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Dependence via Recurrence Relations

Generating a sequence of dependent random variables:

xn = f (xn−1, εn) , n = 1, 2, . . . ,

where xn is the current state and {εn} are independent external
disturbance:

εn = ξn − ηn,

with random inflow ξn ≥ 0 and random demand ηn ≥ 0.
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xn = f (xn−1, εn) , n = 1, 2, . . . ,

where xn is the current state and {εn} are independent external
disturbance:

εn = ξn − ηn,

with random inflow ξn ≥ 0 and random demand ηn ≥ 0.

Assuming a percentage loss 0 < ψ < 1, then the level at successive days
becomes

xn = (1 − ψ) xn−1 + ξn − ηn, n = 1, 2, . . .

Introducing the backshift operator B notation:

φ (B) xn = ξn − ηn, where φ (B) = 1B0 + (1 − ψ)B1
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Given a weight sequence {ak , k ∈ Z} we define a moving average by

Xn =
∞
∑

k=−∞

akξn−k .

The ARMA (p, q) {Xn, n ∈ Z} is defined as the stationary solution of

φ (B)Xn = θ (B) ξn,

where φ(x) and θ(x) are polynomials of degree p and q ∈ {0, 1, . . . }
and the constant term of both polynomials is assumed to be one.

♣ [existence] If E log (1 + |ξ1|) <∞ and φ(x) has no

zeros of absolute value one , then there is a stationary

ARMA solution. This solution has a moving average

representation and is ergodic.



Strong Mixing Condition

Suppose a probability space (Ω,F ,P). Let the measure of dependence
between two σ-fields A and B ⊂ F be

α (A,B) = sup
A∈A,B∈B

|P (A ∩ B) − P (A) P (B)| .
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Suppose a probability space (Ω,F ,P). Let the measure of dependence
between two σ-fields A and B ⊂ F be

α (A,B) = sup
A∈A,B∈B

|P (A ∩ B) − P (A) P (B)| .

Let {Xk , k ∈ Z} be a two-sided sequence of random variables on
(Ω,A,P). For −∞ ≤ J < L ≤ ∞ define FL

J = σ (Xk , J ≤ k ≤ L),
i.e. the σ-field generated by the family {Xk , J ≤ k ≤ L}. For each
n ∈ N define the dependence (mixing) coefficient α(n) by

α(n) = sup
−∞<J<∞

α
(

FJ
−∞,F∞

J+n

)

.

The sequence {Xk , k ∈ Z} is said to be strongly mixing (α-mixing) if

lim
n→∞

α(n) = 0.



Example: Strongly Mixing ARMA

If the ARMA solution admits a moving average representation

Xn =

∞
∑

k=−∞

akξn−k ,

the resulting weights are of geometric order, i.e.

|aj | = O
(

ρj
)

(j → ±∞) for some 0 < ρ < 1,

Additionally, assume that ξ1 has a smooth density f such that
∫

R

|f (y + x) − f (y)|λ1(dy) ≤ C |x |

with C > 0 a constant, then the ARMA solution is α-mixing.



Example: Strongly Mixing ARMA

If the ARMA solution admits a moving average representation

Xn =

∞
∑

k=−∞

akξn−k ,

the resulting weights are of geometric order, i.e.

|aj | = O
(

ρj
)

(j → ±∞) for some 0 < ρ < 1,

Additionally, assume that ξ1 has a smooth density f such that
∫

R

|f (y + x) − f (y)|λ1(dy) ≤ C |x |

with C > 0 a constant, then the ARMA solution is α-mixing.

♣ The standard normal density

φ(x) =
1√
2π

exp
{

−x2/2
}

satisfies
∫

R

|φ (y + x) − φ (y)|λ1(dy) ≤ 2 |x | .
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Dependence: Markov Chains

Time-homogeneous Markov process with state space X and stationary
one-step transition probability function
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Dependence: Markov Chains

Time-homogeneous Markov process with state space X and stationary
one-step transition probability function

π (xn−1, {xn}) = π (x1, . . . , xn−1, {xn}) .

Higher step transition probabilities can be generated from the one-step
recursively

π(n+1) (x ,A) =

∫

X

π(n) (x , dy)π (y ,A) .

The measure µ is called invariant with respect to the transition
probability π(·, ·) if

∫

X

µ(dx)π(x ,A) = µ (A) .



Example: discrete Ornstein-Uhlenbeck I

Let |ρ| < 1 and consider the autoregressive model

Xn+1 = ρXn+1 + ξn+1, n = 1, 2, . . . ,

where {ξk , k ∈ Z} is sequence of independent Gaussian random
variables with mean Eξ1 = 0 and variance Eξ2

1 = σ2. Then the
transition probability distribution is given by

P (Xn+1 ≤ y |Xn = x) = Φ0,σ2 (y − ρx) .
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Let |ρ| < 1 and consider the autoregressive model

Xn+1 = ρXn+1 + ξn+1, n = 1, 2, . . . ,

where {ξk , k ∈ Z} is sequence of independent Gaussian random
variables with mean Eξ1 = 0 and variance Eξ2

1 = σ2. Then the
transition probability distribution is given by

P (Xn+1 ≤ y |Xn = x) = Φ0,σ2 (y − ρx) .

♣ [invariant measure] For every Borel set B ∈ B the

invariant measure µ(B) of the discrete Ornstein

Uhlenbeck process is N
(

0, σ2/
(

1 − ρ2
))

, i.e. satisfies

µ(B) =

√

1 − ρ2

√
2πσ

∫

B

exp

{

−y2
(

1 − ρ2
)

2σ2

}

λ1(dy).



Example: discrete Ornstein-Uhlenbeck II

♣ [higher step transition] For every Borel set B ∈ B
the n-step transition probability π(n) (x ,B) of the

discrete Ornstein-Uhlenbeck process is N
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ρnx , σ2
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k=1 ρ
2k
)
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ρ2k
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♣ [geometric ergodicity] For every x the n-step

transition probability π(n) (x ,B) converges to the

invariant measure with geometric decay, i.e.

|P (Xn ∈ B|X0 = x) − µ(B)| ≤ (2 + x) exp
{

−| ln ρ2|n
}

.



Example: discrete Ornstein-Uhlenbeck II

♣ [higher step transition] For every Borel set B ∈ B
the n-step transition probability π(n) (x ,B) of the

discrete Ornstein-Uhlenbeck process is N
(

ρnx , σ2
∑n

k=1 ρ
2k
)

,

i.e.

π(n) (x ,B) =

(

2πσ2
n
∑

k=1

ρ2k

)−1/2
∫

B

exp

{

− (y − ρnx)
2

2σ2
∑n

k=1 ρ
2k

}

λ1(dy).

♣ [geometric ergodicity] For every x the n-step

transition probability π(n) (x ,B) converges to the

invariant measure with geometric decay, i.e.

|P (Xn ∈ B|X0 = x) − µ(B)| ≤ (2 + x) exp
{
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.

♣ ’’Geometric Ergodicity is equivalent to β-mixing’’.



β-Mixing
Suppose a probability space (Ω,F ,P). Let the measure of dependence
between two σ-fields A and B ⊂ F be

β (A,B) = sup
1

2

I
∑

i=1

J
∑

j=1

|P (Ai ∩ Bj) − P (Ai )P (Bj)| ,

where the supremum is taken over all pairs of finite partitions
{A1, . . . ,AI} and {B1, . . . ,BJ} of Ω such that Ai ∈ A for each i

and Bj ∈ B for each j .
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between two σ-fields A and B ⊂ F be

β (A,B) = sup
1

2

I
∑

i=1

J
∑

j=1

|P (Ai ∩ Bj) − P (Ai )P (Bj)| ,

where the supremum is taken over all pairs of finite partitions
{A1, . . . ,AI} and {B1, . . . ,BJ} of Ω such that Ai ∈ A for each i

and Bj ∈ B for each j .

Let {Xk , k ∈ Z} be a two-sided sequence of random variables on
(Ω,A,P). For −∞ ≤ J < L ≤ ∞ define FL

J = σ (Xk , J ≤ k ≤ L),
i.e. the σ-field generated by the family {Xk , J ≤ k ≤ L}. For each
n ∈ N define the dependence (mixing) coefficient β(n) by

β(n) = sup
−∞<J<∞

β
(

FJ
−∞,F∞

J+n

)

.

The sequence {Xk , k ∈ Z} is said to be absolutely regular (β-mixing) if

lim
n→∞

β(n) = 0.



Change-Point Problem I

Let X1, . . . ,Xn be (dependent) real-valued observation. Test the
no-change null hypothesis

H0 : EX1 = EX2 = · · · = EXn

against one-time shift alternative

HA : EX1 = · · · = EXk∗ 6= EXk∗+1 = · · · = EXn

for some 1 ≤ k∗ < n.
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Let X1, . . . ,Xn be (dependent) real-valued observation. Test the
no-change null hypothesis

H0 : EX1 = EX2 = · · · = EXn

against one-time shift alternative

HA : EX1 = · · · = EXk∗ 6= EXk∗+1 = · · · = EXn

for some 1 ≤ k∗ < n.
♣ [Csörgő and Horváth (1997)] Reject the no-change null

hypothesis , if

Tn(k) =

(

n

k(n − k)

)1/2
∣

∣

∣

∣

∣

k
∑

i=1

Xi −
k

n

n
∑

i=1

Xi

∣

∣

∣

∣

∣

is large for some 1 ≤ k ≤ n − 1



Change-Point Problem II

♣ [along Csörgő and Horváth (1997)] Let {Xk , k ≥ 1} be a

strictly stationary β-mixing sequence with EX1 = 0. If

E |X1|2(1+λ) <∞ for some 0 < λ < 1/2

and

β(n) = O
(

n−(1+ǫ)(1+ 1
λ )
)

for some ǫ > 0

Then

lim
n→∞

P

[

max
1≤k≤n−1

(

n

k(n − k)

)1/2
∣

∣

∣

∣

∣

k
∑

i=1

Xi −
k

n

n
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ t

]

= 1

for all t ≥ 0.
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= 1

for all t ≥ 0.
♣ Csörgő and Horváth (1997): Darling-Erdős type limit theorem



Asymptotics for Type-1 Error

♣ [extension of Ling(2007) to β-mixing] Let {Xk , k ≥ 1}
be a strictly stationary β-mixing sequence with EX1 = 0.
If

E |X1|2(1+λ) <∞ and β(n) = O
(

n−(1+ǫ)(1+ 1
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for some 0 < λ < 1/2 and ǫ > 0. Then

lim
n→∞
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[

A (log n)
1
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|Tn(k)| ≥ t + D (log n)

]

= 1 − exp
(

−2e−t
)
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♣ [extension of Ling(2007) to β-mixing] Let {Xk , k ≥ 1}
be a strictly stationary β-mixing sequence with EX1 = 0.
If

E |X1|2(1+λ) <∞ and β(n) = O
(

n−(1+ǫ)(1+ 1
λ )
)

for some 0 < λ < 1/2 and ǫ > 0. Then

lim
n→∞

P

[

A (log n)
1

σ
max

1≤k≤n−1
|Tn(k)| ≥ t + D (log n)

]

= 1 − exp
(

−2e−t
)

where

A(x) = (2 log x)
1/2

and

D(x) = 2 log x +
1

2
log log x − 1

2
log π.

Moreover

0 < lim
n→∞

n−1E

(

n
∑

k=1

Xk

)2

= σ2 <∞



Duan (1997): augmented GARCH

Let {ηk , k ∈ Z} be centered i.i.d. random variables. Let Fk−1 denote
the sigma field generated by the family {. . . , ηk−2, ηk−1}. We consider
the model

εk = σkηk , k ∈ Z,

where σk is measurable with respect to Fk−1 for every k ∈ Z and

Λ
(

σ2
k

)

= c (ηk−1) Λ
(

σ2
k−1

)

+ g (ηk−1) k = 1, 2, . . . ,

where Λ(·), c(·) and g(·) are continuous real-valued function.
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Let {ηk , k ∈ Z} be centered i.i.d. random variables. Let Fk−1 denote
the sigma field generated by the family {. . . , ηk−2, ηk−1}. We consider
the model

εk = σkηk , k ∈ Z,

where σk is measurable with respect to Fk−1 for every k ∈ Z and

Λ
(

σ2
k

)

= c (ηk−1) Λ
(

σ2
k−1

)

+ g (ηk−1) k = 1, 2, . . . ,

where Λ(·), c(·) and g(·) are continuous real-valued function.

♣ [Carrasco and Chen (2002)] If η1 has a continuous

density and the density is positive on the whole real line

and

|c(0)| < 1, E |c (η1)| < 1 and E |g (η1)| <∞
then the augmented GARCH satisfies geometric ergodicity.



εk = σkηk

 

 

0 50 100 150 200

−
5

0
5

10

0 50 100 150 200

1.
0

2.
0

3.
0

σk
2 = 0.9 + 0.8σk−1

2 + 0.09εk−1
2

 

 



Asymptotics for Type-1 Error

♣ Let {Xk , k ≥ 1} be a strictly stationary augmented

GARCH . If

E |X1|2(1+λ) <∞ and β(n) = O (θn)

for some 0 < θ < 1. Then

lim
n→∞

P

[

A (log n)
1

σ̂n

max
1≤k≤n−1

|Tn(k)| ≤ t + D (log n)

]

= exp
(

−2e−t
)

where

σ̂2
n = n−1

n
∑

k=1

X 2
k

and

σ̂2
n − EX 2

1 = oP

(

(log log)
−1
)

(n → ∞)
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