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1.1 Options

An option is the right (but not the obligation) to buy or sell a risky asset at a
prespecified fixed price within a specified period.

underlying: stocks, indices, currencies, commodities

agreement between two parties about trading the asset at a certain future time.

The writer fixes the terms of the option contract and sells the option.

The holder purchases the option, paying the market price (premium).

Terminology

The call option gives the holder the right to buy the underlying for an agreed price
K by the date T . The put option gives the holder the right to sell ...

maturity date T : At time T the rights of the holder expire.

S, or St or S(t) price per share of the underlying

The price K of the contract is called strike or exercise price.

For European options exercise is only permitted at expiry date T .

American options can be exercised early.

The dependence of V on S and t is written V (S, t).
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Payoff Function

At maturity t = T , the rational holder of a European call will exercise (get the
stock for the strike price K), when S > K. (He can immediately sell the asset for the
spot price S and makes a gain of S − K per share.)

Then the value of the option is V = S − K.

In case S < K the holder will not exercise, (the asset can be purchased on the market
for the cheaper price S) hence V = 0.

V (ST , T ) =

{
0 in case ST ≤ K (option expires worthless)

ST − K in case ST > K (option is exercised)

or
V (ST , T ) = max{ST − K, 0} = (ST − K)+. (1.1C)

(payoff function, intrinsic value, cashflow)

S

V

K
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For a European put exercising only makes sense in case S < K.

The payoff V (S, T ) of a put at expiration time T is

V (ST , T ) =

{
K − ST in case ST < K (option is exercised)

0 in case ST ≥ K (option is worthless)

or
V (ST , T ) = max{K − ST , 0} = (K − ST )+ (1.1P)

S

V

K

K
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Profit: The initial costs paid when buying the option at t = t0 must be subtracted.

The initial costs consist of the premium and the transaction costs. Both are mul-
tiplied by er(T−t0) to take account of the time value; r is the interest rate.

(negative profit for some range of S-values means a loss.)

K

S

V

K

The payoff function for an American call is (St − K)+ and for an American put
(K − St)

+ for any t ≤ T .

The situation for the writer (short position) is reverse. For him the above payoff
curves as well as the profit curves are reflected on the S-axis. The writer’s profit or
loss is the reverse of that of the holder.
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A Priori Bounds / Arbitrage

The value V (S, t) of an American option can never fall below the payoff.

This bound follows from the no-arbitrage principle.

S

V

K

K

Assume for an American put that its value is below the payoff. V < 0 contradicts
the definition of the option. Hence V ≥ 0, and S and V satisfy S < K and 0 ≤ V <
K − S.

This scenario would allow arbitrage as follows: Borrow the cash amount of S + V ,
and buy both the underlying and the put. Then immediately exercise the put, selling
the underlying for the strike price K. The profit of this arbitrage strategy is K −S −
V > 0. This is in conflict with the no-arbitrage principle. We conclude

V am
P

(S, t) ≥ (K − S)+ for all S, t .

Similarly,
V am

C
(S, t) ≥ (S − K)+ for all S, t .
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The value of an American option should never be smaller than that of a European
option because the American type includes the European type exercise at t = T and
in addition early exercise for t < T , hence

V am ≥ V eur
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V (S, 0) of a put
American option (red),
European option (green),
payoff

For European options the values of put and call are related by the put-call parity

S + VP − VC = Ke−r(T−t) .

(assumes no dividend payment for 0 ≤ t ≤ T , and no transaction costs)
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Bounds on European-Style Options

argument: arbitrage

V

V

put

call

K

K

K

S

S

V am(S, t) ≥ V eur(S, t)
V am(S, t) ≥ payoff

provided that no dividend is paid:

V eur
C

(S, t) ≥ S − Ke−r(T−t)

V eur
P

(S, t) ≥ Ke−r(T−t) − S
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Options in the Market

The features of the options imply that an investor purchases puts when he expects the
price of the underlying is expected to fall, and buys calls when the prices are about
to rise.

V (S, t) also depends on:

the strike price K and the maturity T ;

market parameter interest rate r, risk-free, continuously compounded, per year;

dividends in case of a dividend-paying asset;

market parameter volatility σ of the price St

(σ defined as standard deviation of the fluctuations in St, for scaling divided by the
square root of the observed time period; Writing σ = 0.2 means a volatility of 20%.)

The time period of interest is t0 ≤ t ≤ T . We set t0 = 0 in the role of “today.”
The interval 0 ≤ t ≤ T represents the remaining life time of the option.

In real markets r(t) and σ(t). We mostly assume r and σ to be constant on
0 ≤ t ≤ T . Further suppose that all variables are arbitrarily divisible and consequently
can vary continuously. (∈ IR)
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t current time, 0 ≤ t ≤ T
T expiration time, maturity

r > 0 risk-free interest rate
S, St spot price, current price per share of stock/asset/underlying

σ annual volatility
K strike price, exercise price per share

V (S, t) value of an option at time t and underlying price S

The Geometry of American-Style Standard Options

Standard options are options on one underlying with one of the above two payoffs
Ψ(S) := (K − S)+ or Ψ(S) := (S − K)+. All other options are called exotic.

Exotic options include options on a basket of several underlyings, or other payoffs
(example: binary option), or path-dependent options where the value depends on
the entire path St for 0 ≤ t ≤ T (example: barrier option).

In what follows, we stick to standard options.

The values V (S, t) for fixed values of K,T, r, σ can be interpreted as a piece of
surface over the subset

S > 0 , 0 ≤ t ≤ T .
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Shifting the payoff parallel for all 0 ≤ t < T creates another surface, which consists
of the two planar pieces V = 0 (for S ≥ K) and V = K − S (for S < K). This payoff
surface created by (K−S)+ is a lower bound to the option surface, V (S, t) ≥ (K−S)+.

S

t

0

V

2

1

T

K

C

C

K

C1: early-exercise curve
When St reaches C1, then
immediate exercising is optimal:
invest K for the rate r.

Within the area limited by the curves C1, C2, the option surface obeys V (S, t) >
(K − S)+. Outside that area, both surfaces coincide. This is strict above C1, where
V (S, t) = K − S, and holds approximately for S beyond C2, where V (S, t) ≈ 0 or
V (S, t) < ε for a small value of ε > 0.

The locations of C1 and C2 are not known, these curves are calculated along
with the calculation of V (S, t). Of special interest is V (S, 0), the value of the option
“today.”
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European put V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
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European call V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
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1.2 Model of the Financial Market

classical model after Black, Merton and Scholes (1973)

attractive: option surfaces V (S, t) on the half strip S > 0, 0 ≤ t ≤ T as solutions of
suitable equations.

Then calculating V amounts to solving the equations.

Definition 1.1 (Black-Scholes equation)

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.2)

partial differential equation (PDE) for V (S, t) , linear

terminal condition for t = T

V (S, T ) = payoff,

with payoff function depending on the type of option.
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Assumptions 1.2 (B-M-S model of the market)

(a) The market is frictionless.
no transaction costs (fees or taxes), interest rates for borrowing and lending money
are equal, all parties have immediate access to any information, all securities and
credits are available at any time and in any size. (Consequently, all variables are
perfectly divisible.) Individual trading will not influence the price.

(b)There are no arbitrage opportunities.

(c) The asset price follows a geometric Brownian motion.

(d) Technical assumptions (preliminary):
r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in that time period.
The option is European.

These assumptions lead to the Black-Scholes equation

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Solutions V (S, t) of European standard options are functions satisfying this equa-
tion with terminal condition for all S and t.

domain: half strip 0 < S, 0 ≤ t ≤ T
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boundary conditions

For numerical purposes, the infinite interval for S must be truncated to Smin ≤ S ≤
Smax, which requires boundary conditions for Smin and Smax. Sometimes boundary
conditions are not clear and are selected in an artificial way.

example: for a European call the boundary conditions are straightforward, they
will be based on

V (0, t) = 0 ;

V (S, t) → S − Ke−r(T−t) for S → ∞
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transaction costs or feedback lead to nonlinear BS-type PDEs.
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1.3 Numerical Methods

inevitable in all fields of technology including financial engineering.

Stochastic approaches are natural tools to simulate prices.

stochastic differential equations, Monte Carlo methods, simulate randomness

(performed in a deterministic manner)

More efficient methods are preferred provided their use can be justified by the validity
of the underlying models.

partial differential equations of the Black-Scholes type

choice among finite-difference methods and finite-element methods.

The numerical treatment of exotic options requires a more careful consideration of
stability issues.

Efficiency and reliability are key demands.
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Discretization

∆ t

S

t

T

0 0

T

t

S

The assumption that all variables ∈ IR allows to impose artificial discretizations
convenient for the numerical methods.

The hypothesis of a continuum applies to the (S, t)-domain of the half strip 0 ≤
t ≤ T , S > 0, and to the differential equations. The artificial discretization introduced
by numerical methods is at least twofold:

1.) (S, t)-domain replaced by a grid of a finite number of (S, t)-points.

2.) differential equations replaced by a finite number of algebraic equations.

Discretization errors depend on the coarsity of the grid, on ∆t and on ∆S. It is
one of the aims of numerical algorithms to control the errors.
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1.4 The Binomial Method

robust and widely applicable.

In practice one is often interested in the one value V (S0, 0). The binomial method
is based on a tree-type grid applying appropriate binary rules at each grid point. The
grid is not predefined but is constructed by the method.

A Discrete Model
First discretize the continuous time t.

−

t i+1

t i

Si+1

Si

t+ ∆t

p1−p

SuSd

t

S

t

S

M : number of time steps
∆t := T

M

ti := i · ∆t, i = 0, ...,M
Si := S(ti)

So far the domain of the (S, t) half strip is replaced by parallel straight lines with
distance ∆t apart.

Next replace the continuous values Si along the parallel t = ti by discrete values
Sji, for all i and appropriate j. The figure shows a mesh of the grid, namely the
transition from t to t + ∆t, or from ti to ti+1.
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−

t i+1

t i

Si+1

Si

t+ ∆t

p1−p

SuSd

t

S

t

S

Assumptions 1.3 (binomial method)

(Bi1) The price S over each period of time ∆t can only have two possible outcomes:
An initial value S either evolves up to Su or down to Sd with 0 < d < u.

(Bi2) The probability of an up movement is p, P(up) = p, with 0 < p < 1.

(Bi3) Expectation and variance match their continuous-time counterparts.

(Temporarily assume that no dividend is paid within the time period of interest.)

The rules (Bi1), (Bi2) represent a binomial process with probability.
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−

t i+1

t i

Si+1

Si

t+ ∆t

p1−p

SuSd

t

S

t

S

For (Bi3), we compare to an asset price St that develops randomly from a value Si

at t = ti to Si+1 at t = ti+1, following a continuous-time geometric Brownian motion
St (see below), with growth rate being the risk-free interest rate r. The expectation
is

E(Si+1) = Si · er∆t , (1.4)

analogously for the variances.

The probability P of (Bi2) is an artificial risk-neutral probability matching (Bi3).
The expectation in E(Si+1) = Si · er∆t refers to this probability; this is sometimes
written EP.

The parameters u, d and p are unknown.
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A consequence of (Bi1) and (Bi2) for the discrete model is

E(Si+1) = pSiu + (1 − p)Sid .

Here Si is an arbitrary value for ti, which develops randomly to Si+1, following (Bi1),
(Bi2). Equating with E(Si+1) = Si · er∆t gives

er∆t = pu + (1 − p)d . (1.5)

(first equation to fix u, d, p)

Solved for the risk-neutral probability p leads to

p =
er∆t − d

u − d
. (1.6)

To be a valid model of probability, 0 ≤ p ≤ 1 must hold, or

d ≤ er∆t ≤ u . (1.7)

To prevent arbitrage, d < er∆t < u must hold, which is assumed in (Bi2).
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equate variances: Via the variance the volatility σ enters the model. From the
continuous model we apply

E(S2
i+1) = S2

i e(2r+σ2)∆t . (1.8)

Recall Var(S) = E(S2)− (E(S))2. Equations E(Si+1) = Si · er∆t and (1.8) combine to

Var(Si+1) = S2
i e2r∆t(eσ2∆t − 1) .

The discrete model satisfies

Var(Si+1) = E(S2
i+1) − (E(Si+1))

2

= p(Siu)2 + (1 − p)(Sid)2 − S2
i (pu + (1 − p)d)2 .

Equating variances of the continuous and the discrete model, and applying er∆t =
pu + (1 − p)d leads to

e2r∆t(eσ2∆t − 1) = pu2 + (1 − p)d2 − (er∆t)2

e2r∆t+σ2∆t = pu2 + (1 − p)d2 (1.9)

This equation and the above er∆t = pu + (1 − p)d constitute two relations for the
three unknowns u, d, p.
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We are free to impose an arbitrary third equation.

One example is the plausible assumption

u · d = 1 , (1.10)

which reflects a symmetry between upward and downward movement.

Now the parameters u, d and p are fixed.

They depend on r, σ and ∆t.

So does the grid.

Other choices:

ud = γ with suitably chosen γ, or

p = 0.5
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The above rules are applied to each grid line i = 0, . . . ,M , starting at t0 = 0 with the
specific value S = S0. Attaching meshes for subsequent values of ti builds a tree with
values Sujdk and j + k = i. In this way, specific discrete values Sji of Si are defined.

Since the same constant factors u and d underlie all meshes and since Sud = Sdu
holds, the tree is recombining. It does not matter which of the two paths we take
to reach Sud. Consequently the binomial process defined by Assumption 1.3 is path
independent. Accordingly at expiration time T = M∆t the price S can take only the
(M + 1) discrete values SujdM−j , j = 0, 1, ...,M . By ud = 1 these are the values
Sujuj−M = Su−Mu2j =: SjM .
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Solution of (1.5), (1.9), (1.10)

Use α := er∆t to obtain the quadratic

0 = u2 − u(α−1 + αeσ2∆t

︸ ︷︷ ︸
=:2β

) + 1,

with solutions u = β ±
√

β2 − 1. By virtue of ud = 1 and Vieta’s Theorem, d is the
solution with the minus sign.

β : =
1

2
(e−r∆t + e(r+σ2)∆t)

u = β +
√

β2 − 1

d = 1/u = β −
√

β2 − 1

p =
er∆t − d

u − d

(1.11)



Seydel: Tools for CF, Chapter 1 29

Forward Phase: Initializing the Tree
The current spot price S = S0 for t0 = 0 is the root of the tree. (also denoted S00)

For i = 1, 2, ...,M calculate :

Sji := S0u
jdi−j , j = 0, 1, ..., i

Now the grid points (ti, Sji) are fixed,
on which the option values Vji := V (ti, Sji) are calculated.

Calculating the Option Values V, Valuation of the Tree

For tM the payoff V (S, tM ) = Ψ(S) is known. This defines the values VjM :

VjM := Ψ(SjM ) (1.12)

with Ψ(S) = (S − K)+ for a call, and Ψ(S) = (K − S)+ for a put.
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Backward Phase

Calculate recursively for tM−1, tM−2, ... the option values V for all ti, starting from
VjM . The recursion is based on Assumption 1.3, (Bi3). Repeating the equation that
corresponds to (1.5) with double index leads to

Sjie
r∆t = pSjiu + (1 − p)Sjid,

and
Sjie

r∆t = pSj+1,i+1 + (1 − p)Sj,i+1.

Relating the Assumption 1.3, (Bi3) of risk neutrality to V , Vi = e−r∆tE(Vi+1),
we obtain

Vji = e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1) . (1.13)

For European options this is a recursion for i = M − 1, . . . , 0, starting from the
payoff, and terminating with V00. The obtained value V00 is an approximation to the
value V (S0, 0) of the continuous model, which results in the limit M → ∞ (∆t → 0).
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For American options the above recursion must be modified by adding a test
whether early exercise is preferred.

The values Vji of (1.13) are the “continuation” values V cont
ji applicable when no

early exercise is due. For each ti the holder optimizes his position by choosing the
best of

{ exercise, continue } ,

or
max{Ψ(S), V cont } .

Hence, the equations (1.12) for i rather than M , combined with (1.13), become

Call:

Vji = max
{
(Sji − K)+, e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1)

}
(1.14C)

Put:

Vji = max
{
(K − Sji)

+, e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1)
}

(1.14P)
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Algorithm 1.4 (binomial method)

Input: r, σ, S = S0, T, K, choice of put or call,

European or American, M

calculate: ∆t := T/M, u, d, p from (1.11)

S00 := S0

SjM = S00u
jdM−j , j = 0, 1, ...,M

(for American options, also Sji = S00u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)

VjM from (1.12)

Vji for i < M

{
from (1.13) for European options

from (1.14) for American options

Output: V00 is the approximation V
(M)
0 of V (S0, 0)
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Example 1.5 European put

K = 10, S = 5, r = 0.06, σ = 0.3, T = 1.

approximations V (M) to V (5, 0)

M V (M)(5, 0)

8 4.42507
16 4.42925
32 4.429855
64 4.429923
128 4.430047
256 4.430390
2048 4.430451

Black-Scholes 4.43046477621
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Example 1.6 American put
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Extensions

dividends: If dividends are paid at tk the price of the asset drops by the same amount.
To take into account this jump, the tree is cut at tk and the S-values are reduced
appropriately.

trinomial model: three outcomes, with probabilities p1, p2, p3 and p1 + p2 + p3 = 1.
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1.5 Risk-Neutral Valuation

The situation of a path-independent binomial process with the two factors u and d
(0 < d < u) continues to be the basis of the argumentation.

T

0

t

V V (u)

S

V

(d)

S

S S u0 0d

0

0

one-period model: The time period is the time to expiration T . The one-period
model has two clearly defined values of the payoff, namely V (d) (corresponds to ST =
S0d) and V (u) (corresponds to ST = S0u). In contrast to the Assumptions 1.3 we
neither assume the risk-neutral world (Bi3) nor the corresponding probability P(up) =
p from (Bi2). Instead we derive the probability using another argument. In this section
the factors u and d are assumed to be given.
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T

0

t

V V (u)

S

V

(d)

S

S S u0 0d

0

0

Construct a portfolio of an investor with a short position in one option and a long
position consisting of ∆ shares of an asset, where the asset is the underlying of the
option. The portfolio manager must choose the number ∆ of shares such that
the portfolio is riskless. (hedging strategy)

Πt denotes the wealth of this portfolio at time t. Initially,

Π0 = S0 · ∆ − V0 , (1.15)

where the value V0 of the written option is not yet determined. At the end of the
period the value VT either takes the value V (u) or the value V (d). So the value of the
portfolio ΠT is either

Π(u) = S0u · ∆ − V (u)

or
Π(d) = S0d · ∆ − V (d) .
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Π(u) = S0u · ∆ − V (u)

or
Π(d) = S0d · ∆ − V (d) .

In case ∆ is chosen such that the value ΠT is riskless, all uncertainty is removed and
Π(u) = Π(d) must hold. This is equivalent to

(S0u − S0d) · ∆ = V (u) − V (d) ,

which defines the strategy

∆ =
V (u) − V (d)

S0(u − d)
. (1.16)

With this value of ∆ the portfolio with initial value Π0 evolves to the final value ΠT =
Π(u) = Π(d), regardless of whether the stock price moves up or down. Consequently
the portfolio is riskless.
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Ruling out early exercise, the final value ΠT is reached with certainty. The value ΠT

must be compared to the alternative risk-free investment of an amount of money
that equals the initial wealth Π0, which after the time period T reaches the value
erT Π0.

By arbitrage arguments, both portfolios must be equal: the initial value Π0 of the
portfolio equals the discounted final value ΠT , discounted at the interest rate r,

Π0 = e−rT ΠT .

This means
S0 · ∆ − V0 = e−rT (S0u · ∆ − V (u)) ,

which upon substituting (1.16) leads to the value V0 of the option:

V0 = e−rT{V (u)q + V (d) · (1 − q)}

with

q :=
erT − d

u − d
. (1.17)
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We have shown

q =
erT − d

u − d
=⇒ V0 = e−rT {V (u)q + V (d) · (1 − q)} . (1.18)

The expression for q is identical to the formula for p in (1.6), which was derived in
the previous section. Note again

0 < q < 1 ⇐⇒ d < erT < u .

This condition is equivalent to ruling out arbitrage in the model. Presuming these
bounds, q can be interpreted as a probability Q. Then qV (u) + (1 − q)V (d) is the
expected value of the payoff with respect to this probability,

EQ(VT ) = qV (u) + (1 − q)V (d) .

Now (1.18) can be written
V0 = e−rT EQ(VT ) . (1.19)

That is, the value of the option is obtained by discounting the expected payoff (with
respect to q) at the risk-free interest rate r. An analogous calculation shows

EQ(ST ) = qS0u + (1 − q)S0d = S0e
rT .
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The probabilities p of Section 1.4 and q from (1.17) are defined by identical formulas
(with T corresponding to ∆t). Hence p = q, and EP = EQ. But the underlying
arguments are different. Recall that in Section 1.4 we showed the implication

E(ST ) = S0e
rT =⇒ p = P(up) =

erT − d

u − d
,

whereas in this section we arrive at the implication

p = P(up) =
erT − d

u − d
=⇒ E(ST ) = S0e

rT .

So both statements must be equivalent. Setting the probability of the up movement
equal to p is equivalent to assuming that the expected return on the asset equals the
risk-free rate. This can be rewritten as

e−rT EP(ST ) = S0 . (1.20)

This is the important property of a martingale: The random variable e−rT ST of
the left-hand side has the tendency to remain at the same level. (“fair game”) A
martingale displays no trend, where the trend is measured with respect to EP. In the
martingale property of (1.20) the discounting at the risk-free interest rate r exactly
matches the risk-neutral probability P(= Q) of (1.6)/(1.17). The specific probability
for which (1.20) holds is also called martingale measure.
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Summary of results for the one-period model:

Under the Assumptions 1.2 of the market model, the choice ∆ = V (u)−V (d)

S0(u−d)
elimi-

nates the random-dependence of the payoff and makes the portfolio riskless. There is

a specific probability Q (= P) with Q(up) = q, q := erT −d
u−d

, such that the value V0

satisfies V0 = e−rT EQ(VT ) and S0 the analogous property e−rT EP(ST ) = S0. These
properties involve the risk-neutral interest rate r. That is, the option is valued in a
risk-neutral world, and the corresponding Assumption 1.3 (Bi3) is meaningful.

The ∆ = V (u)−V (d)

S0(u−d) is the hedge parameter delta, which eliminates the risk ex-

posure of our portfolio caused by the written option. In multi-period models and
continuous models ∆ must be adapted dynamically. The general definition is

∆ = ∆(S, t) =
∂V (S, t)

∂S
.



Seydel: Tools for CF, Chapter 1 42

1.6 Stochastic Processes

Brown (1827): erratic motion of a particle

Bachelier (1900): applied Brownian motion to model the motion of stock prices.

Einstein (1905)

Wiener (1923): mathematical model for this motion

A stochastic process is a family of random variables Xt, which are defined for a set of
parameters t. For the time-continuous situation, t ∈ IR varies continuously in a time
interval I, typically 0 ≤ t ≤ T . Let the chance play, then the resulting function Xt is
called realization or path of the stochastic process.

Gaussian process: All finite-dimensional distributions (Xt1 , . . . ,Xtk
) are Gaus-

sian. Hence specifically Xt is distributed normally for all t.

Markov process: Only the present value of Xt is relevant for its future motion.
That is, the past history is fully reflected in the present value.

An example of a process that is both Gaussian and Markov, is the Wiener process.
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Wiener Process

Definition 1.7 (Wiener process, standard Brownian motion)

A Wiener process (or standard Brownian motion; notation Wt or W ) is a time-
continuous process with the properties

(a) W0 = 0

(b) Wt ∼ N (0, t) for all t ≥ 0.

That is, Wt is normally distributed with E(Wt) = 0 and Var(Wt) = E(W 2
t ) = t.

(c) All increments ∆Wt := Wt+∆t − Wt on non-overlapping time intervals are
independent.

That is, the displacements Wt2 − Wt1 and Wt4 − Wt3 are independent for all
0 ≤ t1 < t2 ≤ t3 < t4.

(d) Wt depends continuously on t.

Generally Wt − Ws ∼ N (0, t − s) holds,

E(Wt − Ws) = 0 , Var(Wt − Ws) = E((Wt − Ws)
2) = t − s. (1.21a,b)

These relations can be derived from Definition 1.7. The second is also known as

E((∆Wt)
2) = ∆t . (1.21c)
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The independence of the increments according to Definition 1.7(c) implies for tj+1 > tj
the independence of Wtj

and (Wtj+1
− Wtj

), but not of Wtj+1
and (Wtj+1

− Wtj
).

Discrete-Time Model

Let ∆t > 0 be a constant time increment. For the discrete instances tj := j∆t the
value Wt can be written as

Wj∆t =

j∑

k=1

(
Wk∆t − W(k−1)∆t

)
︸ ︷︷ ︸

=:∆Wk

.

The ∆Wk are independent and because of (1.21) normally distributed with Var(∆Wk) =
∆t. Increments ∆W with such a distribution can be calculated from standard nor-
mally distributed random numbers Z. The implication

Z ∼ N (0, 1) =⇒ Z ·
√

∆t ∼ N (0,∆t)

leads to the discrete model of a Wiener process

∆Wk = Z
√

∆t for Z ∼ N (0, 1) for each k . (1.22)
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Algorithm 1.8 (simulation of a Wiener process)

Start: t0 = 0, W0 = 0; ∆t

loop j = 1, 2, ... :

tj = tj−1 + ∆t

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√

∆t

Wj is a realization of Wt at tj .
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Almost all realizations of Wiener processes are nowhere differentiable. This beco-
mes intuitively clear when the difference quotient

∆Wt

∆t
=

Wt+∆t − Wt

∆t

is considered. Because of relation (1.21b) the standard deviation of the numerator is√
∆t. Hence for ∆t → 0 the normal distribution of the difference quotient disperses

and no convergence can be expected.
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Stochastic Integral

Suppose that the price development of an asset is described by a Wiener process Wt.
Let b(t) be the number of units of the asset held in a portfolio at time t. Start with
the simplifying assumption that trading is only possible at discrete time instances tj ,
which define a partition of the interval 0 ≤ t ≤ T . Then the trading strategy b is
piecewise constant,

b(t) = b(tj−1) for tj−1 ≤ t < tj

and 0 = t0 < t1 < . . . < tN = T .
(1.23)

(step function)

The trading gain for the subinterval tj−1 ≤ t < tj is given by b(tj−1)(Wtj
−Wtj−1

),
and

N∑

j=1

b(tj−1)(Wtj
− Wtj−1

) (1.24)

represents the trading gain over the time period 0 ≤ t ≤ T . The trading gain (possibly
< 0) is determined by the strategy b(t) and the price process Wt.
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Now drop the assumption of fixed trading times tj and allow b to be arbitrary
continuous functions. This leads to the question whether (1.24) has a limit when with
N → ∞ the size of the subintervals tends to 0. If Wt would be of bounded variation
than the limit exists and is called Riemann-Stieltjes integral

∫ T

0

b(t)dWt .

But this integral generally does not exist because almost all Wiener processes are not
of bounded variation. That is, the first variation of Wt, which is the limit of

N∑

j=1

|Wtj
− Wtj−1

| ,

is unbounded even in case the lengths of the subintervals vanish for N → ∞.
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important assertion (dWt)
2 = dt.

For an arbitrary partition of the interval [0, T ] into N subintervals the inequality

N∑

j=1

|Wtj
− Wtj−1

|2 ≤ max
j

(|Wtj
− Wtj−1

|)
N∑

j=1

|Wtj
− Wtj−1

| (1.25)

holds. The left-hand sum is the second variation and the right-hand sum the first
variation of W for a given partition into subintervals.

The expectation of the left-hand sum is calculated using properties of Wiener’s
process,

N∑

j=1

E(Wtj
− Wtj−1

)2 =

N∑

j=1

(tj − tj−1) = tN − t0 = T .

Even convergence in the mean holds:

Lemma 1.9 (second variation: convergence in the mean)

Let t0 = t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = T be a sequence of partitions of the interval

t0 ≤ t ≤ T with δN := maxj(t
(N)
j − t

(N)
j−1). Then (dropping the (N))

l.i.m.
δN→0

N∑

j=1

(Wtj
− Wtj−1

)2 = T − t0 (1.27)
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Proof: The statement (1.27) means convergence in the mean. Because of∑
∆tj = T − t0 we show

E




∑

j

((∆Wj)
2 − ∆tj)




2

→ 0 for δN → 0 .

Carrying out the multiplications and taking the mean gives 2
∑

j(∆tj)
2

This can be bounded by 2(T − t0)δN , which completes the proof.

Part of the derivation can be summarized to

E((∆Wt)
2 − ∆t) = 0 , Var((∆Wt)

2 − ∆t) = 2(∆t)2 ,

hence (∆Wt)
2 ≈ ∆t. This property of a Wiener process is symbolically written

(dWt)
2 = dt (1.28)

It will be needed in subsequent sections.
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Now turn to the right-hand side of inequality

N∑

j=1

|Wtj
− Wtj−1

|2 ≤ max
j

(|Wtj
− Wtj−1

|)
N∑

j=1

|Wtj
− Wtj−1

|

The continuity of Wt implies

max
j

|Wtj
− Wtj−1

| → 0 for δN → 0 .

Convergence in the mean shows that the vanishing of this factor must be compensated
by an unbounded growth of the other factor, so

N∑

j=1

|Wtj
− Wtj−1

| → ∞ für δN → 0 .

In summary, Wiener processes are not of bounded variation, and the integration with
respect to Wt can not be defined as an elementary limit of

∑N
j=1 b(tj−1)(Wtj

−Wtj−1
).
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Construct a Stochastic Integral
∫ t

t0

f(s)dWs

for general stochastic integrands f(t). (sketch the Itô integral)

For a step function b an integral can be defined as

∫ t

t0

b(s)dWs :=

N∑

j=1

b(tj−1)(Wtj
− Wtj−1

) . (1.29)

(Itô integral over a step function b) In case the b(tj−1) are random variables, b is
called a simple process. Then the Itô integral is again defined by (1.29). Stochastically
integrable functions f can be obtained as limits of simple processes bn in the sense

E

[ ∫ t

t0

(f(s) − bn(s))2ds
]
→ 0 for n → ∞ . (1.30)

Convergence in terms of integrals
∫

ds carries over to integrals
∫

dWt. This is achieved
by applying Cauchy convergence E

∫
(bn − bm)2ds → 0 and the isometry

E

[( ∫ t

t0

b(s)dWs

)2 ]
= E

[ ∫ t

t0

b(s)2ds
]

.
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Hence the integrals
∫

bn(s)dWs form a Cauchy sequence with respect to convergence
in the mean. Accordingly the Itô integral of f is defined as

∫ t

t0

f(s)dWs := l.i.m.n→∞

∫ t

t0

bn(s)dWs ,

for simple processes bn defined by (1.30). The value of the integral is independent of
the choice of the bn in (1.30). The Itô integral as function in t is a stochastic process
with the martingale property.

If an integrand a(x, t) depends on a stochastic process Xt, the function f is given
by f(t) = a(Xt, t). For the simplest case of a constant integrand a(Xt, t) = a0 the Itô
integral can be reduced to a Riemann-Stieltjes integal

∫ t

t0

dWs = Wt − Wt0 .

For the “first” nontrivial Itô integral consider Xt = Wt and a(Wt, t) = Wt.
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1.7 Stochastic Differential Equations

x(t) = x0 +

∫ t

t0

a(x(s), s)ds + randomness ,

The integral in this integral equation is an ordinary (Lebesgue- or Riemann-) integral.

The randomness here is modeled by a stochastic integral with respect to a Wiener
process. A stochastic process is denoted by Xt or St.

Xt = X0 +

∫ t

t0

a(Xs, s)ds +

∫ t

t0

b(Xs, s)dWs

This equation is named after Itô.
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Definition 1.10 (Itô stochastic differential equation)

An Itô stochastic differential equation is

dXt = a(Xt, t)dt + b(Xt, t)dWt ; (1.31a)

this together with Xt0 = X0 is a symbolic short form of the integral equation

Xt = X0 +

∫ t

t0

a(Xs, s)ds +

∫ t

t0

b(Xs, s)dWs . (1.31b)

The terms in (1.31) are named as follows:

a(Xt, t): drift term or drift coefficient

b(Xt, t): diffusion term

solution Xt: Itô process, or stochastic diffusion

A Wiener process is a special case of an Itô process, because from Xt = Wt the trivial
SDE dXt = dWt follows, hence a = 0 and b = 1.
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The simplest numerical method combines the discretized version of the Itô SDE

∆Xt = a(Xt, t)∆t + b(Xt, t)∆Wt (1.32)

with the Algorithm 1.8 for approximating a Wiener process, using the same ∆t for
both discretizations. The result is

Algorithm 1.11 (Euler discretization of an SDE)

Approximations yj to Xtj
are calculated by

Start: t0, y0 = X0, ∆t, W0 = 0.

loop j = 0, 1, 2, ...

tj+1 = tj + ∆t

∆W = Z
√

∆t with Z ∼ N (0, 1)

yj+1 = yj + a(yj , tj)∆t + b(yj , tj)∆W

For example, the step length ∆t is chosen equidistant, ∆t = T/m for a suitable integer
m. Solutions are called trajectories or paths. By simulation of the SDE we understand
the calculation of one or more trajectories.
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Example 1.12 dXt = 0.05Xt dt + 0.3Xt dWt

Without the diffusion term the exact solution would be Xt = X0e
0.05t. For

X0 = 50, t0 = 0 and a time increment ∆t = 1/250 the figure depicts a trajectory
Xt of the SDE.
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Application to the Stock Market

Samuelson (1965/1970): continuous model for motions of the prices St of stocks.

This standard model assumes that the relative change (return) dS/S of a security
in the time interval dt is composed of a deterministic drift term µ plus stochastic
fluctuations in the form σdWt:

Model 1.13 (geometric Brownian motion)

dSt = µSt dt + σSt dWt.
(1.33–GBM)

This SDE is linear in Xt = St. The drift rate is a(St, t) = µSt, with the expected
rate of return µ, and b(St, t) = σSt, with volatility σ. GMB is the reference model
on which the Black–Scholes approach is based. According to Assumption 1.2 µ and σ
are assumed constant.

The deterministic part of (GMB) is the ordinary differential equation

Ṡ = µS
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with solution St = S0e
µ(t−t0). For the linear SDE of (GMB) the expectation E(St)

solves Ṡ = µS. Hence S0e
µ(t−t0) is the expectation of the stochastic process and µ is

the expected growth rate.

The simulated values S1 of the ten trajectories in the figure group around the
value 50 · e0.1 ≈ 55.26.
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Empirical distribution of the values S1 about their expected value. For 10000
trajectories count how many of the terminal values S1 fall into the subintervals k5 ≤
t < (k + 1)5, for k = 0, 1, 2 . . .. The resulting histogram has a skewed distribution.
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The discrete version of (GBM) is

∆S

S
= µ∆t + σZ

√
∆t, (1.34a)

compare Algorithm 1.11. The ratio ∆S
S

is called one-period simple return, where ∆t
is interpreted as one period. It satisfies

∆S

S
∼ N (µ∆t, σ2∆t). (1.34b)

Provided the data match the GBM assumption, this distribution allows to calculate
estimates of historical values of the volatility σ. The approximation is valid as long
as ∆t is small.

For modeling of V (St, t), a risk-neutral world is assumed which leads to replace µ
by the risk-free rate r.
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Risk-Neutral Valuation

dS = µS dt + σS dW

= rS dt + (µ − r)S dt + σS dW

= rS dt + σS [γdt + dW ]

with γ := µ−r
σ

.

Girsanov: For suitable γ (e.g. γ constant) there is a probability Q such that

W γ
t := Wt +

∫ t

0

γds

is a (standard) Wiener process under Q.

The change of drift µ → r, whith Wt → W γ
t , adjusts the probability P to Q: With

respect to Q, the discounted e−rtSt is martingale.

Then, by the fundamental theorem of asset pricing, the market model is free of arbi-
trage.

Remark 1.14 (risk-neutral valuation principle)

For modeling options under GBM, the return rate µ is replaced by the risk-free
interest rate r.
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Mean Reversion

The assumptions of a constant interest rate r and a constant volatility σ are quite re-
strictive. SDEs for rt and σt have been constructed that control rt or σt stochastically.
A class of models is given by the SDE for the process rt,

drt = α(R − rt)dt + σrr
β
t dWt , α > 0. (1.40)

The drift term α(R − rt) is positive for rt < R and negative for rt > R, which causes
a pull to R. This effect is called mean reversion. The parameter R, which may depend
on t, corresponds to a long-run mean of the interest rate over time.

For β = 0 (constant volatility) the SDE specializes to the Vasicek model. The
Cox-Ingersoll-Ross model is obtained for β = 1

2 . Then the volatility σr

√
rt va-

nishes when rt tends to zero. Provided r0 > 0, R > 0, this guarantees rt ≥ 0.
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A simulation rt of the Cox-Ingersoll-Ross model for R = 0.05, α = 1, β = 0.5,
y0 = 0.15, ∆t = 0.01
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The SDE (1.40) is of a different kind as (GBM). Coupling the SDE for rt to that for St

leads to a system of two SDEs. Even larger systems are obtained when further SDEs
are coupled to define a stochasic process Rt or to calculate stochastic volatilities.
Related examples are given by Examples 1.15, 1.16 (Heston’s model) below.

Vector-Valued SDEs

The Itô equation (1.31) is formulated as scalar equation; accordingly the SDE (GBM)
is a one-factor model. The general multi-factor version can be written in the same

notation. Then Xt = (X
(1)
t , . . . ,X

(n)
t ) and a(Xt, t) are n-dimensional vectors. The

Wiener process can be m-dimensional, with components W
(1)
t , ...,W

(m)
t . Then b(Xt, t)

is an (n × m)-matrix. The interpretation of the SDE systems is componentwise. The
scalar stochastic integrals are sums of m stochastic integrals,

X
(i)
t = X

(i)
0 +

∫ t

t0

ai(Xs, s)ds +
m∑

k=1

∫ t

t0

bik(Xs, s)dW (k)
s ,

for i = 1, ..., n.
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Example 1.15 (mean-reverting volatility)

three-factor model with stock price St, instantaneous spot volatility σt and an
averaged volatility ζt serving as mean-reverting “parameter”:






dS = σSdW (1)

dσ = −(σ − ζ)dt + ασdW (2)

dζ = β(σ − ζ)dt

The stochastic volatility σ follows the mean volatility ζ and is simultaneously
perturbed by a Wiener process. −→ tandem
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Example 1.16 (Heston’s model)

Heston [Hes93] uses an Ornstein–Uhlenbeck process to model a stochastic vo-
latility σt. Then the variance vt := σ2

t follows a Cox–Ingersoll–Ross process:

dSt = µSt dt +
√

vt St dW
(1)
t

dvt = κ(θ − vt) dt + σv
√

vt dW
(2)
t

(1.43)

with two correlated Wiener processes W
(1)
t ,W

(2)
t and suitable parameters µ,

κ, θ, σv, ρ, where ρ is the correlation between W
(1)
t ,W

(2)
t . Hidden parameters

might be the initial values S0, v0, if not available.

This model establishes a correlation between price and volatility.
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1.8 Itô Lemma and Implications

Itô’s lemma is most fundamental for stochastic processes.

Lemma 1.17 (Itô)

Suppose Xt follows an Itô process, dXt = a(Xt, t)dt + b(Xt, t)dWt, and let

g(x, t) be a function with continuous ∂g
∂x

, ∂2g
∂x2 , ∂g

∂t
. Then Yt := g(Xt, t) follows

an Itô process with the same Wiener process Wt:

dYt =

(
∂g

∂x
a +

∂g

∂t
+

1

2

∂2g

∂x2
b2

)
dt +

∂g

∂x
b dWt (1.44)

where the derivatives of g as well as the coefficient functions a and b in general
depend on the arguments (Xt, t).

Sketch of a proof: When t varies by ∆t, then X by ∆X = a · ∆t + b · ∆W and Y by
∆Y = g(X+∆X, t+∆t)−g(X, t). The Taylor expansion of ∆Y begins with the linear
part ∂g

∂x
∆X + ∂g

∂t
∆t, in which ∆X = a∆t + b∆W is substituted. The additional term

with the derivative ∂2g
∂x2 is new and is introduced via the O(∆X2)-term of the Taylor

expansion. Because of (∆W )2 ≈ ∆t, this term is also of the order O(∆t) and belongs
to the linear terms. Taking correct limits (as in Lemma 1.9) one obtains (1.44).
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Consequences for Stocks and Options

Assume the stock price to follow (GBM), hence Xt = St, a = µSt, b = σSt, µ, σ
constant. The value Vt of an option depends on St. Assuming C2-smoothness of Vt

depending on S and t, apply Itô’s lemma. For V (S, t) in the place of g(x, t) the result
is

dVt =

(
∂V

∂S
µSt +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

t

)
dt +

∂V

∂S
σStdWt. (1.45)

This SDE is used to derive the Black-Scholes equation.

As second application of Itô’s lemma consider Yt = log(St), viz g(x, t) = log(x).
This leads to the linear SDE

d log St = (µ − 1

2
σ2)dt + σdWt.

For this linear SDE the expectation E(Yt) satisfies the deterministic part

d

dt
E(Yt) = µ − σ2

2
.

The solution of ẏ = µ − σ2

2 with initial condition y(t0) = y0 is

y(t) = y0 + (µ − σ2

2
)(t − t0).
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In other words, the expectation of the Itô process Yt is

E(log St) = log S0 + (µ − σ2

2
)(t − t0) .

Analogously, we see from the differential equation for E(Y 2
t ) (or from the analytical

solution of the SDE for Yt) that the variance of Yt is σ2(t − t0). The simple SDE
for Yt implies that the stochastic fluctuation of Yt is that of σWt. So Yt is normally
distributed, with density

f̂(Yt) :=
1

σ
√

2π(t − t0)
exp





−

(
Yt − y0 −

(
µ − σ2

2

)
(t − t0)

)2

2σ2(t − t0)





.

Back transformation using Y = log(S) and considering dY = 1
S
dS and f̂(Y )dY =

1
S
f̂(log S)dS = f(S)dS yields the density of St:

f(S; t − t0, S0) :=
1

Sσ
√

2π(t − t0)
exp





−

(
log(S/S0) −

(
µ − σ2

2

)
(t − t0)

)2

2σ2(t − t0)






(1.48)
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This is the density of the lognormal distribution. The stock price St is
lognormally distributed under the basic assumption of (GBM). The distribution is
skewed. Now the skewed behavior coming out of the experiment reported earlier is
clear.

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100 120 140

density over S
for µ = 0.1,
σ = 0.2
S0 = 50
t0 = 0
t = 1 (red, solid curve)
t = 2 (green, dashed)
t = 5 (blue, flat)



Seydel: Tools for CF, Chapter 1 72

Test the idealized Model 1.13 of GBM against actual empirical data. Suppose the
time series S1, ..., SM represents consecutive quotations of a stock price. To test the
data, histograms of the returns are helpful. The transformation y = log(S) is most
practical. It leads to the notion of the log return, defined by

Ri,i−1 := log
Si

Si−1
.

Since Si = Si−1 exp(Ri,i−1), the log return is also called continuously compounded
return in the ith time interval. Let ∆t be the equally spaced sampling time interval
between the quotations Si−1 and Si, measured in years. Then (1.48) leads to

Ri,i−1 ∼ N ((µ − σ2

2
)∆t , σ2∆t) .

The sample variance σ2∆t of the data allows to calculate estimates of the historical
volatility σ.

But the tails of the data are not well modeled by the hypothesis of a geometric
Brownian motion: The exponential decay expressed by (1.48) amounts to thin tails.
This underestimates extreme events and hence does not match reality.
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analytical solution of the basic linear constant-coeffficient SDE (GBM)

dSt = µSt dt + σSt dWt

For an arbitrary Wiener process Wt set Xt := Wt and apply Itô’s lemma

Yt = g(Xt, t) := S0 exp

((
µ − σ2

2

)
t + σXt

)

From Xt = Wt follows the trivial SDE with coefficients a = 0 and b = 1. By Itô’s
lemma

dYt =

(
µ − σ2

2

)
Ytdt +

σ2

2
Ytdt + σYtdWt

= µYtdt + σYtdW.

Consequently the process

St := S0 exp

((
µ − σ2

2

)
t + σWt

)
(1.54)

solves the linear constant-coefficient SDE (GBM).
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1.9 Jump Processes

Rapid asset price movements can be modeled as jumps. Here we discuss Merton’s
jump diffusion, which is based on a Poisson process. One has to pay a price: With
a jump process the risk of an option in general can not be hedged away to zero.

Denote the time instances for which a jump occurs τj , with

τ1 < τ2 < τ3 < . . .

Let the number of jumps be counted by the counting variable Jt, where

τj = inf{t ≥ 0 , Jt = j}.

The probability that a jump occurs is introduced via a Bernoulli experiment. To this
end, consider a subinterval of length ∆t := t

n
and allow for two outcomes, jump yes

or no, with the probabilities

P(Jt − Jt−∆t = 1) = λ∆t
P(Jt − Jt−∆t = 0) = 1 − λ∆t

for some λ such that 0 < λ∆t < 1. The parameter λ is the intensity of the jump
process.
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P(Jt − Jt−∆t = 1) = λ∆t
P(Jt − Jt−∆t = 0) = 1 − λ∆t

Consequently k jumps in 0 ≤ τ ≤ t have the probability

P(Jt − J0 = k) =

(
n
k

)
(λ∆t)k(1 − λ∆t)n−k ,

where the trials in each subinterval are considered independent. A little reasoning
reveals that for n → ∞ this probability converges to

(λt)k

k!
e−λt ,

which is known as the Poisson distribution with parameter λ > 0.
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Definition 1.19 (Poisson process)

The process {Jt , t ≥ 0} is called Poisson process if the following conditions hold:

(a) J0 = 0

(b) Jt − Js are integer-valued for 0 ≤ s < t < ∞ and

P(Jt − Js = k) =
λk(t − s)k

k!
e−λ(t−s) for k = 0, 1, 2 . . .

(c) The increments Jt2 − Jt1 and Jt4 − Jt3 are independent for all 0 ≤ t1 < t2 <
t3 < t4.

As consequence of this definition, several properties hold.

Properties 1.20 (Poisson process)

(d) Jt is right-continuous and non-decreasing.

(e) The times between successive jumps are independent and exponentially distri-
buted with parameter λ: P(τj+1 − τj > ∆τ) = e−λ∆τ for each ∆τ .

(f) Jt is a Markov process.

(g) E(Jt) = λt, Var(Jt) = λt
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Simulating jumps: the instant τj

two possibilities to calculate jump instances τj such that the probabilities

P(Jt − Jt−∆t = 1) = λ∆t
P(Jt − Jt−∆t = 0) = 1 − λ∆t

are met.

First, these probablities can be simulated using uniform deviates. In this way a
∆t-discretization of a t-grid can be easily exploited to decide whether a jump occurs
in a subinterval.

The other alternative is to calculate exponentially distributed random numbers
h1, h2, . . . to simulate the intervals ∆τ between consecutive jump instances, and set

τj+1 := τj + hj .

(See Chapter 2 for uniform deviates and exponentially distributed random numbers.)
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Simulating jumps: the jump magnitude

In addition to the jump instances τj another random variable is required to simulate
the jump sizes. The unit amplitudes of the jumps of the Poisson counting process Jt

are not relevant for the purpose of establishing a market model. The jump sizes of
the price of a financial asset will be considered random.

Let the random variable St jump at τj and denote τ+ the moment after the jump
and τ− the moment before. Then the absolute size of the jump is

∆S = Sτ+ − Sτ− ,

which we model as a proportional jump,

Sτ+ = qSτ− with q > 0 . (1.56)

So, ∆S = qSτ− − Sτ− = (q − 1)Sτ− . The jump sizes equal q − 1 times the current
asset price. Accordingly, a jump process depends on a process qt and is written

dSt = (qt − 1)StdJt , where Jt is a Poisson process.

compound Poisson process
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Jump Diffusion

Next superimpose the jump process to the continuous Wiener process. The combined
geometric Brownian und jump process is given by

dSt = µStdt + σStdWt + (qt − 1)StdJt . (1.57)
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Example 1.21
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r = 0.06, µ = 0.0995
σ = 0.3
λ = 0.2
µJ = −0.3
σJ = 0.4

Assume log(q) ∼ N (µJ, σ
2
J). exp(µJ) = 0.7408, that is an average drop of 26 % .

A heavy 47% crash occurs for τ = 0.99, with q = 0.526.
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An analytical solution of (1.57) can be calculated on each of the jump-free subintervals
τj < t < τj+1 where the SDE is just GBM dS = S(µdt + σdW ).

For example, in the first subinterval until τ1 the solution is given by (1.54). At τ1

a jump of size
(∆S)1 := (qτ1

− 1)Sτ
−

1

occurs, and thereafter the solution continues with

St = S0 · exp

((
µ − σ2

2

)
t + σWt

)
+ (qτ1

− 1)Sτ−1
,

until τ2. The interchange of continuous parts and jumps proceeds in this way, all
jumps are added. So the SDE can be written as

St = S0 +

∫ t

0

Ss(µds + σdWs) +

Jt∑

j=1

Sτ
−

j

(qτj
− 1) .

The task of minimimizing risks leads to a partial integro-differential equation. This
equation reduces to the Black-Scholes equation in the no-jump special case for λ = 0.

Merton 1976
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Notes and Extensions
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Black-Scholes Formula as Limiting Case of the Binomial Model

Consider a European Call in the binomial model of Section 1.4.

Suppose the calculated value is V
(M)
0 . In the limit M → ∞ the sequence V

(M)
0 con-

verges to the value VC(S0, 0) of the continuous Black-Scholes model. To prove this,
proceed as follows:

a) Let jK be the smallest index j with SjM ≥ K. Find an argument why

M∑

j=jK

(
M

j

)
pj(1 − p)M−j(S0u

jdM−j − K)

is the expectation E(VT ) of the payoff.

b) The value of the option is obtained by discounting, V
(M)
0 = e−rT E(VT ). Show

V
(M)
0 = S0BM,p̃(jK) − e−rT KBM,p(jK) .

Here BM,p(j) is defined by the binomial distribution, and p̃ := pue−r∆t.
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c) For large M the binomial distribution is approximated by the normal distribu-

tion with distribution F (x). Show that V
(M)
0 is approximated by

S0F

(
Mp̃ − α√
Mp̃(1 − p̃)

)
− e−rT KF

(
Mp − α√
Mp(1 − p)

)
,

where

α := − log S0

K
+ M log d

log u − log d
.

d) Substitute the p, u, d by their expressions from (1.11) to show

Mp − α√
Mp(1 − p)

−→ log S0

K
+ (r − σ2

2 )T

σ
√

T

for M → ∞.

Hint: Up to terms of high order the approximations u = eσ
√

∆t, d = e−σ
√

∆t hold. (In
an analogous way the other argument of F can be analyzed.)
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Illustration of a Binomial Tree and Payoff
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for a put, (S, t)-points for M = 8, K = S0 = 10.
The binomial density is shown, scaled with factor 10.
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Return of the Underlying

Let a time series S1, ..., SM of a stock price be given.

The simple return

R̂i,j :=
Si − Sj

Sj

,

an index number of the success of the underlying, lacks the desirable property of
additivity

RM,1 =
M∑

i=2

Ri,i−1. (∗)

The log return
Ri,j := log Si − log Sj

satisfies (∗) and Ri,i−1 ≈ R̂i,i−1


