Penalty Method for a Vanilla Option

We apply a penalty method for an American-style vanilla option, with value function V(S, t) for the price S of the underlying, strike K and maturity T. That is, we solve the Black–Scholes-type PDE

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + (r - \delta) S \frac{\partial V}{\partial S} - rV + p(V) = 0, \quad p(V) := \frac{\epsilon C}{V + \epsilon - q},$$

where q = K - S for a put and q = S - K for a call. The nonlinear function p(V) is the penalty term. The parameters $\epsilon > 0$ and C > 0 should be chosen such that $p \ge 0$, with $p \approx 0$ for S in the continuation area and p > 0 for S in the stopping area. If the penalty approach works, than its solution $V_{\epsilon,C}(S,t)$ approximates the true solution.

Example: put with K = 10, T = 1, interest rate r = 0.25, volatility $\sigma = 0.6$, dividend rate $\delta = 0.2$. For the parameters^{*} we choose

$$C = rK$$
, $\epsilon = 2C\Delta t$, $\Delta t = T/M$.

The shape of p in Figure 1 illustrates the functioning of the payoff term. The steep gradient indicates the location of the free boundary, and the vanishing p for larger S activates the Black–Scholes part of the PDE.

^{*} For the example see also Figure 4.13 in [Tools fCF], and for the penalty term [B.F. Nielsen, O. Skavhaug, A. Tveito (2008)].

The free boundary is not defined precisely for the penalty method. Rather there is a boundary layer around the smooth-contact point. This layer is indicated in Figure 2.

Figure 2: payoff over S, $V_{\epsilon,C}(S,0)$, penalty p, and contact layer (+)

Figure 3 shows the surface defined by $V_{\epsilon,C}(S,t)$ in green for $4 \leq S \leq 12$, $0 \leq t \leq 1$; the smooth-contact layer is indicated by red color (M = 800).

Figure 3: solution $V_{\epsilon,C}(S,t)$ (in green) with smooth-contact layer (in red)