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Overview

My research interests focus on change-point analysis for time series data and
limit theorems under dependence conditions.

This research statement is organized as follows: In Section 1 a brief syn-
opsis of Schmitz and Steinebach (2010) is presented. Section 2 contains an
account of my current research and results from my PhD thesis. Finally, my
future research plans are outlined in Section 3.

1 Monitoring Change-Points

In testing time series data for structural stability two different approaches
can be chosen. There are retrospective procedures which deal with the detec-
tion of structural breaks within an observed data set of fixed size, whereas
sequential procedures check the stability hypothesis each time a new observa-
tion is available. Based on schemes proposed by Chu et al. (1996), Horváth
et al. (2004) derived a sequential testing procedure for detecting a
change in the parameters of a linear regression model, after a stable
training period of size m (say). Their testing procedure is based on the
first excess time of a detector over a boundary function, where the detector
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is a cumulative sum (CUSUM) type statistic of the residuals. The bound-
ary function can be suitably chosen such that the test attains a prescribed
asymptotic size α (say) and asymptotic power one as m tends to infinity.
Since they modeled the errors of the linear regression to be independent and
identically distributed, my motivation is to show that the sequential moni-
toring procedure for the linear model

yi = xT
i βββi + εi = x1,iβ1,i + · · ·+ xp,iβp,i + εi, 1 ≤ i < ∞,

which was discussed in Horváth et al. (2004), continues to hold under
dependence conditions on the error sequence.

We assume the parameter vectors to be constant over a training period
of length m, i.e.

βββi = βββ0, 1 ≤ i ≤ m.

This period is used as a reference for comparisons with future observations.
The monitoring procedure leads to a decision between the “no change”

null hypothesis and the “change at unknown time k∗” alternative, i.e.

H0 : βββm+i = βββ0 for all i ≥ 1 versus

HA : βββm+k∗+i = βββ∗ 6= βββ0 for some 1 ≤ k∗ < ∞ and for all i ≥ 0.

The parameter k∗ is called the change-point which is assumed to be unknown
as well as the values of the parameters βββ0 and βββ∗.

The monitoring procedure is defined via a stopping rule based on the first
excess time τm of a change detector Q̂m(·) over a boundary function gm(·),
i.e.

τm = inf
{

k ≥ 1 : |Q̂m(k)| > gm(k)
}

.

Following Horváth et al. (2004) the detector Q̂m(k) =
∑m+k

i=m+1 ε̂i is a

CUSUM type statistic of the residuals ε̂i = yi − xT
i β̂ββm, where the unknown

regression parameter βββ0 is estimated by the least squares estimator β̂ββm

based only on the observations from the training period. The boundary
function is chosen as gm (·) = σcg∗m (·) , where the parameter σ is a
normalizing constant. A way to obtain a controlled asymptotic level α is
to fix the critical constant c = c(α) such that, under the null hypothesis
H0,

lim
m→∞

P (τm < ∞) = α.
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Since the methods proposed here are essentially nonparametric, the main
goal is to derive a limiting distribution via invariance principles.

For each m, let Sm(k) =
∑m+k

i=m+1 εi. Then, under an appropriate mo-
ment condition, we can find two standard Wiener processes {W0,m(t), t ≥ 0}
and {W1,m(t), t ≥ 0} and positive constants σ and δ, such that we have
a uniform weak invariance principle (IP) over the training period ,i.e.

sup
1≤k≤m

k−1/(2+δ) |S0(k)− σW0,m(k)| = OP (1) (m →∞), (1)

together with a uniform weak IP for the monitoring sequence, i.e.

sup
1≤k<∞

k−1/(2+δ) |Sm(k)− σW1,m(k)| = OP (1) (m →∞). (2)

Furthermore, we assume that there is a positive-definite p × p matrix C
and a constant τ > 0 such that∣∣∣∣∣1` ∑̀

i=1

xix
T
i −C

∣∣∣∣∣ = O
(
`−τ

)
P − a.s. (` →∞). (3)

With the parameters σ and τ introduced above we define the boundary
function

gm(k) = σcg∗m (k) = σcm1/2

(
1 +

k

m

) (
k

m + k

)γ

, (4)

where 0 ≤ γ < min {τ, 1/2} is a certain tuning constant.
Then, under the “no change” null hypothesis H0 and under an asymptotic

independence condition, Schmitz and Steinebach (2010) proved

lim
m→∞

P

 1

σ
sup

1≤k<∞

∣∣∣Q̂m (k)
∣∣∣

g∗m (k)
> c

 = P

(
sup

0<t≤1

|W (t) |
tγ

> c

)
, (5)

where {W (t), t ≥ 0} is a standard Wiener process.

2 Research Summary

In my current research the asymptotic independence condition needed to
prove (5) is resolved via coupling techniques, which are, in particular,
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suitable for strong mixing conditions on the errors. Moreover, according to
Horváth et al. (2007), in the case of γ = 1/2, which is excluded in (4),
an asymptotic extreme value distribution can be derived via proving a
Darling-Erdős type limit theorem for independent errors.

In my PhD thesis (Schmitz, 2011) it is shown that certain extreme value
asymptotics, related to retrospective change-point testing procedures,
can be derived via coupling techniques also under strong mixing conditions.
The novel feature is that the construction is based on standardized Brown-
ian bridge type approximations, assuming only a logarithmic decay of
the mixing coefficients. These limit theorems were originally proposed by
Csörgő and Horváth (1997) for independent random variables. In the fu-
ture, these results and techniques shall be applied to extend a change-point
test of Ling (2007) towards near-epoch dependent (NED) data on an
underlying error sequence which obeys a strong mixing condition.

Moreover, the uniform weak invariance principles in (1) and (2) can be de-
rived from strong invariance principles available for stationary processes. In
Schmitz (2011) another method to prove strong invariance principles for
linear time series with dependent errors is presented. This method is
based on mixingale approximations. Moreover, some new “backward” strong
invariance principles for linear processes with strongly mixing errors are de-
rived. As a consequence, we are able to establish limit theorems for certain
weighted tied-down partial sums within an ARMA-GARCH framework.
In particular, Aue et al. (2006) proposed weight functions to detect struc-
tural breaks with better power. In Schmitz (2011) we consider a comple-
mentary class of weight functions and derive related limit theorems via using
the “backward” approximations. In the future, these results and techniques
shall be extend to the multivariate case.

Although the methods to derive (5) are essentially nonparametric, an ap-
plication of the results in practice requires the estimation of the unknown
parameter σ. In Schmitz and Steinebach (2010) a class of consistent
estimators for the long-run variance σ is established via using a
nonoverlapping-blocks technique. The investigation of further properties of
these estimators in our general setting is an interesting task. This research
direction is of course connected with the study of covariance matrices and
sample correlation matrices in the multivariate case.

Assumption (3) is a condition on the large sample behavior of the (depen-
dent) stochastic regressor sequence and can be derived from Marcinkiewicz-
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Zygmund type laws of large numbers. In a recent talk 1 , I presented
a suitable law of large numbers for NED sequences via improving the rate of
convergence in a result of Ling (2007). Moreover, it was shown that moderate
versions of the threshold in (4) allow for a more general dependence among
the observations including non-stationary martingale differences.

3 Future Research

My future research plans are related to the further investigation of structural
breaks in multivariate time series and nonparametric inference of regres-
sion functions with jumps. In particular, my research will consider methods
of change-point analysis based on invariance principles, empirical processes,
permutation and rank based methods. Therefore, in addition to the as-
ymptotic theory of (nonparametric) mathematical statistics, my focus is on
strong approximation results and empirical process techniques, especially for
(multivariate) dependent data.
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