Discrete Dividend I: Non-Connected Stopping Region

Example: American-style put with strike K = 3, T = 0.5, $S_0 = 2.4$, r = 0.08, $\sigma = 0.4$, with one dividend D = 0.06 paid at time $t_D = 0.3$. For these parameters^{*} the stopping region consists of two parts, the upper part with $t \ge t_D$, and the lower part with $t \le \tilde{t}$,

$$\tilde{t} = 0.052467$$

(see Exercise 4.1b). For reference, the price calculated with a binomial method and mesh fineness M = 1000 is $V(S_0, 0) = 0.66538$.

Stopping regions indicated by some of the nodes of the binomial tree (M = 1000); the exponential boundary curves of the tree are shown in black. The left-hand curve cuts the lower part of the stopping region. Only nodes "inside" the tree are shown; to save storage, nodes in the interior of the upper part are removed.

ⁱ parameters taken from G.H. Meyer: Numerical investigation of early exercise in American puts with discrete dividends. J. Comput. Finance 5,2 (2002) 37–53.

Figure 2 uses the scaling $x := \frac{S}{K}$, and illustrates the surface y(x) = V(Kx, t) (in red). The green line bounds the stopping area; compare Figure 1.

Figure 2: V over S and t, with S scaled to $x = \frac{S}{K}$.

In contrast, for a **proportional dividend** $D = \tilde{q}S$ there is a lower part of the stopping area extending to t_D , where the limiting early-exercise curve (green line in Figure 3) tends to $(S, t) = (0, t_D)$ with the slope

Figure 3: V over S and t, with x = S/K. Example as above, except for a proportional dividend payment $D = 0.02 \cdot S$

(Figures 2 and 3 with kind permission of Arthur Glados; calculated with a method of lines as in [Mey02]. For discrete dividends see also Topic 5.)