Zeigen Sie:

- a) Nehmen wir $Z_1 = 0$ an und sei $S_1 = T_{\ell}$. Dann ist, bedingt auf $\{Z_1 = 0\}$, der Zeitpunkt $T_{\ell-1} = S_1 Y_{\ell}$ das erste Ereignis eines Poisson-Prozesses mit Rate $\beta' p$.
- b) $\{S_n\}$ ist ein Erneuerungsprozess mit Verteilung der Zwischenankuftszeiten

$$\tilde{F}(x) = \mathbb{P}[S_1 \le x] = p(1 - e^{-\beta x}) + (1 - p) \int_0^x (1 - e^{-\beta(x-y)}) \beta' p e^{-\beta' p y} dy$$
.

Wir haben $\mathbb{E}[S_1] = \frac{1-p}{p\beta'} + \frac{1}{\beta}$.

Hinweis: Zur Berechnung von $\mathbb{E}[S_1]$ verwenden Sie nicht $\tilde{F}(x)$.

c) Die Variable Z_{N_t+1} ist 0, falls die momentane Zwischenankunftszeit exponential verteilt mit Parameter β' ist (dies brauchen Sie nicht zu zeigen). Die Funktion $Z(t) = \mathbb{P}[Z_{N_t+1} = 0]$ erfüllt die Erneuerungsgleichung

$$Z(t) = (1 - p)e^{-\beta'pt} + \int_0^t Z(t - y) d\tilde{F}(y)$$
.

d) Es gilt

$$\lim_{t \to \infty} Z(t) = \frac{(1-p)\beta}{p\beta' + (1-p)\beta} .$$