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Dependence via Recurrence Relations

Generating a sequence of dependent random variables:

Xp = f (Xp—1,80), n=1,2,...,

where x, is the current state and {e,} are independent external
disturbance:

€n=2E&n — Nn,

with random inflow &, > 0 and random demand 7, > 0.



Dependence via Recurrence Relations

Generating a sequence of dependent random variables:

Xp = f (Xp—1,80), n=1,2,...,
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Assuming a percentage loss 0 < ¢ < 1, then the level at successive days
becomes

X”:(l_w)xn—1+§n_77n7 n:1,2,...

Introducing the backshift operator B notation:

¢ (B)x, =&y — 10, where ¢ (B)=1B°+ (1 — ) B!
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Autoregressive Moving Average Models

Given a weight sequence {ax, k € Z} we define a moving average by
Xn = Z akgnflo
k=—cc

The ARMA (p,q) {X,, n€Z} is defined as the stationary solution of
¢ (B) Xn =10 (B) &n,

where ¢(x) and 6(x) are polynomials of degree p and ¢ € {0,1,...}
and the constant term of both polynomials is assumed to be one.

& [existence]l] If Elog(l+]&])<oo and ¢(x) has no
zeros of absolute value one , then there is a stationary
ARMA solution. This solution has a moving average
representation and is ergodic.
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a(A,B)= sup |[P(ANB)—-P(A)P(B).
AcA,BeB



Strong Mixing Condition

Suppose a probability space (2, F,P). Let the measure of dependence
between two o-fields A and B C F be

a(A,B)= sup |[P(ANB)—-P(A)P(B).
AcA,BeB

Let {Xx, k € Z} be a two-sided sequence of random variables on
(Q,A,P). For —oco<J<L<oo define Fr=0(Xs, J< k<L),
i.e. the o-field generated by the family {X,, J < k < L}. For each
n € N define the dependence (mixing) coefficient «a(n) by

a(n)= sup a(F, F53,)-

—oo<J<oo
The sequence {Xi, k € Z} is said to be strongly mixing (a-mixing) if

lim a(n) =0.

n—oo



Example: Strongly Mixing ARMA

If the ARMA solution admits a moving average representation

o

Xn: Z akgn—lﬁ

k=—o0
the resulting weights are of geometric order, i.e.
laj| = O (p/) (j — £o0) forsome 0<p<1,
Additionally, assume that &; has a smooth density f such that

A|f(y+x)—f(y)|xl(dy) < Clx

with C > 0 a constant, then the ARMA solution is a-mixing.



Example: Strongly Mixing ARMA

If the ARMA solution admits a moving average representation

o

Xn: Z akgn—lﬁ

k=—o0
the resulting weights are of geometric order, i.e.
laj| = O (p/) (j — £o0) forsome 0<p<1,
Additionally, assume that &; has a smooth density f such that
J1F 60— 0N < €I«

with C > 0 a constant, then the ARMA solution is a-mixing.

& The standard normal density

¢(x) = exp { —x*/2}

1
V2
satisfies

A|¢(y+x>—¢(y)|xl(dy)s2|x|.
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Dependence: Markov Chains

Time-homogeneous Markov process with state space X and stationary
one-step transition probability function
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Dependence: Markov Chains

Time-homogeneous Markov process with state space X and stationary
one-step transition probability function

T (Xn—1,{Xn}) = 7 (X1, ..y Xn—1, {Xn}) -

Higher step transition probabilities can be generated from the one-step
recursively

7l (x, A) = / ) (x, dy) 7 (y, A).
X



Dependence: Markov Chains

Time-homogeneous Markov process with state space X and stationary
one-step transition probability function

T (Xn—1,{Xn}) = 7 (X1, ..y Xn—1, {Xn}) -

Higher step transition probabilities can be generated from the one-step
recursively
7 () = [ 70 (x, ) (1, A).
X

The measure o is called invariant with respect to the transition
probability =(-,-) if

[ n(a(x.A) = u(4).
X



Example: discrete Ornstein-Uhlenbeck |

Let |p] <1 and consider the autoregressive model
Xn+1 :an+1+£n+1; n:1727"'7

where {&, k € Z} is sequence of independent Gaussian random
variables with mean E£; = 0 and variance E&2 = 0. Then the
transition probability distribution is given by

P (Xni1 S y|Xp = x) = ®g o2 (y — px).



Example: discrete Ornstein-Uhlenbeck |

Let |p] <1 and consider the autoregressive model
Xn+1 :an+1+§n+1; n:1727"'7

where {&, k € Z} is sequence of independent Gaussian random
variables with mean E£; = 0 and variance E&2 = 0. Then the
transition probability distribution is given by

P (Xns1 < y[Xp = x) = ®g o2 (y — px).

& [invariant measure] For every Borel set B € B the
invariant measure u(B) of the discrete Ornstein
Uhlenbeck process is N (O, 02/ (1 — p2)) s i.e. satisfies

u(B) = =" { 2‘2”)}A1(dy).

2mo



Example: discrete Ornstein-Uhlenbeck Il

& [higher step transition] For every Borel set B e B
the n-step transition probability =("(x,B) of the
discrete Ornstein-Uhlenbeck process is N (p”x,a2 22:1 pzk),
i.e.

—1/2 2
n 2 2k (y —r"x) 1
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& [geometric ergodicity] For every x the n-step
transition probability =(")(x,B) converges to the
invariant measure with geometric decay, i.e.

|P(Xn € BIXo =x) — u(B)] < (2+ x)exp {—|Inp?|n} .



Example: discrete Ornstein-Uhlenbeck Il

& [higher step transition] For every Borel set B e B
the n-step transition probability =("(x,B) of the

discrete Ornstein-Uhlenbeck process is N (p”x,(f2 ZZ:1 p2k),
i.e.

~1/2
7" (x,B) <2W022p2k> /Bexp{ 2(}2’20 x)? }/\l(dy)

& [geometric ergodicity] For every x the n-step
transition probability =(")(x,B) converges to the
invariant measure with geometric decay, i.e.

|P(Xn € BIXo =x) — u(B)] < (2+ x)exp {—|Inp?|n} .

& ’’Geometric Ergodicity is equivalent to (-mixing’’.



(-Mixing
Suppose a probability space (2, F,P). Let the measure of dependence
between two o-fields A and B C F be

/ J
FAB) = sup 5 33 IP (AN B) — P (A) P (),

i=1 j=1

where the supremum is taken over all pairs of finite partitions
{A1,...,A;} and {By,...,B;} of Q suchthat A; € A foreach i
and B; € B for each j.



(-Mixing
Suppose a probability space (2, F,P). Let the measure of dependence
between two o-fields A and B C F be

T,
1
B (A, B) = sup 5 D ) IP(AINB) —P(A)P(B)),
i=1 j=1
where the supremum is taken over all pairs of finite partitions
{A1,...,A;} and {By,...,B;} of Q suchthat A; € A foreach i
and B; € B for each j.

Let {Xx, k € Z} be a two-sided sequence of random variables on
(2,A,P). For —oo < J<L<oo define .7:JL =0 (Xk, J < k<L),
i.e. the o-field generated by the family {X,, J < k < L}. For each
n € N define the dependence (mixing) coefficient (3(n) by

B(n)= sup f (fioo,]:j’in) .

—oo<J<o0

The sequence {Xk, k € Z} is said to be absolutely regular (3-mixing) if
lim 5(n) = 0.

n—oo



Change-Point Problem |

Let Xi,...,X, be (dependent) real-valued observation. Test the
no-change null hypothesis

H() . E)<1:E)<2:~~~:E)<,7
against one-time shift alternative

HA:EX1:-~'=EX/<*#EX;(*Jrl:"':EXn

for some 1< k* < n.



Change-Point Problem |

Let Xi,...,X, be (dependent) real-valued observation. Test the
no-change null hypothesis

H() . E)<1:E)<2:~~~:E)<,7
against one-time shift alternative
HA . EX1::EX/<* #EXk*+l:"':EXn

for some 1< k* < n.
& [Csorgd and Horvath (1997)] Reject the no-change null
hypothesis , if

is large for some 1< k<n-—1

k

k n
lei_?ZlX’




Change-Point Problem Il

& [along Csorgd and Horvath (1997)] Let {Xk, k> 1} be a
strictly stationary [J-mixing sequence with EXj=0. If

E|X 20N < 00 for some 0< )< 1/2

and )
B(n) =0 (n_(HE)(H?)) for some €>0
Then

k

k n
ZX,'— E’z:;xi

i=1

>t| =1

N 1/2
nll—>n;oP L<T<ar)w(1 (k(n - k))

for all t>0.



Change-Point Problem Il

& [along Csorgd and Horvath (1997)] Let {Xk, k> 1} be a
strictly stationary [J-mixing sequence with EXj=0. If

E|X 20N < 00 for some 0< )< 1/2

and )
B(n) =0 (n_(HE)(H?)) for some €>0
Then

k

k n
ZX,'— ;;Xi

i=1

>t| =1

N 1/2
nll—>n;oP [1<T2r§1 (k(n - k))

for all t>0.
& Csorgd and Horvédth (1997): Darling-Erdés type limit theorem



Asymptotics for Type-1 Error

& [extension of Ling(2007) to [B-mixing] Let {Xi, k>1}
be a strictly stationary [-mixing sequence with EX; =0.
If

E|X1|2(1+/\) < oo and ﬂ(n) -0 (nf(1+e)(1+%))

for some 0<A<1/2 and e€>0. Then

n—oo 0 1<k<n-1

1
lim P|A(logn)— max |T,(k)|>t+ D(log n)] =1—exp(—2e7")



Asymptotics for Type-1 Error

& [extension of Ling(2007) to [B-mixing] Let {Xi, k>1}
be a strictly stationary [-mixing sequence with EX; =0.
If

E[Xi[2*Y) < 0o and ﬂm):o(mﬂﬂﬂ”ﬂ)

for some 0<A<1/2 and e€>0. Then

n—oo 0 1<k<n-—1

1
lim P|A(logn)— max |T,(k)|>t+ D(log n)] =1—exp(—2e7")

where
A(x) = (2log x)*/?
and 1 1
D(x) = 2log x + 5 log log x — 5 log 7.
Moreover

" 2
0< lim nlE (ZX"> =02 <

k=1



Duan (1997): augmented GARCH

Let {nk, k € Z} be centered i.i.d. random variables. Let F,_; denote
the sigma field generated by the family {...,7mx—2,mxk—1}. We consider

the model
ek = ok, k€L,

where oy is measurable with respect to Fx_1 for every k € Z and
A(oR) = cne)A (02 1) +g(ner) k=12,

where A(-),c() and g(-) are continuous real-valued function.



Duan (1997): augmented GARCH

Let {nk, k € Z} be centered i.i.d. random variables. Let F,_; denote
the sigma field generated by the family {...,7mx—2,mxk—1}. We consider
the model

ek = ok, k€L,

where oy is measurable with respect to Fx_1 for every k € Z and
A(of) = cm-1) A (0k_1) + & (1) k=1,2,...,
where A(-),c() and g(-) are continuous real-valued function.

& [Carrasco and Chen (2002)] If n; has a continuous
density and the density is positive on the whole real line
and

c(0)f <1, Efc(m)| <1 and Elg(m)|<oo

then the augmented GARCH satisfies geometric ergodicity.
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Asymptotics for Type-1 Error
& Let {Xi, k>1} be a strictly stationary augmented
GARCH . If

EIX PN <00 and  B(n) = O (0")

for some 0<fd<l1. Then

1
lim P [A(logn) — max |T,(k)|<t+ D(log n)} =exp(—2e7Y)
n—oo

Op 1<k<n—1
where
n
A2 712:: 2
Un—n Xk
k=1

and
62— EX? =op ((Iog Iog)_1> (n— o0)
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