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Prefa
e

These are the course notes of my introductory lectures on Computational Finance. This
course is a one-semester course, 4 hours per week, with exercises as homework. The level
is tailored to undergraduate students.

The choice of subjects provides an elementary introduction into the field. Basic know-
ledge on financial markets is assumed, but otherwise no specific prerequisites are needed,
except for an education in calculus and basic numerical analysis. The style is exposi-
tory. Ideas are put forward, and the methods are summarized as algorithms. Numerical
experiments and work on the exercises are essential for understanding.

The author has developed this course over the past 15 years, experimenting with different
kind of explanations and expositions. Rich experience in teaching the material has flown
into my book Tools for Computational Finance; in some way these course notes may be
seen as a condensed version of essential parts.

Köln, July 2014 Rüdiger Seydel



Contents

Prologue: Financial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Chapter 1: Modeling of Financial Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Binomial Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.4 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

1.5 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Risk-Neutral Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 2: Computation of Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Uniform Deviates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Random Numbers from Other Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

2.3 Normal Deviates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Correlated Normal Random Variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Sequences of Numbers with Low Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3: Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Constructing Integrators for SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Monte Carlo Methods for European Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Monte Carlo Methods for American Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 4: Finite-Difference Methods for American Vanilla Options . . . . . .63

4.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Basics of Finite-Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

4.3 Crank–Nicolson Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

4.5 Early Exercise Structure — Free-Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Linear Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

4.7 Numerical Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

Exercises



Seydel: Course Notes on Computational Finance, Prologue (Version 2014) iii

0. (Prologue) Finan
ial Derivatives

A. Overview

Assets include

equities, stocks

bonds

commodities

spot market: delivery on the same date

derivatives markets:

contract today (t = 0)

settlement at a future date (i.e. for t = T > 0, T maturity, in years)

Notation: St (or S(t)) is the market price of the asset at time t.

Examples of risks

1.) A stock holder wishes to sell 1000 shares in 6 months. Today’s spot price per
share is 50$. Risk: Crash! Aim: in 6 months these shares should be worth at least
50, 000$ (T = 0.5).

2.) A farmer expects in three months (in July) a crop of 800 tons of corn. Risks:
crop failure, or price decline. Aim: sell the crop today, and deliver end of July
(T = 0.25). Question: which price is adequate?

3.) Buy today a shipment of oil (in Dollar) supposed to arrive in two weeks in Rotter-
dam, where it is supposed to be sold (in Euro). Risks: delayed arrival, changes in
price and exchange rate.

4.) A company raises a loan with variable interest rate rv(t). Risk: increasing rate.

and so on.

Problem in each case: The crucial future value ST is unknown today (t = 0). Known is
S0 and the “current” interest rate, and possibly further information from the past (t ≤ 0).

But:
The contract is settled today and fixes a price F at maturity T .

Question:
What is the fair price that enables an agreement of both parties (seller and buyer)?
This main question goes along with other questions, for example, how will “the inter-
est” rate develop?
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Most of those risks can be hedged with financial derivatives, which are instruments derived
from underlying assets. Three kind of derivatives are

futures/forwards

options

swaps

Our main concern: What is a reasonable price of such derivatives?

“Financial Engineering”

For the pricing of futures/forwards typically simple computational tool suffice. But options
require sophisticated numerical algorithms.

This course: essentially numerical methods for options. Require knowledge on

foundations of stochastics,

differential equations, including partial differential equations (PDEs)

numerical analysis

Contents

Chapter 1: Modeling

Chapter 2: Random Numbers

Chapter 3: Monte Carlo Methods

Chapter 4: Standard Methods for Standard Options

(Chapter 5: Methods for Exotic Options)

B. Forwards and Arbitrage

Definition: A forward is a contract between two parties A and B to buy or sell an asset
at a future time t such that A delivers the asset (spot price today S0), and B pays the price
F .

Proposition:

When for 0 ≤ t ≤ T the asset does not produce income nor costs, then

F = S0e
rT

Here r is the interest rate of a riskless bond with time to maturity T , and two technical
assumptions hold (see below). The proof follows from the no-arbitrage principle.

Definition: Arbitrage = risk-free profit

or more precise:

arbitrage means the existence of a portfolio, which requires no investment initially, and
which makes no loss but very likely a gain at maturity.
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In a (fictitious) idealized market, information spreads rapidly and arbitrage opportunities
become apparent and do not last long.

General assumption: There is no arbitrage! (no-arbitrage principle)

further assumptions:

1.) continuously compounded interest (factor erT )

2.) lending rate and borrowing rate are equal.

Proof of F = S0e
rT:

1. Assume F > S0e
rT .

Then there is an arbitrage-strategy as follows:

t = 0: borrow S0 at the interest rate r,
buy the asset,
enter a forward contract, to sell the asset at t = T for the price F .

t = T : sell the asset: +F
repay the loan − S0e

rT

result: F − S0e
rT > 0,

which is a riskless profit, and hence arbitrage!
This contradicts the no-arbitrage principle ⇒ F ≤ S0e

rT

2. Assume F < S0e
rT .

t = 0: Investors who own the asset sell it: +S0

invest S0 at interest rate r,
enter a forward-contract to buy the asset at price F

t = T : from the contract: −F
from the investment: + S0e

rT

result S0e
rT − F > 0 hence arbitrage

contradiction! ⇒ F ≥ S0e
rT

3. together: F = S0e
rT

Remark: For two interest rates r1, r2 obtain F ≤ S0e
r1T ; F ≥ S0e

r2T ;
hence: S0e

r1T ≤ F ≤ S0e
r2T

C. Interest Rate

At time t, lend money N(t) for the short period ∆t. Let r(t,∆t) be the corresponding
interest rate,

N(t+∆t)−N(t) = r(t,∆t)N(t)∆t .

The discount factor for the interest period from t to T is

Zr(t, T ) :=
N(t)

N(T )
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For time-continuous t ∈ IR and integrable r follows:

N(T ) = N(t) exp

T∫

t

r(x) dx .

Specifically for constant r we have

Z(t, T ) = e−r(T−t) .

risk-free interest rate: The rate earned on a riskless asset is the risk-free interest rate.
Take zero-bonds for its derivation out of market data.

For the following, r always means the risk-free interest rate that matches the time horizon
T − t.

D. Literature

The standard literature for this course is:

R.U. Seydel: Tools for Computational Finance. 6th Ed., Springer, London 2017

For financial background:

J.C. Hull: Options, Futures, and Other Derivates. Prentice Hall.

For colored illustrations and further explanation we recommend to consult

Topics in Computational Finance

This collection is part of the homepage www.compfin.de
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1. Modeling of Finan
ial Options

1.1 Options

Definition (Option)

An option is the right (but not the obligation) to buy or sell a risky asset at a prespecified
fixed “strike” price K until a maturity time T .

The terms of the option contract are fixed by the writer. The holder of the option pays a
premium V for its purchase.

Exercising the option means to buy or sell the underlying asset for the price K according to
the option’s contract. An option with the right to buy the underlying is called call, and the
option to sell is called put.

Question: What is the fair premium V ?

This depends on the price K, on the price S0, on T , and on market data such as the
rate r or the volatility σ.

The volatility σ measures the size of fluctuations of the asset price St, and hence indicates
the risk.

A European option can only be exercised at maturity (t = T ); an American option can
be exercised anytime during the life time 0 ≤ t ≤ T .

The value of the premium V at maturity is easy to assess: it is the payoff.

1. Call in t = T

The holder of the option has two alternatives to acquire the asset:

(a) She buys it on the spot market and pays ST , or

(b) exercises the call option and pays the strike price K.

The rational holder optimizes her position.

1st case: ST ≤ K ⇒ The holder pays ST on the spot market, and lets the option expire.
Then the option is worthless, V = 0.

2nd case: ST > K ⇒ The holder exercises the call and pays K. And immediately she
sells the asset for the spot price ST . The profit is ST −K, hence V = ST −K.

In summary, the payoff of a call is

V (ST , T ) =

{
0 in case ST ≤ K

ST −K in case ST > K

= max {ST −K, 0} =: (ST −K)+
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2. Put in t = T

Analogous reasoning leads to the payoff of a put:

V (ST , T ) =

{
K − ST in case ST ≤ K

0 in case ST > K

= max {K − ST , 0} =: (K − ST )
+

S

V

K S

V

K

K

Payoff of a call (left) and of a put (right), in t = T .

The same arguing is valid for American-style options for any t ≤ T : the payoffs are

put: (K − St)
+

call: (St −K)+

The value V for t < T , in particular for t = 0, is more difficult to determine. The no-
arbitrage-principle plays a central role. This mere principle leads to bounds for V . We give
some examples.

The value V (S, t) of an American option can not be smaller than the payoff, because (proof
for a put; call is analogous):

Obviously V ≥ 0 for all S. Assume: S < K and 0 ≤ V < K−S. Establish arbitrage as
follows: Buy the asset (−S) and the put (−V ), and exercise immediately: (+K). By
K > S+ V this is a risk-free profit K −S − V > 0, which contradicts the no-arbitrage-
principle.

Hence
V Am
Put (S, t) ≥ (K − S)+ ∀S, t .

Analogously:
V Am
Call(S, t) ≥ (S −K)+ ∀S, t .

Also the inequality
V Am ≥ V Eu

holds since an American option embraces the European option. When no dividend is paid,
the put-call parity

S + VPut = VCall +Ke−r(T−t)

holds for European-style options. This leads to further bounds, for example, to

V Eu
Put ≥ Ke−r(T−t) − S.
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The figure illustrates the a-priori bounds for European options on assets that pay no divi-
dends for 0 ≤ t ≤ T (for r > 0).

V

call

K S

V

put

K

K S

Definition (historic volatility)

The historic volatility σ is the standard deviation of St. It is scaled by 1√
∆t

since the

data are returns sampled at ∆t. In reality, σ is not constant, but the classic Black–
Scholes-model takes it as constant. The empirical determination of market parameters
(such as σ) is an ambitious task (calibration).

Notice that each option involves three prices, namely, the price St of the underlying asset,
the strike price K and the premium V of the option.

Definition

Options with the above payoffs Ψ(S) := (K − S)+ or Ψ(S) := (S − K)+ on a single
asset are called standard options, or vanilla options. There are many other kinds of
options with other features. These other types of options are called exotic.

Examples of exotic options

Basket: The underlying is a basket of several assets, e.g.,
∑m

i=1 wiSi(t), where Si is the
market price of the ith asset, m > 1.

Options with other payoffs, such as the binary put with

payoff =

{
0 in case St > K

1 in case St ≤ K.

Path dependence: For instance, the payoff ( 1
T

∫ T

0
S(t) dt − K)+ involves the average

value, which depends on the path of S(t) (average price call).
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Barrier: For instance, an option ceases to exist when St reaches a prespecified barrier
B.

On the Geometry of options

The values V (S, t) obey the bounds sketched above, see the illustration of an American put.
V (S, t) can be interpreted as surface over the half strip 0 ≤ t ≤ T, S > 0. This V (S, t) is
called value function. At the early-exercise curve, the surface merges in the plane defined
by the payoff.

S

t

0

V

2

1

T

K

C

C

K

Importance: When the market price St reaches this curve C1, immediate exercise is op-
timal: invest K for the interest rate r. The situation is sketched in an (S, t)-plane for an
American put that pays no dividend.

t

T

0

S
KS

0

For American call options with dividend payment the situation is analogous. The geome-
try at early-exercise curves will be discussed in Chapter 4. The curve must be calculated
numerically.

1.2 Mathematical Model

A. Black–Scholes Market

Here we discuss mathematical models of how paths St may behave. We list some assump-
tions, which essentially go back to Black, Scholes and Merton (1973, Nobel-Prize 1997).
These classic assumptions lead to a partial differential equation (PDE), the famous Black–



Seydel: Course Notes on Computational Finance, Chapter 1 (Version 2015) 5

Scholes equation:

∂V

∂t
+

1

2
σ2 S2 ∂2V

∂S2
+ r S

∂V

∂S
− r V = 0

This equation is a symbol representing the classic theory. Each solution V (S, t) of a European
standard option must solve this PDE, satisfying for t = T the terminal condition V (S, T ) =
Ψ(S) where Ψ denotes the payoff.

Assumptions of the Model

1. There is no arbitrage.

2. The market is frictionless. That is, there are no transaction costs, and rates for lending
and borrowing money are equal. All variables are perfectly divisible (∈ IR). And
individual trading does affect the market price.

3. The price St follows a geometric Brownian motion (explained later).

4. Technical assumptions:

r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in 0 ≤ t ≤ T .

Provided these assumptions hold (some can be weakened), the value function of
a European standard option solves the Black–Scholes equation. Hence a possible
approach to price a European option is to solve the Black–Scholes equation. There is an
analytical solution; this is given at the end of this chapter (with δ a continuous dividend
rate).

The above model of a finance market is the classic approach; there are other market models.

The model with its geometric Brownian motion (Section 1.5) is a continuous-time model,
t ∈ IR. There are also discrete-time models, which consider only discrete time instances.
Other market models do not use the geometric Brownian motion. Such models are mainly
working with jump processes.

Numerical Tasks:

• Computation of V (S, t), in particular for t = 0, with early-exercise curve for American
options,

• Computation of sensitivities (“Greeks”), such as ∂V (S,0)
∂S ,

• Calibration, which means to estimate parameters that match empirical data.

B. Risk-Neutral Probabilities (One-Period Model)

Assumptions: 0 < d < u, and the situation of the figure below. There are only two time
instances: 0, T , and two possible future asset prices S0d, S0u. V0 denotes the (unknown)
value of the option “today” for t = 0, and S0 is the current value of the asset.
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T

0

t

V V (u)

S

V

(d)

S

S S u0 0d

0

0

Consider a portfolio with two positions:

1. ∆ shares of the asset

2. a short position of one option written on this asset

With Πt denoting the wealth function, the value Π0 of the portfolio at the time 0 is

Π0 = S0 ∆− V0 .

The number ∆ is to be determined. At time T the value of the underlying is “up” or “down”
and the portfolio is

Π(u) = S0u∆− V (u)

Π(d) = S0d∆− V (d) .

V (u) and V (d) are fixed by the payoff. Choose ∆ such that the portfolio becomes riskless
at time T . That is, the value of the portfolio should be the same, no matter whether the
market price goes “up” or “down”,

Π(u) = Π(d) =: ΠT .

Consequently,
S0∆(u− d) = V (u) − V (d)

or ∆ =
V (u) − V (d)

S0u− S0d
.

With this special value of ∆ the portfolio is riskless. Invoking the no-arbitrage principle,
we conclude: Any other risk-free investment must have the same value, because otherwise
arbitrageurs would make a riskless profit by exchanging the investments. Hence: ΠT =
Π0 erT

An elementary calculation shows

V0 = e−rT
(
V (u)q + V (d)(1− q)

)

with q := erT−d
u−d

. This formula has the structure of an expectation. In case 0 < q < 1 (this

requires d < erT < u, a condition guaranteeing absence of arbitrage∗), then this q induces a

∗ What are the arbitrage strategies in case d ≥ erT or erT ≥ u ?
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probability Q, and

V0 = e−rT EQ[VT ]

[Recall that in a discrete probability space with a probability P

EP[X ] =

n∑

i=1

xi P(X = xi)

holds, where X is a random variable.] The special probability Q defined above is called
risk-neutral probability. For S0 we have

EQ[ST ] =
erT − d

u− d︸ ︷︷ ︸
=q

S0u+
u− erT

u− d︸ ︷︷ ︸
=1−q

S0d = S0e
rT ,

or

S0 = e−rT EQ[ST ] .

Summary:

In case the portfolio is risk-free (achieved by the above special value of ∆) and when

0 < q < 1 with q = erT−d
u−d , then there is a probability Q, such that

V0 = e−rTEQ[VT ] and

S0 = e−rTEQ[ST ] .

The quantity ∆ is called Delta. Later we shall see ∆ = ∂V
∂S

in the time-continuous
situation. This is the first and most important example of the “Greeks”, others are
∂2V
∂S2 ,

∂V
∂σ , ...

∆ is the key for “Delta-Hedging”, for minimizing or eliminating the risk of the writer
of an option.

Remark: The relation
e−rT EQ[ST ] = S0

for all T is the martingale property of the discounted process e−rtSt with respect to the
probability Q.
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1.3 Binomial Method

For the numerical pricing of options, the continuous time must be discretized. Among the
many possible approaches the tree methods have the reputation to be both simple and
robust. The simplest version uses a binomial tree. The Black–Scholes model results in the
limit when the fineness of the binomial tree goes to zero.

Define an equidistant time discretization as follows:

M : number of time steps
∆t := T

M
ti := i ·∆t, i = 0, ...,M
Si := S(ti)

On the Si-axes we shall define discrete Sj,i-values.

−

t i+1

t i

Si+1

Si

t+ ∆t

p1−p

SuSd

t

S

t

S

Assumptions

(Bi1) The market price over one period ∆t can only take two values,

Su or Sd with 0 < d < u.

(Bi2) Let the probability of an “up” motion be p, P(up) = p, with 0 < p < 1.

(Bi3) Expectation and variance equal those of the continuous-time model (for geometric
Brownian motion St with riskless growth rate r).

(Bi1) and (Bi2) define the framework of a binomial process with probability. The free
parameters u, d, p are to be determined such that (Bi1) – (Bi3) hold.

Remarks

1. It turns out that P is the risk-neutral probability Q. Literature on the stochastic back-
ground: [Musiela&Rutkowski: Martingale Methods in Financial modeling], [Shreve:
Stochastic Calculus for Finance II (Continuous-time models)].

2. In Section 1.5D we shall show for the continuous-time Black–Scholes model

E[St] = S0e
r(t−t0)

E[S2
t ] = S2

0e
(2r+σ2)(t−t0)

Set Si for S0, Si+1 for St and ∆t for t− t0.

3. The expectations are conditional expectations since the initial values S(t0) or Si are
given.
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Conclusion for the step i −→ i+ 1:

E[S(ti+1) | S(ti) = Si] = Sie
r∆t

Var[S(ti+1) | S(ti) = Si] = S2
i e

2r∆t(eσ
2∆t − 1)

The expectation of the discrete model is

E[Si+1] = p Siu+ (1− p) Sid.

Equating with the expression of the continuous-time model shows

er∆t = pu+ (1− p)d .

This is the first equation for the three unknowns u, d, p. This gives

p =
er∆t − d

u− d
.

For 0 < p < 1 we require
d < er∆t < u .

This must hold because otherwise arbitrage is possible. (Compare with Section 1.2B to see
that p is the q and represents the risk-neutral probability.)

Equating variances leads to

Var[Si+1] = E[S2
i+1]− (E[Si+1])

2

= p (Siu)
2 + (1− p) (Sid)

2 − S2
i (pu+ (1− p)d)2

!
= S2

i e
2r∆t(eσ

2∆t − 1) ,

which amounts to
e2r∆t+σ2∆t = pu2 + (1− p)d2.

A third equation can be posed arbitrarily. For example, a kind of symmetry is expressed by

u · d = 1.

The resulting system of nonlinear equations for u, d, p is

β : =
1

2
(e−r∆t + e(r+σ2)∆t)

u = β +
√

β2 − 1

d = 1/u = β −
√

β2 − 1

p =
er∆t − d

u− d
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This defines the grid of a tree. By the requirement ud = 1, this simple tree is rigid in the
sense that its parameters u, d, p do not depend on K or S0. The tree is recombining.

2

S

Sd Su

Sd Sud Su2

Since Si+1 = αSi, α ∈ {u, d} the “branches” of the tree grow exponentially.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250

S

T

The S-values of the grid are

Sj,i := S0u
jdi−j , j = 0, ..., i, i = 1, ...,M.

Valuation on the Tree

For tM the value of the option is known from the payoff Ψ(S) = (S −K)+ or (K − S)+:

Vj,M := Ψ(Sj,M )

By he risk-neutral evaluation principle (Section 1.2B),

Vi = e−r∆t E[Vi+1],

or applied to the tree:

Vj,i = e−r∆t · (pVj+1,i+1 + (1− p)Vj,i+1) .
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This relation establishes a recursion, which starts with i = M −1 and prices V at the nodes,
until V0 := V0,0.

In case of an American option, each node requires a check whether early exercise is
reasonable. The holder of the option optimizes her position by comparing the payoff Ψ(S)
with the continuation value: she chooses the larger value. This requires to modify the above
recursion. We denote the continuation value

V cont
j,i := e−r∆t (pVj+1,i+1 + (1− p)Vj,i+1).

For European options, simply Vj,i := V cont
j,i . For American options Vj,i := max{Ψ(Sj,i), V

cont
j,i },

or

call: Vj,i := max{(Sj,i −K)+, V cont
j,i }

put: Vj,i := max{(K − Sj,i)
+, V cont

j,i }
(principle of dynamic programming)

Algorithm (Binomial Method, basic version)

Input: r, σ, S = S0, T, K, put or call,

European or American, M

compute: ∆t := T/M, u, d, p as defined above

S0,0 := S0

Sj,M = S0,0u
jdM−j , j = 0, 1, ...,M

(for American options in addition Sj,i = S0,0u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)

Vj,M from the payoff

Vj,i for i < M by the proper formula

Output: V0,0 is approximation for V (S0, 0)

The two different decisions, either holding or exercising the American-style option, have
a geometrical aspect: In the (S, t)-plane the nodes with V cont

j,i > Ψ(Sj,i) characterize the
continuation area, and the other nodes are in the stopping area. How the early-exercise
curve separates the two areas will be discussed in more detail in Chapter 4.

Advantages of the Method

– easy to implement,

– robust, and

– can be adapted to other types of options.
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Disadvantages of the Method

– accuracy is rather poor:

error O(1/M) = O(∆t), which is linear convergence. (But the accuracy matches
practical requirements.)

– In case V0 is needed for several values of S, the algorithm must be restarted.

Enhancements

– To avoid oscillations, generalize ud = 1 to ud = γ and choose γ such that for t = T
one node of the tree falls on the strike value K. Then the parameters depend on K
and S0, resulting in a more flexible tree and improved accuracy; extrapolation makes
sense.

– Discrete dividend payment at time tD: Cut the tree at tD and shift the S-values by
−D. As result, evaluate the tree at S̃0 := S0 −De−rtD . (Illustrations in Topic 1 and
5 in the Topics for CF.)

– Sensitivities (“greeks”) are calculated by difference quotients.

Problems

In the higher-dimensional case (e.g. basket option with three or more assets) it is not
obvious how to generalize the tree.
In the literature the above method is often called Cox-Ross-Rubinstein method (CRR).
Other extensions: trinomial method; “implied grid” for variable σ(S, t).

1.4 Stochastic Processes

This section introduces continuous-time models as they are used by Black, Scholes and
Merton. Essentially we discuss (geometric) Brownian motion.

History

Brown (1827): studied erratic motion of pollen.

Bachelier (1900): applied Brownian motion to model asset prices.

Einstein (1905): molecular motion

Wiener (1923): mathematical model

since 1940: Itô and others

Definition (Stochastic Process)

A stochastic process is a family of random variables Xt for t ≥ 0 or 0 ≤ t ≤ T .

Each sample results in a function Xt called path or trajectory.

Definition (Wiener process / standard Brownian motion)

Wt (notation also W (t) or W or {Wt}t≥0) has the properties:

(a) Wt is a continuous stochastic process

(b) W0 = 0

(c) Wt ∼ N (0, t)
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(d) All increments ∆Wt := Wt+∆t−Wt (∆t arbitrary) on non-overlapping t-intervals
are independent.

(c) means: Wt is distributed normally with E[Wt] = 0 and Var[Wt] = E[W 2
t ] = t.

Remarks

1) “standard”, because it is scalar, driftless, and W0 = 0.
Xt = a+ µt+Wt with a, µ ∈ IR is the general Brownian motion (with drift µ).

2) Consequences (also for W0 = a):

E[Wt −Ws] = 0 , Var[Wt −Ws] = t− s for t > s .

(show this as exercise)

3) Wt is nowhere differentiable! Motivation:

Var

[
∆Wt

∆t

]
=

1

(∆t)2
Var[∆Wt] =

(
1

∆t

)2

·∆t =
1

∆t

tends to ∞ for ∆t → 0.

4) A Wiener process is self-similar in the sense:

Wβt
d
=
√
β Wt

(both sides obey the same distribution). More general, there are fractal Wiener pro-
cesses with

Wβt
d
= βHWt ,

for the standard Wiener process H = 1
2 . H is the Hurst-exponent. Mandelbrot postu-

lated that finance models should use fractal processes.

Importance

The Wiener process is “driving force” of basic finance models.

Discretization/Computation

So far we have considered Wt for continuous-time models (t ∈ IR). Now we approxi-
mate W by a discretization. Take ∆t > 0 as a fixed time increment.

tj := j ·∆t ⇒ Wj∆t =

j∑

k=1

(Wk∆t −W(k−1)∆t) =

j∑

k=1

∆Wk

The ∆Wk are independent, and by Remark 2 satisfy

E(∆Wk) = 0, Var(∆Wk) = ∆t.

In case Z is a random variable with Z ∼ N (0, 1) [Chapter 2], then

Z
√
∆t ∼ N (0,∆t).

Hence
Z ·

√
∆t for Z ∼ N (0, 1)

serves as model for a discretized Wiener process of the ∆Wk.
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Algorithm (Simulation of a Wiener process)

start: t0 = 0, W0 = 0; choose ∆t .

loop j = 1, 2, ... :

tj = tj−1 +∆t

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√
∆t

The Wj denotes a realization of Wt at tj .

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a simulation for ∆t = 0.0002

Stochastic Integral

Motivation:

Assume the price of an asset is described by a Wiener process Wt. Let b(t) be the
number of assets in the portfolio at time t. For simplicity assume that there are only
discrete trading times

0 = t0 < t1 < . . . < tN = T .

Hence b(t) is piecewise constant:

b(t) = b(tj−1) for tj−1 ≤ t < tj . (∗)
The resulting trading gain is

N∑

j=1

b(tj−1)(Wtj −Wtj−1
) for 0 ≤ t ≤ T.

Now we approach the time-continuous case and assume arbitrary trading times. The ques-
tion is whether the sum converges for N → ∞?
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For arbitrary b the integral ∫ T

0

b(t) dWt

does not exist as Riemann–Stieltjes integral. Sufficient for its existence would be a finite
first variation of Wt.

We show: The first variation
N∑
j=1

|Wtj −Wtj−1
| is unbounded.

Proof: Clearly

N∑

j=1

|Wtj −Wtj−1
|2 ≤ max

j
(|Wtj −Wtj−1

|)
N∑

j=1

|Wtj −Wtj−1
|

for any decomposition of the interval [0, T ]. Now ∆t → 0. The second variation is
bounded, it converges to a c 6= 0 (see the Lemma below). By the continuity of Wt,
the first factor of the right-hand side goes to 0, and hence the second factor (the first
variation) to ∞.

It remains to investigate what happens with the second variation. The relevant type of
convergence is convergence in the mean,

lim
N→∞

E[(X −XN )2] = 0 ,

written as: X = l.i.m.
N→∞

XN .

It remains to show:

Lemma

Denote by t0 = t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = T a sequence of partitions of the interval

t0 ≤ t ≤ T , with δN :=
N

max
j=1

(t
(N)
j − t

(N)
j−1). Then:

l.i.m.
δN→0

N∑

j=1

(W
t
(N)
j

−W
t
(N)
j−1

)2 = T − t0

Proof: Exercises

Remark: Part of the proof of the lemma comprises the assertions

E[(∆Wt)
2 −∆t] = 0

Var[(∆Wt)
2 −∆t] = 2 · (∆t)2.

In this probabilistic sense the random variable ∆W 2
t behaves similarly as ∆t. Symbolically

this is written

(dWt)
2 = dt
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and will be used for investigations of orders of magnitude.

The construction of an integral for our integrands b

t∫

t0

b(s) dWs

is based on
∫ t

t0
b(s)dWs :=

∑N
j=1 b(tj−1)(Wtj −Wtj−1

) for all step functions b in the sense

of (∗).
For more general b we take step functions converging to b in the mean. For literature see
[Øksendal: Stochastic Differential Equations], [Shreve: Stochastic Calculus].

1.5 Stochastic Differential Equations

A. Integral Equation

Definition (Diffusion model)

The integral equation

Xt = Xt0 +

∫ t

t0

a(Xs, s) ds+

∫ t

t0

b(Xs, s) dWs

for a stochstic process Xt is called Itô stochastic differential equation (SDE). Its sym-
bolic notation is

dXt = a(Xt, t) dt+ b(Xt, t) dWt

Solutions of this stochastic differential equation (that is, of the integral equation) are
called stochastic diffusion, or Itô-process. The term a(Xt, t) is the drift term, and
b(Xt, t) is the diffusion.

Special cases

- The Wiener process is included with Xt = Wt, a = 0, b = 1.

- In the deterministic case b = 0 holds, i.e. dXt

dt = a(Xt, t).

Algorithm (analogous as for the Wiener process)

is based on the discrete version

∆Xt = a(Xt, t)∆t+ b(Xt, t)∆Wt

with ∆W and ∆t as in Section 1.4. Let yj denote an approximation of Xtj .

Start: t0, y0 = X0 ; choose ∆t .

loop: j = 0, 1, 2, ...

tj+1 = tj +∆t

∆W = Z
√
∆t with Z ∼ N (0, 1)

yj+1 = yj + a(yj, tj)∆t+ b(yj, tj)∆W
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Since dW 2 = dt, we expect an order of only 1
2 ; we come back to this in Chapter 3.

B. Application to the Stock Market

Model (GBM = geometric Brownian motion)

dSt = µSt dt+ σSt dWt

This is an Itô-stochastic SDE with a = µSt and b = σSt. This SDE is linear as long as µ
and σ do not depend on St. For Black and Scholes µ and σ are constant.

(This fills the gap GBM in Assumption 3 in Section 1.2 in the market model.)

µ is interpreted as growth rate, and σ as volatility. The relative change is described by

dSt

St
= µ dt+ σ dWt .

The classic theory of Black, Scholes and Merton (and a significant part of this chapter)
assumes a GBM with constant µ, σ.

(Bachelier’s model was

dSt = µ dt+ σ dWt ,

here the price St can become negative.)

Recommendation

Implement the algorithm (with Z from Chapter 2), and integrate the GBM for a
chosen set of parameters (for instance µ = 0.1, σ = 0.2) 10000 times until t = 1. Then
distribute the obtained values S1 in subintervals, and count the values. This yields a
histogram reflecting a lognormal distribution (see figure).
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Consequence:

From
∆S

S
= µ∆t+ σ∆W

we conclude for the distribution of the ∆S
S :

1) distributed normally

2) E[∆S
S ] = µ∆t

3) Var[∆S
S ] = σ2∆t

together: ∆S
S ∼ N (µ∆t, σ2∆t)

This offers a way to calculate volatilities σ empirically: For a sequence of trading days collect
the data ∆S

S
, call them Ri (returns), where Ri+1 and Ri are measured at time distance ∆t.

Assuming that GBM is appropriate to describe the returns, σ is obtained as

σ =
1√
∆t

∗ standard deviation of the Ri .

This specific value of σ, based on data of the past, is called historic volatility (for the implied
volatility see the Exercises.)

S under GBM can be approximated by the above algorithm as long as ∆t > 0 is small
enough, and S > 0.

Other models

GBM is continuous, and its density has thin tails, which often fails to describe real
asset prices observed in the market. Therefore also other stochastic processes are used,
as jump processes, or processes with stochastic volatility. In the following, we stick to
the Itô-SDEs, that is to continuous processes driven by Wiener process.

Mean reversion (often used for interest rate models)

Here R denotes an average level of interest rate. Let us investigate the SDE

drt = α(R− rt) dt+ σrrβt dWt , α > 0

for a stochastic process rt. That is,

a(rt, t) = α(R− rt) mean reversion drift

b(rt, t) = σr rβt

with suitable parameters R, α, σr, β (obtained by calibration). This has the effect on
the drift:

rt < R ⇒ positive growth rate

rt > R ⇒ decay

This effect is superseded by the stochastic fluctuations, but essentially the mean
reversion takes care that the order of magnitude of rt stays close to R, or reverts
to R. The parameter α controls the intensity of the reversion.
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For β = 1
2 , i.e. b(rt, t) = σr√rt, the model is called CIR model (Cox-Ingersoll-

Ross model).

A simulation rt of the Cox-Ingersoll-Ross model for R = 0.05, α = 1, β = 0.5,
r0 = 0.15, σr = 0.1, ∆t = 0.01
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The next extension is to:

Vector-valued processes

Assume Wt = (W
(1)
t , . . . ,W

(m)
t ) is a m-dimensional Brownian motion. Define for

i = 1, ..., n

X
(i)
t = X

(i)
t0 +

∫ t

t0

ai(Xs, s) ds+

m∑

k=1

∫ t

t0

bi,k(Xs, s) dW
(k)
s ,

with vectors

Xt =




X
(1)
t
...

X
(n)
t


 , a(Xs, s) =




a1(X
(1)
s , . . . , X

(n)
s , s)

...
an(X

(1)
s , . . . , X

(n)
s , s)




and matrix ((
bi,k
))k=1,...,m

i=1,...,n

which involves the covariances of the vector process.

Example 1 Heston’s model

dSt = µSt dt+
√
vtSt dW

(1)

dvt = κ(θ − vt) dt+ σvola
√
vt dW

(2)

The stochastic volatility
√
vt is defined via a mean reversion for the variance vt.

This model (with n = 2 and m = 2) involves parameters κ, θ, σvola, the correlation ρ
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between W (1) and W (2), an initial value v0 and a growth rate µ which may be given by
a risk-free valuation concept. Altogether, about five parameters must be calibrated.
Heston’s model is used frequently.

Example 2 volatility tandem

dS = σS dW (1)

dσ = −(σ − ζ)dt+ ασ dW (2)

dζ = β(σ − ζ) dt
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0 0.2 0.4 0.6 0.8 1

α = 0.3, β = 10; dashed: ζ

Hint: local volatility means
σ = σ(t, St).

C. Itô Lemma

Motivation (deterministic case)

Suppose x(t) is a function, and y(t) := g(x(t), t). The chain rule implies

d

dt
g =

∂g

∂x
· dx

dt
+

∂g

∂t
.

With dx = a(x(t), t)dt this can be written

dg =

(
∂g

∂x
a+

∂g

∂t

)
dt

Lemma (Itô)

Assume Xt is an Itô process following dXt = a(Xt, t) dt+b(Xt, t) dWt and g(x, t) ∈ C2.
Then Yt := g(Xt, t) solves the SDE

dYt =

(
∂g

∂x
a+

∂g

∂t
+

1

2

∂2g

∂x2
b2
)
dt+

∂g

∂x
b dWt .

That is, Yt is an Itô process with the same Wiener process as the input process X .
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Sketch of a proof:

t → t+∆t

X → X +∆X

}
→ g(X +∆X, t+∆t) = Y +∆Y

Taylor expansion of g gives ∆Y as follows:

∆Y =
∂g

∂X
·∆X +

∂g

∂t
∆t+ terms quadratic in ∆t,∆X

Substitute
∆X = a∆t+ b∆W

(∆X)2 = a2 ∆t2 + b2 ∆W 2
︸ ︷︷ ︸
=O(∆t)

+2ab∆t∆W

and order the terms according to powers of ∆t, ∆W to obtain

∆Y =

(
∂g

∂X
a+

∂g

∂t
+

1

2

∂2g

∂X2
b2
)
∆t+ b

∂g

∂X
∆W + t.h.o.

Similar as in Section 1.4, ∆W can be written as sum, and convergence in the mean is applied.
See [Øksendal].

D. Application to the GBM model

Assume the GBM model

dS = µS dt+ σS dW

with µ and σ constant, i.e. X = S, a = µS, b = σS.

1) Let V (S, t) be smooth (∈ C2)

⇒ dV =

(
∂V

∂S
µS +

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt+

∂V

∂S
σS dW

This is the basic SDE which leads to the PDE of Black and Scholes for the value
function V (S, t) of a European standard option.

2) Yt := log(St), i.e. g(x) = log x

⇒ ∂g

∂x
=

1

x
and

∂2g

∂x2
= − 1

x2

⇒ d (logSt) =

(
µ− σ2

2

)
dt+ σ dWt

Hence the log-prices Yt = logSt satisfy a simple SDE, with the elementary
solution:

Yt = Yt0 +

(
µ− σ2

2

)
(t− t0) + σ(Wt −Wt0)



Seydel: Course Notes on Computational Finance, Chapter 1 (Version 2015) 22

⇒ logSt − logSt0 = log
St

St0

=

(
µ− σ2

2

)
(t− t0) + σ(Wt −Wt0)

⇒ St = St0 · exp
[(

µ− σ2

2

)
(t− t0) + σ(Wt −Wt0)

]

For t0 = 0 and Wt0 = W0 = 0, this results in

St = S0 exp
[(

µ− σ2

2

)
t+ σWt

]

In summary, St is exponential function of a Brownian motion with drift.

Implications for t0 = 0:

a) logSt is distributed normally

b) E[logSt] = E[logS0] + (µ− σ2

2 )t+ 0 = logS0 + (µ− σ2

2 )t

c) Var[logSt] = Var[σWt] = σ2t

summarizing a) – c) means

log
St

S0
∼ N

(
(µ− σ2

2
)t , σ2t

)

d) This leads to the density function of Y = logS

f̂(Y ) = f̂(logSt) =
1

σ
√
2πt

exp

[
−(log(St/S0)− (µ− σ2/2)t)2

2σ2t

]
.

And what is the density of St? The probabilities of S and Y are the same and hence
also the distribution integrals. We apply the transformation theorem (Section 2.2B)
for Y := logS and have the integrands

f̂(Y ) dY = f̂(logS)
1

S︸ ︷︷ ︸
f(St)

dS.

Consequently, the density f of the distribution of the asset price St is

f(St, t; S0, µ, σ) :=
1

Stσ
√
2πt

exp

[
−(log(St/S0)− (µ− σ2/2)t)2

2σ2t

]
.

This is the density fGBM of the lognormal distribution. It describes the probability of
the transition (S0, 0) −→ (St, t) under GBM.

e) Now the last gap in the derivation of the binomial method can be closed: There
the continuous model refers to our GBM. As an exercise, realize

E(S) =

∞∫

0

Sf(. . .) dS = S0 e
µ(t−t0)

E(S2) =

∞∫

0

S2f(. . .) dS = S2
0 e

(σ2+2µ)(t−t0)
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1.6 Risk-Neutral Valuation

(This section sketches basic ideas and concepts. For a thorough treatment we recommend
literature on Stochastic Finance such as [Musiela&Rutkowski: Martingale Methods in Fi-
nancial modeling])

Recall (from the one-period)

V0 = e−rTEQ[Ψ(ST )]

where Q is the artificial probability of Section 1.2 and Ψ(ST ) denotes the payoff.

For the model with continuous time formally the same relation holds. But Q and EQ are
different. It turns out that the density of Q is given by f(St, t; S0, r, σ), with µ replaced by
r. Hence the relation

V0 = e−rT

∫ ∞

0

Ψ(ST ) · f(ST , T ; S0, r, σ) dST

holds for the GBM-based continuous model. In the following we outline the arguments that
lead to this integral.

Fundamental Theorem of Asset Pricing

The market model is free of arbitrage if and only if there is a probability Q such that
the discounted asset prices e−rtSt are martingales with respect to Q.

Probability space

The same sample space and σ-algebra (Ω,F) underlying a Wiener process are not
specified. The chosen probability P completes (Ω,F) to the probability space (Ω,F ,P).
The independence of the increments ∆W of the Wiener process depend on P. A process
W can be a Wiener process with respect to P, but is no Wiener process with respect
to another probability P̂

Martingale

A martingale Mt is a stochastic process with

E[Mt | Fs] = Ms for all t, s with s ≤ t ,

where Fs is a filtration, i.e. a family of σ-algebras with Fs ⊆ Ft ∀s ≤ t. A filtration
serves as model for the amount of information in a market.

E[Mt | Fs] is a conditional expectation. It can be regarded as expectation of Mt

conditional on the amount of information available until time instant s.

Mt martingale means that Ms at time s is the best possible forecast for t ≥ s.

Martingale with respect to a probability Q: EQ[Mt | Fs] = Ms for all t, s with s ≤ t.

Examples of martingales

1) any Wiener process

2) W 2
t − t for any Wiener process W .

3) A necessary criterion for martingales is the absence of drift.

Essentially, drift-free processes are martingales.
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Market Price of Risk

dS = µS dt+ σS dW

= rS dt+ (µ− r)S dt+ σS dW

= rS dt+ σS

[
µ− r

σ
dt+ dW

]

The investor expects µ > r as a compensation for the risk, which is represented by σ.
µ− r is the excess return.

γ :=
µ− r

σ
= “market price of risk”

= compensation rate relative to the risk

Hence
dS = rS dt+ σS [γ dt+ dW ] (∗)

For the probability P the term in brackets represnts a drifted Brownian motion and
no (standard) Wiener process.

Girsanov’s Theorem

Suppose W is Wiener process with respect to (Ω,F ,P). In case γ satisfies certain
requirements, there is a probability Q such that

W γ
t := Wt +

∫ t

0

γ ds

is a (standard) Wiener process under Q.

(probability theory: Q results from the Theorem of Radon-Nikodym. Q and P are equiva-
lent. For constant γ the requirements of Girsanov are fulfilled.)

Application

Substitute dW γ = dW + γdt in (∗) gives
dS = rS dt+ σS dW γ .

This is a change of drift from µ to r; σ remains unchanged. The path of St under the
probability Q is defined by the density f(. . . , r, σ). The transition from f(. . . , µ, σ) to
f(. . . , r, σ) amounts to adjusting the probability from P to Q. The discounted e−rtSt

is drift-free under Q and Martingale. Q is called “risk-neutral” probability.

Trading Strategy

Let Xt be a stochastic vector process of market prices, and bt denotes the vector with
the numbers of shares held in the portfolio. Hence btrt Xt is the wealth process of the
portfolio.

Example

Xt :=

(
St

Bt

)
,

where St is the market price of the asset underlying an option, and Bt is the value of
a risk-free bond.
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Notation: Vt is the random variable of the value of an European option.
Assumptions:

(1) There is a strategy bt replicating the payoff of the option at time T ,

btrTXT = Payoff .

bt must be Ft-measurable for all t. (That is, the trader cannot see the future.
Note that the value of the payoff is a random variable.)

(2) The portfolio is closed, no money is inserted or withdrawn. This is the self-
financing property defined as

d(btrt Xt) = btrt dXt .

(3) The market is free of arbitrage.

(1), (2), (3) ⇒ Vt = btrt Xt for 0 ≤ t ≤ T (otherwise there would exist arbitrage)

We consider a European option and a discounting process Yt with the property that YtXt

is martingale. Then one can show that also Ytb
tr
t Xt is martingale (both with respect to Q).

Implications for European options for t ≤ T

YtVt = Ytb
tr
t Xt = EQ[YT b

tr
TXT | Ft] (martingale)

= EQ[YT · Payoff | Ft] (replication)

When the payoff is a function Ψ of ST (vanilla-option under GBM), then

= EQ[YT ·Ψ(ST )]

(because WT −Wt is independent of Ft). Discounting with Yt = e−rt implies specifi-
cally for t = 0

1 · V0 = EQ[e
−rT ·Ψ(ST )]

and hence

V0 = e−rT

∫ ∞

0

Ψ(ST ) · f(ST , T ; S0, r, σ) dST .

This is called risk-neutral valuation.

Literature on Stochastic Finance: [Elliot & Kopp: Mathematics of Financial Markets],
[Korn: Option Pricing and Portfolio Optimization], [Musiela & Rutkowski: Martingale
Methods in Financial modeling], [Shreve: Stochastic Calculus for Finance].

Outlook

We so far have investigated continuous processes St driven by Wt. To compensate
for occasional drastic changes in the price of underlying, one resorts to models with
stochastic volatility, or to jump processes.
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Supplements

The “Greeks” mean the sensitivities of V (S, t; σ, r) and are defined as

Delta =
∂V

∂S
, gamma =

∂2V

∂S2
, theta =

∂V

∂t
, vega =

∂V

∂σ
, rho =

∂V

∂r

Black–Scholes Formula

For a European call the analytic solution of the Black–Scholes equation is

d1 :=
log S

K +
(
r − δ + σ2

2

)
(T − t)

σ
√
T − t

d2 := d1 − σ
√
T − t =

log S
K

+
(
r − δ − σ2

2

)
(T − t)

σ
√
T − t

VC(S, t) = Se−δ(T−t)F (d1)−Ke−r(T−t)F (d2),

where F denotes the standard normal cumulative distribution (compare Exercises), and δ is
a continuous dividend yield. The value VP(S, t) of a put is obtained by applying the put-call
parity

VP = VC − Se−δ(T−t) +Ke−r(T−t)

from which
VP = −Se−δ(T−t)F (−d1) +Ke−r(T−t)F (−d2)

follows.



Seydel: Course Notes on Computational Finance, Chapter 2 (Version 2015) 27

2. Computation of Random Numbers

Definition (sample from a distribution)

A sequence of numbers is called sample from a distribution function F , if the numbers
are independent realizations of a random variable with distribution F .

Examples

If F is the uniform distribution on the interval [0, 1], then we call the samples from F
uniform deviates. Notation: ∼ U [0, 1].
If F is the standard normal distribution, then we call the samples from F standard
normal deviates. Notation: ∼ N (0, 1).

The basis of random number generation is to draw numbers ∼ U [0, 1].

2.1 Uniform Deviates

A. Linear Congruential Generators

Choose a, b,M ∈ IN, a 6= 0, a, b < M , and define for N0 ∈ IN (“seed”) a sequence of numbers
by

Algorithm (linear congruential generator)

choose N0 .

For i = 1, 2, ... calculate

Ni = (aNi−1 + b) mod M

Define Ui ∈ [0, 1) by

Ui =
Ni

M
.

The numbers Ui are used as uniform deviates.

Obvious Properties

(a) Ni ∈ {0, 1, ...,M − 1}
(b) The sequence of Ni is periodic with a period p ≤ M .

(because there are not M+1 distinct numbers Ni. Hence two out of {N0, ..., NM}
must be equal, Ni = Ni+p with p ≤ M . p-periodicity follows.)
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Literature: [D. Knuth: The Art of Computer Programming, Volume 2]

The above numbers Ui are no real random numbers, but are deterministically defined and
reproducible. We call such numbers pseudo random. In this chapter, we omit the modifier
“pseudo” because it is clear from the context. The aim is to find parameters M, a, b such
that the numbers Ui are good substitutes of real random numbers.

Example
M = 244944, a = 1597, b = 51749

Useful parameters a, b,M are in [Press et al.: Numerical Recipes].

Question: What are “good” random numbers?

A practical (and hypothetical) answer: The numbers should pass “all” tests.

First requirement: The period p must be large, hence M as large as possible. For
example, in a binary computer with mantissa length l, one aims at M ≈ 2l. Suitable a, b
can be derived with methods from number theory. [Knuth].

Second requirement: The numbers must be distributed as intended (density f , expecta-
tion µ, variance σ2). Check this by statistical tests as follows: First apply the algorithm
to produce a large number of Ui-values. Then

(a) Calculate the mean µ̂ and the variance ŝ2 of the sample. Check µ̂ ≈ µ and ŝ2 ≈ σ2.

(b) Test for correlations of the Ui with previous Ui−j . For example, correlation could
mean that small values of U are likely to be followed again by small values. In this
case the generator would be of low quality.

(c) Estimate the density function f̂ of the sample, and check for f̂ ≈ f . A prototypical
test is as follows: Divide the unit interval [0, 1] into equidistant subintervals

k∆U ≤ U < (k + 1)∆U ,

where ∆U denotes the length of the subintervals. (For other distributions choose
an interval that contains all sample points Ui, and the subintervals will be defined
accordingly.) When altogether j samples are calculated, let jk be the number of
samples that fall into the kth subinterval. The probability that the kth subinterval is
hit is jk

j
. This should approximate

∫ (k+1)∆U

k∆U

f(x) dx (f = 1 for the uniform distribution) .

This integral is
∆Uf(Ū) ,

with Ū in the kth subinterval. Hence a good generator should satisfy

∆Uf̂(Ū) =
jk
j

!
= ∆Uf(Ū) ,

at least for small ∆U . The empirical density on the kth subinterval is

f̂ =
jk

j∆U
.
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Third requirement: The lattice structure should be OK. To check this, arrange vectors
out of m consecutive numbers:

(Ui, Ui+1, . . . , Ui+m−1)

For U ∼ U [0, 1], these points should fill them-dimensional unit-cube as uniformly as possible.
The sequences of points/vectors lie on (m − 1)-dimensional hyperplanes. Trivial case: M
parallel planes through U = i

M
, i = 0, . . . ,M − 1 (any of the m components).

A bad situation occurs when all points fall on only a few planes. Then the gaps between
the planes without any points would be wide. This leads to analyze the lattice structure of
the random points. The focus is on the smallest number of planes, on which all points in
[0, 1)m “land.”

Analysis for m = 2: In this planar case, the hyperplanes in (Ui−1, Ui)-space are straight
lines z0Ui−1 + z1Ui = λ, for parameters z0, z1, λ. From

Ni = (aNi−1 + b) mod M

= aNi−1 + b− kM for kM ≤ aNi−1 + b < (k + 1)M

conclude for arbitrary numbers z0, z1

z0Ni−1 + z1Ni = z0Ni−1 + z1(aNi−1 + b− kM)

= Ni−1(z0 + az1) + z1b− z1kM

= M (Ni−1
z0 + az1

M
− z1k)

︸ ︷︷ ︸
=:c=c(i)

+z1b

Dividing by M leads to
z0Ui−1 + z1Ui = c+ z1bM

−1 ,

a straight line in the (Ui−1, Ui)-plane. For fixed z0, z1 this defines a family of parallel
lines/“planes,” parameterized by c.

Question: Is there a family of such lines (planes) defined by a pair (z0, z1), such that only
few lines (planes) cut the unit-cube? The minimal number of parallel hyperplanes holding
all points is the worst case.

For analyzing the number of planes, the cardinality of the c’s matters. To find the
worst case with a small set of c’s, assume z1, z0 ∈ ZZ and z0 + az1 mod M = 0. Then the
parameter c is integer, and

c = z0Ui−1 + z1Ui − z1bM
−1 ∈ ZZ .
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(z1bM
−1 is a constant parallel shift not affecting the number of planes.) How many of such

c’s exist? For 0 ≤ U < 1 obtain a range for the c’s by a maximal set Ic ⊂ ZZ, such that

c ∈ Ic ⇒ the line touches or cuts the unit-cube .

The cardinality of the set Ic gives a clue on the distance between the parallel lines (planes).
It is unfavorable when the set consists of only a few elements.

Academic Example Ni = 2Ni−1 mod 11 (i.e. a = 2, b = 0, M = 11)

The pair (z0, z1) = (−2, 1) solves z0 + az1 = 0 mod M . Hence

−2Ui−1 + Ui = c .

0 ≤ U < 1 implies −2 < c < 1. In view of c ∈ ZZ, the only parameters are c = −1 and
c = 0. For this choice of (z0, z1) all 10 points in [0, 1)2 fall on only two straight lines.
(0 does not occur for N0 6= 11k, k ∈ ZZ.)

 0
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 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(Ui−1, Ui)-plane.
10 points for N0 6= 11k

Example Ni = (1229Ni−1 + 1) mod 2048

The condition z0 + az1 = 0 mod M

z0 + 1229z1
2048

∈ ZZ

is satisfied by z0 = −1, z1 = 5, because

−1 + 1229 · 5 = 6144 = 3 · 2048 .

c = −Ui−1 + 5Ui − 5
2048 implies −1 − 5

2048 < c < 5 − 5
2048 . This shows that there

are only six values of the c’s, c ∈ {−1, 0, 1, 2, 3, 4}, and all points in [0, 1)2 fall on six
straight lines.

The Ui-distance between two neighboring lines is 1
z1

= 1
5
.
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(Ui−1, Ui)-plane.
In this figure,
the discrete points
are not separated.
The sixth line
consists of one point.

For the above examples, the (Ui−1, Ui)-points are obviously not equidistributed. The next
example is much better for m = 2. But equidistrution for m = 2 does not imply equidistri-
bution for larger m.

Example (RANDU)

Ni = aNi−1 mod M, with a = 216 + 3, M = 231

For m = 2 experiments show that the dots (Ui−1, Ui) are nicely equidistributed in the
square. But inspection for m = 3 reveals that the random points in the cube [0, 1)3

fall on only 15 planes.

Analysis for larger m is analogous. Illustration in Topic 14.

B. Fibonacci Generators

There are other classes of random-number generators, for example, the Fibonacci gener-
ators. A prototype of such generators is defined by

Ni+1 := Ni−ν −Ni−µ mod M

for suitable µ, ν (also with “+” or with more terms). Literature: [Knuth]

Example
Ui := Ui−17 − Ui−5,

in case Ui < 0 set Ui := Ui + 1.0

(simple example with reasonable features, but there are correlations.)
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Algorithm (loop of a simple Fibonacci generator)

Repeat: ζ := Ui − Uj

in case ζ < 0, set ζ := ζ + 1

Ui := ζ

i := i− 1

j := j − 1

in case i = 0, set i := 17

in case j = 0, set j := 17

Initialization: Set i = 17, j = 5, and calculate U1, ..., U17 with a congruential generator
with, for example, M = 714025, a = 1366, b = 150889.

A professional generator to calculate uniform random numbers is the “Mersenne Twister”
by Matsumoto, Nishimura, in: ACM Transactions on Modelling and Computer Simulations
8 (1998), p.3-30. This generator has excellent features, with a huge period, and is equidis-
tributed also for high dimensions m.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

10000 random numbers
(Ui−1, Ui), calculated with
a Fibonacci Generator
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2.2 Random Numbers from Other Distributions

The generation of all kind of deviates is based on uniform deviates. For the calculation of
random numbers from a given distribution we can apply several methods, namely, inversion,
transformations, and rejection methods.

A. Inversion

Let F (x) := P(X ≤ x) be a distribution function, for a random variable X , and P is the
corresponding probability.

Theorem (inversion)

Suppose U ∼ U [0, 1] and let F be a continuous strictly increasing distribution function.
Then X := F−1(U) is a sample from F .

Proof:

U ∼ U [0, 1] means P(U ≤ ξ) = ξ for 0 ≤ ξ ≤ 1. Hence

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

Application

Calculate u ∼ U [0, 1] and evaluate F−1(u). These numbers have the desired distri-
bution. Mostly inversion is done numerically because F−1 in general is not known
analytically.

There are two variants:

(a) F (x) = u is a nonlinear equation for x, which can be solved iteratively with
standard methods of numerical analysis (e.g. Newton method). For the normal
distribution (Figure), the iteration requires tricky termination criteria, because
for u ≈ 0, u ≈ 1 small perturbations in u lead to large perturbations in x.

u=F(x)
1/2

x

1

u

(b) Construct an approximating function G such that G(u) ≈ F−1(u). Then only
x = G(u) needs to be evaluated. The construction of G must observe the asymp-
totic behavior, which amounts to the poles of G. For the standard normal dis-
tribution the symmetry w.r.t. (x, u) = (0, 12) can be exploited and only the pole
for u = 1 needs to be observed. This can be done with a rational function G(u),
with a denominator having a zero at u = 1.
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B. Transformation

We begin with the scalar case: Let X be a random variable. What is the distribution of a
transformed h(X)?

Theorem (scalar transformation)

Suppose X is a random variable with density function f and distribution function F .
Further assume

h : S → B

with S,B ⊆ IR, where S is the support of f , and let h be strictly monotonic.

(a) Y := h(X) is random variable with distribution function

F (h−1(y)) for increasing h

1− F (h−1(y)) for decreasing h

(b) If h−1 is absolutely continuous, then for almost all y the density of h(X) is

f(h−1(y))

∣∣∣∣
dh−1(y)

dy

∣∣∣∣ .

Proof: (write also FX for F )

(a) FY (y) := P(h(X) ≤ y) =

(in case h is increasing:)

= P(X ≤ h−1(y)) = FX(h−1(y))

(in case h is decreasing:)

= P(X ≥ h−1(y)) = 1− P(X < h−1(y)) = 1− FX(h−1(y))

(b) For absolutely continuous h−1 the density of Y = h(X) is equal to the derivative of

the distribution function almost everywhere. Evaluation of dF (h−1(y))
dy with the chain

rule implies the assertion; distinguish between increasing and decreasing h.

Application

Start with X ∼ U [0, 1] and the density of the uniform distribution,

f(x) =

{
1 for 0 ≤ x ≤ 1

0 elsewhere

i.e. S = [0, 1]. Random numbers Y with prescribed target density g(y) are to be
calculated. Hence we require a transformation h such that

f(h−1(y))

∣∣∣∣
dh−1(y)

dy

∣∣∣∣ = 1

∣∣∣∣
dh−1(y)

dy

∣∣∣∣
!
= g(y) .

Then h(X) is distributed as intended.
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Example (exponential distribution)

The exponential distribution with parameter λ > 0 has the density

g(y) =

{
λe−λy for y ≥ 0

0 for y < 0.

B consists of the non-negative real numbers. As transformation [0, 1] → B we choose
the monotonic decreasing function

y = h(x) := − 1

λ
log x

with inverse h−1(y) = e−λy for y ≥ 0. Since

f(h−1(y))

∣∣∣∣
dh−1(y)

dy

∣∣∣∣ = 1 ·
∣∣(−λ)e−λy

∣∣ = λe−λy = g(y) ,

h(X) is distributed exponentially for X ∼ U [0, 1].
Application

Calculate U1, U2, ... ∼ U [0, 1]. Then

− 1

λ
log(U1), − 1

λ
log(U2), ... are distributed exponentially.

(Hint: The distances between jump times of Poisson processes are distributed exponentially.)

Attempt with the normal distribution: Search for h such that

1 ·
∣∣∣∣
dh−1(y)

dy

∣∣∣∣ =
1√
2π

exp

(
−1

2
y2
)
.

This is a differential equation for h−1 without analytic solution. In this situation the multi-
dimensional version of the transformation helps.

Theorem (transformation in IRn)

Suppose X is a random variable in IRn with density f(x) > 0 on the support S. Let
the transformation h : S → B, S,B ⊆ IRn be invertible and the inverse continuously
differentiable on B. Then Y := h(X) has the density

f(h−1(y))

∣∣∣∣
∂(x1, ..., xn)

∂(y1, ..., yn)

∣∣∣∣ , y ∈ B, (2.7)

where ∂(x1,...,xn)
∂(y1,...,yn)

denotes the determinant of the Jacobian matrix of h−1(y).

Proof: see Theorem 4.2 in [L. Devroye: Non-Uniform Random Variate Generation
(1986)]

In Section 2.3 the two-dimensional version will be applied to calculate normal variates.
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C. Acceptance-Rejection Method

This method is based on the following facts: Let f be a density function on S ⊂ IR and
Af the area between the x-axis and the graph of f . Assume two random variables U and
X independent of each other with U ∼ U [0, 1] and X distributed with density f . Then the
points

(x, y) := (X, U · f(X))

are uniformly distributed on Af (and vice versa). In the Figure this is illustrated for the
normal distribution. If one cuts off a piece of the area Af , then the remaining points are
still distributed uniformly. This is exploited by rejection methods.

Let g be another density on S, and assume for a constant c ≥ 1

f(x) ≤ c g(x) for all x ∈ S .

The function cg is major to f , and the set Af is subset of the area Acg underneath the
graph of cg. A rejection algorithm assumes that g-distributed x-samples can be calculated
easily. Then the points (x, ucg(x)) are distributed uniformly on Acg. The aim is to calculate
f -distributed random numbers. Cutting off the part of Acg above Af means to reject points
with ucg(x) > f(x). The x-coordinates of the remaining points with ucg(x) ≤ f(x) are
accepted and are distributed as desired.

 0
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50000 points
(X, U · f(X))
X ∼ N (0, 1)
U ∼ U [0, 1]
f density of X

Repeat:

x := random number distributed according to g,

u := random number ∼ U [0, 1] independent of x
until u c g(x) ≤ f(x)

return: x
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Example (as exercise): Laplace-density g(x) := 1
2 exp(−|x|), f density of the standard

normal distribution. What is c?∗

2.3 Normal Deviates

This section applies the transformation theorem in IR2 to the calculation of normally dis-
tributed random numbers, and sketches the ziggurat algorithm. (Alternative methods are
provided by inversion methods.)

A. Method of Box and Muller

S := [0, 1]2, X uniformly distributed on S, density f = 1 on S. Transformation h:
{
y1 =

√
−2 log x1 cos 2πx2 =: h1(x1, x2)

y2 =
√

−2 log x1 sin 2πx2 =: h2(x1, x2)

inverse h−1: 



x1 = exp
{
−1

2
(y21 + y22)

}

x2 =
1

2π
arctan

y2
y1

For this transformation the determinant is

∂(x1, x2)

∂(y1, y2)
= det

( ∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

)
=

= − 1

2π
exp

{
−1

2
(y21 + y22)

}
.

Its absolute value is the density of the two-dimensional normal distribution. Since
∣∣∣∣
∂(x1, x2)

∂(y1, y2)

∣∣∣∣ =
[

1√
2π

exp
(
−1

2y
2
1

)]
·
[

1√
2π

exp
(
−1

2y
2
2

)]
,

the two-dimensional density is the product of the one-dimensional densities of the standard
normal distribution. As a consequence, the two components y1, y2 of the vector Y are
independent.

Application

When the two components x1, x2 are distributed ∼ U [0, 1], then the transformation
provides two independent y1, y2 ∼ N (0, 1).

Algorithm (Box-Muller)

(1) generate U1 ∼ U [0, 1] and U2 ∼ U [0, 1].
(2) θ := 2πU2, ρ :=

√−2 logU1

(3) Z1 := ρ cos θ is ∼ N (0, 1)

(same as Z2 := ρ sin θ).

∗ colored in Topic 3 of the Topics for CF
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B. Variant of Marsaglia

Prepare the input x1, x2 for the Box–Muller transformation such that trigonometric functions
are avoided. From U ∼ U [0, 1] obtain V := 2U − 1 ∼ U [−1, 1]. Two such numbers V1, V2

define a point in IR2. Define the disk

D := {(V1, V2) : V 2
1 + V 2

2 < 1}.

Accept only those pairs (U1, U2) such that (V1, V2) ∈ D. These accepted points are uniformly
distributed on D. Transformation to (radius)2 and normalized angle:

(
x1

x2

)
=

(
V 2
1 + V 2

2
1
2π arg (V1, V2)

)
.

These (x1, x2) are distributed uniformly in S (−→ exercise) and serve as input for Box&Muller.
The advantage is:

cos(2πx2) =
V1√

V 2
1 + V 2

2

sin(2πx2) =
V2√

V 2
1 + V 2

2

Algorithm (polar method)

(1) Repeat: generate U1, U2 ∼ U [0, 1];
V1 := 2U1 − 1, V2 := 2U2 − 1;

until w := V 2
1 + V 2

2 < 1.

(2) Z1 := V1

√
−2 log(w)/w is ∼ N (0, 1)

( as well as Z2 := V2

√
−2 log(w)/w ).

The probability of acceptance (w < 1) is the ratio of the areas π
4

≈ 0.785.... That is,
21% of all draws (U1, U2) are rejected. But these costs are compensated by the saving
of trigonometric functions, and Marsaglia’s polar method is more efficient than standard
Box&Muller.

C. Ziggurat Algorithm

A most efficient algorithm for the generation of normal deviates is the ziggurat algorithm,
which is a rejection method.

Essentiall, g is a step function ≥ the Gaussian density f . Construction with N hor-
izontal layers of N − 1 rectangles with the same area, and one bottom segment with the
same area, which is no rectangle but infinite because of the tail of f . The figure illustrates
schematically a situation for x ≥ 0, where the rectangle consists of two portions (for each i
with 0 < i < N−1), which make an extremely efficient test for acceptance possible (random
choice of the layer i; uniformly distributed test point).
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2.4 Correlated Normal Random Variates

The aim is the generation of a normal random vector X = (X1, . . . , Xn) with prescribed

µ = EX = (EX1, . . . ,EXn),

covariance matrix with elements

Σij = (CovX)ij := E ((Xi − µi)(Xj − µj)) ; σ2
i = Σii

and correlations

ρij :=
Σij

σiσj
.

For the following assume that Σ is symmetric and positive definite.

Recall: The density function f(x1, . . . , xn) of N (µ,Σ) is

f(x) =
1

(2π)n/2
1

(det Σ)1/2
exp

{
−1

2
(x− µ)trΣ−1(x− µ)

}
.

Assume Z ∼ N (0, I), where z is a realization of Z and I the unit matrix. We apply the
linear transformation x = Az, A ∈ IRn×n nonsingular. The transformation theorem yields
with X = h(Z) := AZ the density of X as

f(A−1x) | det(A−1)| = 1

(2π)n/2
exp

{
−1

2
(A−1x)tr(A−1x)

}
1

| det(A)|

=
1

(2π)n/2
1

| det(A)| exp
{
−1

2
xtr(AAtr)−1x

}

for arbitrary nonsingular matrices A. In case AAtr is a factorization of Σ, Σ = AAtr, and
hence | detA| = (detΣ)1/2, we conclude:

AZ ∼ N (0,Σ) .
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This implies
µ+ AZ ∼ N (µ,Σ) .

Example: Choose the Cholesky decomposition of Σ.
Alternative decomposition out of a principal component analysis of Σ.

Algorithm (correlated normal deviates)

(1) Decompose Σ into AAtr = Σ

(2) Draw Z ∼ N (0, I) componentwise

with Zi ∼ N (0, 1) for i = 1, ..., n, for example,

with Marsaglia’s polar method

(3) µ+ AZ is distributed ∼ N (µ,Σ)

Example: If Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
is required, the solution is

(
σ1Z1

σ2ρZ1 + σ2

√
1− ρ2Z2

)
.

2.5 Sequences of Numbers with Low Discrepancy

The aim is to construct points distributed similarly as random numbers, but avoid clustering
or holes. In order to characterize equidistributedness, take any box (hyperrectangle) in
[0, 1]m, m ≥ 1. It would be desirable if for all Q

# of the xi ∈ Q

# all points in [0, 1]m
≈ vol(Q)

vol([0, 1]m)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Q

For m = 2 the figure illustrates this idea in the unit square [0, 1]2.
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Definition (discrepancy)

The discrepancy of a set {x1, . . . , xN} of N points with xi ∈ [0, 1]m is

DN := sup
Q

∣∣∣∣
# of the xi ∈ Q

N
− vol(Q)

∣∣∣∣ .

We wish to find sequences of points, whose discrepancy DN for N → ∞ tends to zero
“quickly.” To assess the decay we compare with the sequence

1√
N

,

which characterizes the probabilistic error of Monte Carlo methods. For true random points
the discrepancy has a similar order of magnitude, namely,

√
log logN

N
.

Definition (sequence of low discrepancy)

A sequence of points x1, . . . , xN , . . . ∈ [0, 1]m is called low-discrepancy sequence if there
is a constant Cm such that for all N

DN ≤ Cm
(logN)m

N
.

Comment

The denominator in 1
N stands for relatively rapid decay of DN with the number of

points N , rapid as compared with the 1√
N

of Monte Carlo.

But we have to observe the numerator (logN)m. Since logN grows only modestly, for
low dimension m the decay of DN is much faster than the decay of the probabilistic
Monte Carlo error.

Table: different convergence rates to zero

N 1√
N

√
log logN

N
logN
N

(logN)2

N
(logN)3

N

101 .31622777 .28879620 .23025851 .53018981 1.22080716
102 .10000000 .12357911 .04605170 .21207592 .97664572
103 .03162278 .04396186 .00690776 .04771708 .32961793
104 .01000000 .01490076 .00092103 .00848304 .07813166
105 .00316228 .00494315 .00011513 .00132547 .01526009
106 .00100000 .00162043 .00001382 .00019087 .00263694
107 .00031623 .00052725 .00000161 .00002598 .00041874
108 .00010000 .00017069 .00000018 .00000339 .00006251
109 .00003162 .00005506 .00000002 .00000043 .00000890
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Do sequences of low discrepancy exist?

Example: (m = 1) Van der Corput sequence

1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,
1

16
, . . .

Let us study its construction by means of the example x6 = 3
8
. The binary representation

of the index 6 is 110. This is radix-inverted: .011, which gives 3
8 .

Definition (radical-inverse function)

For i = 1, 2, ... let

i =

j∑

k=0

dkb
k

be the expansion in base b (integer ≥ 2), with dk ∈ {0, 1, . . . , b−1}. The radical-inverse
function is defined by

φb(i) :=

j∑

k=0

dkb
−k−1 .

A one-dimensional example is the Van der Corput sequence: xi := φ2(i).

Definition (Halton sequence)

Let p1, . . . , pm be pairwise prime integers. The Halton sequence is defined as the
sequence of vectors

xi := (φp1
(i), . . . , φpm

(i)) , i = 1, 2, ...

The Halton sequence is of low discrepancy with C2 = 0.2602 for m = 2 and easy to generate.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

The figure shows the first
10000 Halton points
with m = 2 and p1 = 2, p2 = 3.
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Other sequences of low discrepancy:

· Faure sequence

· Sobol sequence

· Niederreiter sequence

· Halton “leaped”: For large m the Halton sequence suffers from correlation. This can
be cured by taking

xi := (φp1
(li), . . . , φpm

(li)) , i = 1, 2, ...

for suitable prime l different from the pk, for example, l = 409.

The deterministic sequences of low discrepancy are called quasi-random numbers.
(They are not random!)

Literature on quasi-random numbers: [H. Niederreiter: Random Number Generation and
Quasi-Monte Carlo Methods (1992)]
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3. Monte Carlo Methods

In Chapter 1 we introduced the formula of risk-neutral valuation of European options,

V (S0, 0) = e−rTEQ [Ψ(ST ) | S0] ,

where Ψ(ST ) denotes the payoff. In the Black–Scholes model, specifically, this is

V (S0, 0) = e−rT

∫ ∞

0

Ψ(ST ) · fGBM(ST , T ;S0, r, σ) dST . (Int)

(For the transition density fGBM see Section 1.5D.) The resulting PDE of the Black–Scholes
model will be the topic of Chapter 4. For general models, such PDEs are not always known,
or not easy to solve. In such cases we need Monte Carlo methods, which can be applied in
all cases.

35
40

45
50

55
60

65
70

S
0

0.2

0.4

0.6

0.8

1

t

0

2

4

6

8

10

12

14

16

Five simulated asset paths with payoff.

There are two approaches to calculate the above integral:

1) The integral (Int) is approximated using numerical quadrature.

2) One applies Monte Carlo simulation. That is, one draws random numbers that match
the underlying risk-neutral probability, and calculates many paths of asset prices St.
This is the bulk of the work. To complete, compute the mean of the payoff values, and
discount.

In this chapter we confine ourselves to the second approach.
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Notations (from Chapter 1)

A scalar SDE driven by a Wiener process is described by

dXt = a(Xt, t) dt+ b(Xt, t) dWt . (SDE)

We discretize time t with a grid

. . . < tj−1 < tj < tj+1 < . . . ,

with equidistant step h or ∆t = tj+1 − tj . Let yj denote an approximation of Xtj ,
where y0 := X0.

Example: Euler discretization

yj+1 = yj + a(yj, tj)∆t+ b(yj , tj)∆Wj ,

tj = j∆t ,

∆Wj = Wtj+1
−Wtj = Z

√
∆t

with Z ∼ N (0, 1) .

(Euler)

3.1 Approximation Error

Definition

For a given path of the Wiener processes Wt we call a solution Xt of (SDE) a strong
solution. In case the Wiener process is free, Xt or (Xt,Wt) is called weak solution.

For strong solutions the numerical discretization is based on the same Wt as the SDE. This
enables to investigate the pathwise difference Xt − yt for convergence behavior for h → 0.

Notation: We write yht for a numerically (with step length h) calculated approximation y
at t, in particular, for t = T .

Definition (absolute error)

For a strong solution Xt of (SDE) and an approximation yht the absolute error at t = T
is defined as

ε(h) := E
[
|XT − yhT |

]
.

For a GBM, where the analytic solution Xt is known, ε(h) can be obtained easily:

Set in (SDE) a(Xt, t) = αXt and b(Xt, t) = βXt. Then the solution (see Section 1.5D) for
given WT is

XT = X0 exp

[(
α− β2

2

)
T + βWT

]
.
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The expectation ε(h) can be estimated as mean of a large number of evaluations of |XT−yhT |.
For Euler’s method this empirical investigation reveals the error behavior

ε(h) = O(h
1
2 ) ,

which is a low accuracy compared to the deterministic case O(h). The result is plausible
because ∆W is of the order O(

√
h) (in probability), compare Section 1.4.

Definition (strong convergence)

yhT converges strongly to XT with order γ > 0, if

ε(h) = E
[
|XT − yhT |

]
= O(hγ) .

yhT converges strongly if
lim
h→0

E
[
|XT − yhT |

]
= 0 .

Example

When a and b satisfy global Lipschitz conditions and bounded growth conditions, then
the Euler discretization converges strongly with order γ = 1

2 .

Note that for several important SDE models (such as CIR, Heston) the global Lipschitz
conditions do not hold. Then modifications of the standard Euler may be necessary, also to
guarantee St ≥ 0.

How about weak solutions?

In many practical situations the individual paths of Xt are not of interest. Instead, the
focus may be on moments of XT . In particular, we would like to know E[XT ] or Var[XT ],
rather than samples of XT . For options, the interest is on E[Ψ(XT )].

Definition (weak convergence)

yhT converges weakly to XT with respect to a function g with order β > 0, if

E[g(XT )]− E
[
g(yhT )

]
= O(hβ) ,

and converges weakly with order β, if this holds for all polynomials g.

Example

When a and b are four times continuously differentiable, the Euler method is weakly
convergent with order β = 1.

Importance of g

In case the convergence order β holds for all polynomials, the convergence of all mo-
ments follows.

Proof (for the first two moments):

(a) For g(x) := x
E[XT ]− E[yhT ] = O(hβ)

holds, viz, convergence of the mean.
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(b) If in addition the convergence order holds for g(x) := x2, then (writing y := yhT
and X := XT )

∣∣Var[XT ]− Var[yhT ]
∣∣ =

∣∣E[X2]− E[y2]− (E[X ])2 + (E[y])2
∣∣

≤ |E[X2]− E[y2]|︸ ︷︷ ︸
=O(hβ)

+ |E[X ] + E[y]|︸ ︷︷ ︸
≤const

· |E[X ]− E[y]|︸ ︷︷ ︸
=O(hβ)

,

i.e. convergence of the variance.

Remark

Strong convergence implies weak convergence with respect to g(x) = x.

Because the properties of integration

| E[X ]− E[Y ] | = |E[X − Y ]| ≤ E [ |X − Y | ]

lead to

E [ |X − Y | ] = O(hγ) =⇒ E[X ]− E[Y ] = O(hγ) .

Practical advantage of weak convergence:

The increments ∆W needed to calculate yh can be replaced by other random variables ∆̂W
with matching first moments. The weak-convergence order survives.

Example

∆̂W := ±
√
∆t, where both signs occur with probability 1/2. (cheaper to approximate than

Z ∼ N (0, 1))

This implies E(∆̂W ) = 0 and E((∆̂W )2) = ∆t (⇒ Var(∆̂W ) = ∆t).

When ∆̂W replaces ∆W one obtains the “simplified Euler method,” which is weakly con-
vergent with order 1.

3.2 Constructing Integrators for SDEs

The derivation of integrators for SDEs can be based on the stochastic Taylor expansion.

A. Stochastic Taylor expansion

(follows [P. Kloeden & E. Platen: Numerical Solution of SDEs])
For motivation we first consider the deterministic autonomous case

d

dt
Xt = a(Xt) .

The chain rule for f ∈ C1(IR) tells



Seydel: Course Notes on Computational Finance, Chapter 3 (Version 2015) 49

d

dt
f(Xt) =

df(X)

dX
· dX
dt

=
df(X)

dX
a(Xt)

= a(Xt)
d

dX
f(Xt) =: Lf(Xt) .

=⇒ f(Xt) = f(Xt0) +

∫ t

t0

Lf(Xs)︸ ︷︷ ︸
=:f̃

ds

Substitute this formula for

f̃(Xs) := Lf(Xs)

into itself gives

f(Xt) =f(Xt0) +

∫ t

t0

{
f̃(Xt0) +

∫ s

t0

Lf̃(Xz) dz

}
ds

=f(Xt0) + f̃(Xt0)

∫ t

t0

ds +

∫ t

t0

∫ s

t0

Lf̃(Xz) dz ds

=f(Xt0) + Lf(Xt0)(t− t0) +

∫ t

t0

∫ s

t0

L2f(Xz) dz ds .

This is the Taylor expansion with remainder term in integral form, here expanded until
the linear term; the remainder is a double integral. This process can be continued, and
the deterministic Taylor expansion with remainder in integral form results. (All needed
derivatives may exist.)

Now we turn to the stochastic case, to the Itô–Taylor expansion:

Applying the Itô lemma on f(X) and the autonomous SDE

dXt = a(Xt) dt+ b(Xt) dWt

leads to

df(Xt) = {a(Xt)
∂

∂x
f(Xt) +

1

2
(b(Xt))

2 ∂2

∂x2
f(Xt)

︸ ︷︷ ︸
=:L0f(Xt)

} dt+ b(Xt)
∂

∂x
f(Xt)

︸ ︷︷ ︸
=:L1f(Xt)

dWt ,

or

f(Xt) = f(Xt0) +
∫ t

t0
L0f(Xs) ds+

∫ t

t0
L1f(Xs) dWs . (∗)

Specifically for f(x) = x, the equation (∗) includes the starting SDE

Xt = Xt0 +

∫ t

t0

a(Xs) ds+

∫ t

t0

b(Xs) dWs .
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Now apply (∗) for suitable f̃ , begin with f̃ := a and f̃ := b, and obtain

Xt = Xt0 +

∫ t

t0

{
a(Xt0) +

∫ s

t0

L0a(Xz) dz +

∫ s

t0

L1a(Xz) dWz

}
ds

+

∫ t

t0

{
b(Xt0) +

∫ s

t0

L0b(Xz) dz +

∫ s

t0

L1b(Xz) dWz

}
dWs .

This can be written

Xt = Xt0 + a(Xt0)

∫ t

t0

ds + b(Xt0)

∫ t

t0

dWs +R ,

with remainder

R =

∫ t

t0

∫ s

t0

L0a(Xz) dz ds+

∫ t

t0

∫ s

t0

L1a(Xz) dWz ds

+

∫ t

t0

∫ s

t0

L0b(Xz) dz dWs +

∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs .

The integrands are

L0a = aa′ +
1

2
b2a′′

L1a = ba′

L0b = ab′ +
1

2
b2b′′

L1b = bb′ .

Analogously the integrands in the double integrals in R can be replaced, by applying (∗)
with proper f̃ . Thereby, the double integrals

∫ t

t0

∫ s

t0

dz ds

︸ ︷︷ ︸
=:I(0,0)= 1

2 (∆t)2

,

∫ t

t0

∫ s

t0

dWz ds

︸ ︷︷ ︸
=:I(1,0)

,

∫ t

t0

∫ s

t0

dz dWs

︸ ︷︷ ︸
=:I(0,1)

,

∫ t

t0

∫ s

t0

dWz dWs

︸ ︷︷ ︸
=:I(1,1)

occur as factors. I(1, 0), I(0, 1), I(1, 1) are stochastic variables. By a plausibility argument
(replace ∆Ws := Ws −Wt0 by its expectation

√
s− t0 ) expect that I(1, 1) is the integral of

lowest order: O(∆t). We begin with this integral, for f̃ := L1b(X). From (∗) conclude
∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs = L1b(Xt0)

∫ t

t0

∫ s

t0

dWz dWs + two triple integrals

Then R consists of

R = three double integrals + b(Xt0)b
′(Xt0)︸ ︷︷ ︸

=L1b(Xt0
)

I(1, 1) + two triple integrals

The next issue is to calculate the double integral I(1, 1):



Seydel: Course Notes on Computational Finance, Chapter 3 (Version 2015) 51

Let g(x) := x2 and Xt = Wt, which solves an SDE with a = 0 and b = 1. The Itô
lemma implies

d(W 2
t ) =

1

2
2 dt+ 2Wt dWt = dt+ 2Wt dWt,

which in turn yields
∫ t

t0

∫ s

t0

dWz dWs =

∫ t

t0

(Ws −Wt0) dWs =

∫ t

t0

Ws dWs −Wt0

∫ t

t0

dWs =

∫ t

t0

1
2

[
d(W 2

s )− ds
]
−Wt0(Wt −Wt0) =

1
2
(W 2

t −W 2
t0
)− 1

2
(t− t0)− 2

2
Wt0(Wt −Wt0) = 1

2
(∆Wt)

2 − 1
2
∆t .

This confirms the anticipated order O(∆t) of I(1, 1).
The above derivation of the stochastic Taylor expansion can be continued. This calls for a
systematic definition and notation of the multi-integrals, for example, I(0, 0, 0), .... In this
notation, a “0” stands for a deterministic integration, and a “1” for a stochastic integration.

Application

Attach further leading terms of the stochastic Taylor expansion to obtain integrators
of higher order.

Example (Milstein method)

yj+1 = yj + a∆t+ b∆Wj +
1
2bb

′ {(∆Wj)
2 −∆t

}

The first terms represent the Euler method, and the last term completes the list of O(∆t)-
terms, and improves the low order of strong convergence to 1. The weak order is also 1.
(This may be checked empirically.) Question: What does this result mean in view of SDEs
with b′ = 0 ?

B. Positivity

As mentioned before, positive solutions are characteristic for many SDEs in finance. This
should be preserved by numerical approximations. We discuss this topic for the CIR process,
which is part of the Heston model.

Example CIR
dXt = κ(θ −Xt) dt+ σ

√
Xt dWt

with κ, θ, σ > 0, X0 = x0 > 0. Positivity of Xt for all t is established by the “Feller
condition”

κθ ≥ 1

2
σ2 ,

which guarantees a strong enough growth rate. We remark in passing that b(X) = σ
√
X

does not satisfy a global Lipschitz condition.

Euler scheme:
yj+1 = yj + κ(θ − yj)∆t+ σ

√
yj ∆Wj

with y0 := x0, works as long as yj ≥ 0. There is a positive probability that yj+1 is negative.
When X represents an asset price, an interest rate, or a variance (Heston model), then y < 0
must be avoided.
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Variants

For example, replace
√
y by

√
|y| or by

√
y+. Then the scheme is defined for all y ∈ IR.

Another variant calculates

yj+1 = | yj + κ(θ − yj)∆t+ σ
√
yj ∆Wj | .

Implicit Euler methods can be applied as well, for example, the drift-implicit scheme

yj+1 = yj + a(yj+1)∆t+ b(yj)∆Wj .

If this scheme is applied to the SDE of the square root process
√
Xt, then a quadratic

equation for yj+1 results with a unique positive solution (Exercise !). [A. Alfonsi (2005)]

3.3 Monte Carlo Methods for European Options

The aim is to calculate the value

V (S0, 0) = e−rTEQ [ Ψ(ST ) | S(0) = S0 ]

of a European option, where Ψ denotes the payoff and Q a risk-free probability measure.

A. Basic Principle

The integral of this expectation can be approximated by Monte Carlo methods. The first
decision is the choice of the market model (as Heston- or Black–Scholes model). Here we
focus on the classic Black-Scholes model with GBM,

dSt = St (r dt+ σ dWt) .

The procedure is analogous to

Monte Carlo quadrature:

With respect to U [0, 1],
∫ 1

0

f(x) dx =

∫ ∞

−∞
f(x) 1[0,1] dx = E(f) .

Applying the law of large numbers,

1

N

N∑

k=1

f(xk) −→ E(f) for N → ∞ ,

where xk are independent random uniformly distributed numbers in the domain D :=
[0, 1], because 1[0,1] is the corresponding density. Hence the sum

1

N

N∑

k=1

f(xk)
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approximates the integral
∫ 1

0
f(x) dx.

For general domains D the approximation is

∫

D
f(x) dx ≈ Vol(D)

N

N∑

k=1

f(xk) .

The error is probabilistic. The central limit theorem provides related assertions, for exam-
ple:

With 95% probabilty the true value of the integral lies in the confidence interval around
the approximate value, which is given by the half width aσ/

√
N . For 95% probability

the parameter a is a = 1.96, and σ is the standard deviation.

So much on MC applied to quadrature. Now the question is, what is the structure of f when
options are to be priced under GBM?

In that case, the density is fGBM, and accordingly the xk must be distributed lognormally.

Algorithm: Monte Carlo Method for European Options

Simulate N paths of the asset price under the risk-neutral measure Q. Each path starts
at S0, and terminates in xk := (ST )k for k = 1, ..., N . Evaluate the payoff Ψ(ST )

f(xk) := Ψ
(
(ST )k

)
,

calculate the mean, and discount with factor e−rT . Its expectation yields the true
value V as long as f (ST and Ψ) is unbiased.

(Illustration in the beginning of the chapter)

Examples of a payoff Ψ

1.) Binary or digital option, e.g., binary call:

Ψ(ST ) = 1ST>K =
{
1 in case ST > K
0 elsewhere

2.) Barrier option with barrier B, e.g. a down-and-out call option with

Ψ(S) =

{
0 in case St ≤ B for a t in 0 ≤ t ≤ T
(ST −K)+ elsewhere

For this path-dependent exotic option the entire path St on 0 ≤ t ≤ T is of interest.
(meaningful for S0 > B > K; illustration in (S, t, V )-space under consideration of
boundary conditions along S = B)

3.) two-asset cash-or-nothing put: The payoff is 1 in case the inequalities S1(T ) < K1 and
S2(T ) < K hold, where S1(t), S2(t) denote the prices of the two assets. (See the figure
below; more figures in www.compfin.de.)

Hint: Many analytic solution formulas can be found in [E.G. Haug: Option Pricing Formu-
las].
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Implementation of the Monte Carlo Method

For the GBM model the true solution

St = S0 exp
{
(r − 1

2σ
2)t+ σWt

}

can be applied. For options that are not path-dependent this requires only one random
number for each path, for generating WT and ST . For more general models without analytic
solution formula, one must resort to numerical integration (say, with Euler’s method). Then
Monte Carlo consists of two loops: the outer loop of sampling (k = 1, . . . , N), and the
inner loop of the integration (j = 1, . . . ,M ; ∆t = T

M
; tj = j∆t). For path-dependent GBM

models, the analytic formula can be applied in a piecewise fashion,

Stj+1
= Stj exp

{
(r − 1

2σ
2)∆t+ σ∆W

}

for all j, with ∆W =
√
∆t Z , Z ∼ N (0, 1).

Dimension. Monte Carlo works in the same way for high-dimensional problems. The
costs are essentially independent on the dimension. This is an important advantage of
Monte Carlo methods.

B. Accuracy

a) Denote

µ̂ :=
1

N

N∑

k=1

f(xk) , ŝ2 :=
1

N − 1

N∑

k=1

(f(xk)− µ̂)
2
,

and µ = E(µ̂). According to the central limit theorem, the approximation µ̂ obeys
N (µ, σ2),

P

(
µ̂− µ ≤ a

σ√
N

)
= F (a),

with distribution function F . In practice σ2 is replaced by its approximation ŝ2. The error
behaves as ŝ√

N
. To reduce this statistical error, either reduce the numerator (variance reduc-

tion), or enlarge the denominator. The latter means to increase the number of simulations,
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and is very costly. For example, to gain one additional correct decimal, the error must be
reduced by a factor 1

10
, which amounts to raise the costs by a factor of 100 = ( 1

10
)−2.

b) In several cases, the computation of f(xi) gives rise to another error, namely, the bias.

Let x̂ be an estimator of the true value x to be estimated, then the bias is defined as

bias(x̂) := E[x̂]− x.

Examples

1.) For a lookback option the payoff involves the variable

x := E

[
max
0≤t≤T

St

]
.

An approximation is

x̂ := max
0≤j≤m

Stj .

Clearly x̂ ≤ x. Almost surely x̂ underestimates x, i.e. E[x̂] < x. Hence bias(x̂) 6= 0.

2.) Compared to the analytic solution of GBM, the Euler method provides biased results.
For GBM,

Stj+1
= Stj exp

{
(r − 1

2σ
2)∆t+ σ∆W

}

is unbiased, whereas the Euler step

Stj+1
= Stj (1 + r∆t+ σ∆W )

is biased.

These two examples are asymptotically unbiased since the bias vanishes for M → ∞. To
reduce the errors, there are several possibilities, which must be compared for costs and
tradeoffs. Either

• apply variance reduction,

• increase N , or

• reduce the bias (M larger, ∆t smaller),

or apply all these measures. Increasing N and M should be balanced. The overall error is
measured by the mean square error:

Definition (mean square error)

MSE(x̂) := E
[
(x− x̂)2

]
.

As is easily verified,

MSE(x̂) = (E[x̂]− x)
2
+ E

[
(x̂− E(x̂))2

]

= (bias(x̂))
2
+ Var(x̂) .
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C. Variance Reduction

There are several methods of variance reduction. The simplest (and maybe the least pow-
erful) is the method of antithetic variates. As for the crude MC, paths are simulated with
random numbers Z1, Z2, . . . Let us denote the MC approximation V̂ . The idea of antithetic
variates is to use in parallel the numbers −Z1,−Z2, . . ., which are also ∼ N (0, 1), to calcu-
late “mirror paths” S−

t from which the payoff values Ψ(S−
T ) are calculated. This leads to a

second Monte Carlo value V −. By construction, Var(V̂ ) = Var(V −). The effort to calculate
V − is slightly lower than that for Var(V̂ ) because the Z’s are recycled. The mean

VAV :=
1

2
(V̂ + V −)

satisfies

Var(VAV) =
1

4
Var(V̂ + V −)

=
1

4
(VarV̂ + VarV − + 2Cov(V̂ , V −))

=
1

2
VarV̂ +

1

2
Cov(V̂ , V −)

The anti-symmetric construction of the mirror paths inspires some confidence that the results
are negatively correlated, Cov(V̂ , V −) < 0. This holds in case the dependence of the output
V on the input Z is monotonic. For Cov(V̂ , V −) < 0 the effect is

Var(VAV) <
1

2
Var(V̂ ) .

This approach at most doubles the costs. In comparison, an error reduction of this size
(factor < 1

2 ) by merely increasing N requires at least fourfold costs.

Example GBM: Let the index k in Vk label the MC simulation, k = 1, . . . , N , for GBM.
For a payoff Ψ draw Zk ∼ N (0, 1) and calulate the pairs V̂k, V

−
k and the antithetic variate

VAV,k as follows (for t0 = 0):

V̂k = Ψ

(
S0 exp

{
(r − σ2

2
)T + σ

√
T Zk

})

V −
k = Ψ

(
S0 exp

{
(r − σ2

2
)T − σ

√
T Zk

})

VAV,k =
1

2
(V̂k + V −

k )

For each k, V̂k and V −
k are dependent, but the independence of Zk ∼ N (0, 1) makes the

VAV,k for k = 1, . . . , N independent, and MC is applied: The mean, discountend with factor
e−rT , approximates V .

(For the more complex method of control variates, see the literature.)

Notice that MC has not been developed for the simple vanilla options. The potential of MC
is needed for exotic options, in particular, in high-dimensional situations.



Seydel: Course Notes on Computational Finance, Chapter 3 (Version 2015) 57

3.4 Monte Carlo Methods for American Options

A. Stopping Time

Examples of decisions in the financial market include selling an asset, or exercising an
American option. Let us call the decision “stopping,” and the time instant of the decision
“stopping time” τ . Such decisions can only be based on the information available so far.
Accordingly, a stopping time must be non-anticipating: That is, for any time t one must
know whether the decision is made, i.e. whether τ ≤ t or τ > t.

This characterization of a stopping time can be defined formally with the means of
stochastics, building on the underlying process St:

Recall the filtration Ft: A stochastic process St is called Ft-adapted, if St is Ft-
measurable for all t. The natural filtration FS

t is the smallest sigma-algebra over
{Ss | 0 ≤ s ≤ t}, augmented by the P-null sets. St is FS

t -adapted. Filtrations
represent the amount of information available at time t. Hence we require for the set
{τ ≤ t} of all decisions until t

{τ ≤ t} ∈ Ft ,

which is the Ft-measurability of τ .

Definition (stopping time)

A stopping time τ with respect to a filtration Ft is a random variable with values in
[0, T ] ∪ {∞}, which is Ft-measurable for all t.

The importance of stopping times for American-style options is highlighted by the following
result of Bensoussan (1984):

Let Ψ(St) be a payoff, e.g. Ψ(St) = (K − St)
+.

The value of an American option is

V (S, 0) = sup0≤τ≤T EQ [ e−rτ Ψ(Sτ ) | S0 = S ]

τ stopping time
(∗)

The stopping time τ is with respect to a natural filtration Ft of St.

Examples of stopping times

1) Define the hitting time

τ := inf { t > 0 | St ≥ β }

for given β > S0. If no such t exists, set τ := ∞.
Clearly, a hitting time is non-anticipating: Setting τ amounts to setting a flag in case
of hitting, and for any time t check whether the flag is set.∗

∗ See [Hunt & Kennedy (2000)] for a formal proof that this τ is stopping time.
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2) Define t∗ as the time instant at which max0≤t≤T St is reached. This is no stopping
time! Because for arbitrary t one can not decide whether t∗ ≤ t or t∗ > t.

3) A stopping time is given by

τ := min { t ≤ T | (t, St) ∈ stopping region }

(This is a hitting time for St hitting the early-exercise curve; cf. Section 4.5.)

B. Parametric Methods

In (∗) the supremum over all stopping times is taken. Now we construct a special stopping
time. Similar as in Example 1 or 3 we define a curve in the (S, t)-half strip, which is supposed
to approximate the early-exercise curve. This defines a special stopping strategy τ̃ by the
event of hitting the curve. Assume that β is a vector of parameters defining the curve. Then
the stopping rule and τ̃ depend on β. This special β-depending stopping strategy τ̃ leads
to a lower bound

V low(β)(S, 0) := EQ
[
e−rτ̃Ψ(Sτ̃ ) | S0 = S

]
≤ V (S, 0) .

Application: Obviously, V (S, 0) can be approximated via suitable β-defined stopping
curves as

supβ V low(β).

This idea of an optimal stopping strategy leads to the procedure:

Construct a curve depending on a parameter vector β such that the curve approximates
the early-exercise curve. The stopping strategy is to stop when the path St crosses the
curve defined by β. For N such paths evaluate the payoff, and evaluate (approximate)
the value V low(β) as crude MC does. Next attempt to maximize the lower bound
V low(β) by repeating the procedure for “better” parameters β.

Example with β ∈ IR1:

Consider a parabola with peak in (S, t) = (K, T ), which is defined by one parameter
β only. As illustrated in the figure, this parabola can be seen as an approximation
of the early-exercise curve of a put. Calculate N paths (e.g. N = 10000) until the
left branch of the parabola (yields τ̃) or t = T is reached. Similar as in Example 1
this hitting time gives rise to an approximation V low(β). Each evaluation of V low(β)

costs as much as MC for a European option. Then repeat the procedure with a better
β. — This V low(β) will not converge to V (S, 0). A systematic error will remain be-
cause the eary-exercise curve can not be approximated so well with a simple parabola.
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To complete the procedure, one should also construct an upper bound V up. Literature:
[P. Glasserman: Monte Carlo Methods in Financial Engineering (2004)]

C. Regression Methods

Definition (Bermudan option)

A Bermudan option is an option that can be exercised only at a finite number M of
discrete time instances tj .

Specifically for

tj := j∆t , ∆t :=
T

M
(j = 0, . . . ,M)

we denote the value of a Bermudan option V Be(M). Because of the additional exercise
possibilities,

V Eu ≤ V Be(M) ≤ V Am

holds. One can show
lim

M→∞
V Be(M) = V Am .

For suitable M the value V Be(M) is used as approximation of V Am. The linear convergence
suggests working with a few moderate values of M and apply Richardson extrapolation. In
this way, the high costs of Monte Carlo for American options can be kept at a tolerable
level.

Recall from the binomial method (Section 1.3): The value of an American option is
calculated recursively in a backward fashion, where the continuation values V cont are defined
as European options on a strip, and for each tj

V Am = max
{
Ψ(S), V cont

}
.

Because at each tj the holder of the option decides which of the two possibilities {exercise,
hold} is optimal.∗

For a Bermudan option we define the continuation value at tj analogously:

Cj(x) := e−r∆t EQ
[
V (Stj+1

, tj+1) | Stj = x
]
.

These functions Cj(x) must be approximated.

∗ principle of dynamic programming
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General Recursion

Set VM (x) ≡ Ψ(x).
For j = M − 1, . . . , 1

construct Cj(x) for x > 0;

Vj(x) := V (x, tj) = max {Ψ(x), Cj(x)} for grid points x .

V0 := V (St0 , t0) = max {Ψ(S0), C0(S0) } .

Below we define special x by a stochastic grid.

To calculate the functions Cj(x) with Monte Carlo, one draws information out of paths

established by simulation, and approximates Cj(x) by a regression curve Ĉj(x).

Regression (basic version)

(a) Simulate N paths S1(t), ..., SN(t): Calculate and store the values

Sj,k := Sk(tj) , j = 1, ...,M, k = 1, ..., N .

0
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five trajectories and
points (Sj,k, tj)
for j = 1, . . . , 5, k = 1, . . . , 5

Mapping C, illustration for N = 6
The N pairs (k = 1, . . . , N)

(Sj,k , e
−r∆tVj+1,k)

constitute the data needed to calculate
the function Ĉj(x).
The mapping

Sj,k −→ Vj+1,k

is illustrated by circular dots.
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The dashed lines with the squares
illustrate the discounting and the pairs
(Sj,k , e

−r∆tVj+1,k), which enter a least squares procedure to generate Ĉj(x).
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Regression (continue)

(b) For j = M set VM,k = Ψ(SM,k) for all k.

(c) For j = M − 1, ..., 1:
Approximate Cj(x) with suitable base functions φ0, ..., φL (e.g. monomials)

Cj(x) ≈
L∑

l=0

alφl(x) =: Ĉj(x)

To this end, apply least-squares minimization on the N points

(Sj,k , e
−r∆tVj+1,k) , k = 1, ..., N

to get the coefficients a0, . . . , aL and thus Ĉj .

Evaluation:
Vj,k := max

{
Ψ(Sj,k), Ĉj(Sj,k)

}
.

(d) Set

V0 := max {Ψ(S0), e
−r∆t 1

N
(V1,1 + ...+ V1,N ) } .

Costs

The expensive steps are (a) and (c). Step (d) is needed because the algorithm of (c) can
not be applied for j = 0, since S0,k = S0 for all k. Instead, the mean in (d) is taken.
Convergence of the algorithm was proved.

Based on this regression framework, the algorithm of Longstaff & Schwartz (2001) is
built, as well as the even more efficient algorithm by C. Jonen (2009). In particular, step (c)
offers potential for improvements.

The costs of step (c) of the above algorithm for American options do depend on the
dimension. (Why?) When the entire computing time for pricing an option is limited, then
the dependence on the dimension restricts the achievable accuracy. In this sense, the error
of MC depends on the dimension.

Illustration: Topic 6
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Supplement to Section 3.4

Longstaff & Schwartz modify the algorithm as follows:

A dynamical-programming principle is incorporated for the optimal stopping times.
Each path has its own stopping time τk for k = 1, ..., N . (It suffices to store the index
k since τk = k∆t.) This algorithm takes advantage of the possibility to work across
several time levels. Due to a modification of C. Jonen [Intern. J. Computer Math. 86
(2009); PhD 2011] this is an efficient method.

Algorithm

Initialization: τk := M for all k.

For each j = M − 1, ..., 1:

loop over all paths k = 1, ..., N :

In case Ψ(Sj,k) ≥ Ĉj(Sj,k) set τk := j.

Otherwise leave τk unchanged.

For further hints on regression, and on the computation of sensitivities (Greeks), consult
[R.U. Seydel: Tools for Computational Finance, Springer, London (2017)]. See also Topic 6
in the Topics for CF.
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4. Finite Di�eren
e Methods

for Ameri
an Vanilla Options

This chapter considers options with vanilla payoff Ψ(S), where S is the price of an underlying
asset. The assumed model for St is GBM. A continuous flow of dividend payments is
admitted, with constant dividend rate δ ≥ 0. Hence the GBM is

dSt

St
= (µ− δ) dt+ σ dWt .

4.1 Preparations

The Black–Scholes equation for the value V (S, t) of a standard option is

∂V

∂t
+

1

2
σ2 S2 ∂2V

∂S2
+ (r − δ)S

∂V

∂S
− r V = 0 ,

defined on the domain S > 0, 0 ≤ t ≤ T . Terminal condition: V (S, T ) = Ψ(S).

This partial differential equation (PDE) can be solved directly with numerical methods.
But then tricky stability issues must be tackled. Here we prefer applying transformations as
much as possible in order to obtain simpler equations, e.g. with the transformation S = ex.

Assumption: σ, r and δ are constant.

Then the Black–Scholes equation can be transformed to a strikingly simple type of PDE

(exercises). With t = T − 2τ
σ2 , S = Kex, q := 2r

σ2 , qδ := 2(r−δ)
σ2 and y(x, τ) defined by

V (S, t) = V (Kex, T − 2τ

σ2
) =: v(x, τ)

v(x, τ) = K exp

{
−1

2
(qδ − 1)x−

(
1

4
(qδ − 1)2 + q

)
τ

}
y(x, τ)

one obtains

∂y

∂τ
=

∂2y

∂x2

This is a parabolic equation which has an analytic solution. A back transformation estab-
lishes the well-known Black–Scholes formula. So, for a standard option of European style
no specific numerical method is needed.
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The aim of the chapter is to price American options.

Generic applications of the simple PDE yτ = yxx are heat conduction and diffusion in a one-
dimensional medium. The problem is well-posed as initial-value problem with increasing
τ . The time transformation t → τ converts the terminal condition for V (S, T ) = Ψ(S) to
an initial condition for τ = 0:

call : y(x, 0) = max
{
e

x
2 (qδ+1) − e

x
2 (qδ−1), 0

}

put : y(x, 0) = max
{
e

x
2 (qδ−1) − e

x
2 (qδ+1), 0

}

A solution y of the initial-value problem is defined on the domain

−∞ < x < +∞, 0 ≤ τ ≤ 1

2
σ2T =: τmax ,

which is a strip in the (x, τ)-plane. “Boundary” here means x → −∞, x → +∞.

Boundary-Value Problem

For numerical purposes the infinite strip is truncated to a rectangle, with

xmin ≤ x ≤ xmax .

This “localization” cuts down the influence of the initial conditions, and additional condi-
tions must be formulated to make the problem well-posed. These are boundary conditions
for the sides xmin and xmax. For the solution w(x, τ) of the boundary-value problem on
the rectangle we aim at w ≈ y, which requires the rectangle to be “large.” The sides xmin

and xmax must be chosen accordingly. In addition, the interval must include the range of
financial interest, namely, the x-values of S0 and K. This requires

xmin < min

{
0, log

S0

K

}
, max

{
0, log

S0

K

}
< xmax .

For simplicity, just think of xmin = −3 and xmax = 3. — Later we shall see that for American
options the partial differential equation mutates to an inequality.

4.2 Basics of Finite-Difference Methods (FDM)

A. Difference Approximations

Recall

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(ξ) for a ξ ∈ (x, x+ h) and f ∈ C2

We introduce an equidistant grid with grid points xi

... < xi−1 < xi < xi+1 < ...
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and h := xi+1 − xi. [In the non-equidistant case one often prefers finite-element methods
(FEM)]. This chapter is confined to equidistant grids.

Analogously, with notation fi = f(xi), the following holds true:

f ′(xi) =
fi+1 − fi−1

2h
+O(h2) for f ∈ C3

f ′′(xi) =
fi+1 − 2fi + fi−1

h2
+O(h2) for f ∈ C4

f ′(xi) =
−fi+2 + 4fi+1 − 3fi

2h
+O(h2) for f ∈ C3

B. The Grid

For an m ∈ IN and a νmax ∈ IN define

∆x :=
xmax − xmin

m
, xi := xmin + i ·∆x , i = 0, 1, ..., m ;

∆τ :=
τmax

νmax
, τν := ν ·∆τ , ν = 0, ..., νmax .

yi,ν := y(xi, τν) is the value of y at the node (xi, τν). Approximations of yi,ν are denoted
wi,ν . The values

wi,0 = y(xi, 0)

are known from the initial conditions.

C. Explicit Method

In the PDE, replace

∂yi,ν
∂τ

: =
∂y(xi, τν)

∂τ
=

yi,ν+1 − yi,ν
∆τ

+O(∆τ) and

∂2yi,ν
∂x2

=
yi+1,ν − 2yi,ν + yi−1,ν

∆x2
+O(∆x2) ,

drop the O-error terms, replace y → w, and obtain the difference equation

wi,ν+1 − wi,ν

∆τ
=

wi+1,ν − 2wi,ν + wi−1,ν

∆x2
.

In case all values w are calculated for the time level ν, then the values of the time level ν+1
are given by

wi,ν+1 = wi,ν +
∆τ

∆x2
(wi+1,ν − 2wi,ν + wi−1,ν) .
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With the notation

λ :=
∆τ

∆x2

this is rewritten as

wi,ν+1 = λwi−1,ν + (1− 2λ)wi,ν + λwi+1,ν . (∗)

Start with ν = 0, since there the wi,0 are known. That is, for ν = 1 all wi,1 can be calculated
with the explicit formula (∗), and similarly the wi,ν-values of the following time levels.

ν is the outer loop index and i the inner index. This suggests to describe the procedure by
vectors and matrices: Use

w(ν) := (w1,ν , . . . , wm−1,ν)
tr

(so far, reasonable boundary components w0,ν and wm,ν are lacking) for the values of the
ν-th time level, and the (m− 1)× (m− 1)-matrix

A := Aexpl :=




1− 2λ λ 0 · · · 0

λ 1− 2λ
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . λ

0 · · · 0 λ 1− 2λ




Now the explicit method can be written

w(ν+1) = Aw(ν) for ν = 0, 1, 2, ..., νmax − 1

up to a modification taking care of boundary conditions for w0,ν and wm,ν . Preliminarily,
for ease of presentation, we have set the boundary conditions to zero.

Example of Instability

yτ = yxx with y(x, 0) = sinπx, x0 = 0, xm = 1 and boundary conditions = 0.
Let us approximate y(x = 0.2, τ = 0.5) using a grid with ∆x = 0.1, i.e. m = 10 and
0.2 = x2, and two different values of ∆τ :

a) ∆τ = 0.0005 ⇒ λ = 0.05 and 0.5 = τ1000
yields w2,1000 = 0.00435 (exact is 0.004227)

b) ∆τ = 0.01 ⇒ λ = 1 and 0.5 = τ50
yields w2,50 = −1.5 · 108 (an instability)

D. Stability

Error analysis of w(ν+1) = Aw(ν) + d(ν) (above d(ν) = 0)

Notation

w(ν) exact vectors of w(ν+1) = Aw(ν) + d(ν),

w(ν) versions calculated in the computer, subjected to rounding errors,

e(ν) := w(ν) − w(ν) .
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In exact computation, w(ν+1) − Aw(ν) − d(ν) is nonzero; we call this vector r(ν+1),

w(ν+1) = Aw(ν) + d(ν) + r(ν+1) .

The vector r(ν+1) represents the rounding errors in the ν-th step.

It suffices to study the propagation of one error. So we set r(ν) = 0 for ν > 1, i.e., study
propagation of the error e(0) in the course of the iterations.

⇒ w(ν+1) = Aw(ν) + d(ν) (ν > 1)

⇒ Ae(ν) = Aw(ν) −Aw(ν) = w(ν+1) − w(ν+1) = e(ν+1)

⇒ e(ν) = Aνe(0)

For stable behavior, we require Aνe(0) → 0 for ν → ∞.

Notation:

ρ(A) := max
k

|µA
k | where µA is eigenvalue of A

Lemma 1

ρ(A) < 1 ⇐⇒ Aνz → 0 for all z and ν → ∞

Proof: Textbooks on Numerical Analysis.

A has the structure

A = I − λ ·




2 −1 0

−1
. . .

. . .
. . .

. . .
. . .

. . .
. . . −1

0 −1 2




︸ ︷︷ ︸
=:G

.

⇒ µA = 1− λµG.

Lemma 2

For G =




α β 0

γ
. . .

. . .
. . .

. . .
. . .

. . .
. . . β

0 γ α




∈ IRN×N the eigenvalues are

µG
k = α+ 2β

√
γ

β
cos

kπ

N + 1
, k = 1, ..., N.
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Proof:

With the eigenvectors

v(k) =

(√
γ

β
sin

kπ

N + 1
,

(√
γ

β

)2

sin
2kπ

N + 1
, ...,

(√
γ

β

)N

sin
Nkπ

N + 1

)tr

check Gv(k) = µGv(k).

(For γ = β the eigenvectors do not depend on α, β, γ.)

Applying Lemma 2 either directly to A, or to G with N = m − 1, α = 2 and β = γ = −1,
yields

µG
k = 2− 2 cos

kπ

m
= 4 sin2

(
kπ

2m

)

µA
k = 1− 4λ sin2

kπ

2m
.

By Lemma 1:

stability ⇐⇒
∣∣∣∣1− 4λ sin2

kπ

2m

∣∣∣∣ < 1, k = 1, ..., m− 1

⇐⇒ λ > 0 and − 1 < 1− 4λ sin2
kπ

2m
, or

1

2
> λ sin2

kπ

2m

For the second inequality λ ≤ 1/2 is sufficient. In summary,

For 0 < λ ≤ 1
2

the explicit method w(ν+1) = Aw(ν) with A = Aexpl is stable.

Because of λ = ∆τ
∆x2 , or 0 < ∆τ ≤ 1

2∆x2, the step sizes ∆τ and ∆x can not be chosen
independent of each other.

Conclusion: This explicit method is not satisfying.

E. An Implicit Method

The backward difference quotient

∂yi,ν
∂τ

=
yi,ν − yi,ν−1

∆τ
+O(∆τ).

leads to

−λwi+1,ν + (1 + 2λ)wi,ν − λwi−1,ν = wi,ν−1 .

This is a system of coupled linear equations for the wi,ν . With

A := Aimpl :=




1 + 2λ −λ 0

−λ
. . .

. . .
. . .

. . . −λ
0 −λ 1 + 2λ



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the vector w(ν) is defined implicitly as solution of Aw(ν) = w(ν−1), or

Aw(ν+1) = w(ν) , ν = 0, . . . , νmax − 1.

(We still use the preliminary boundary conditions w0,ν = wm,ν = 0.) This method is called
backward difference method or backward time centered space (BTCS) or fully implicit.

Stability

The above Lemmas imply that the method is unconditionally stable, and ∆τ and ∆x
can be chosen independent of each other.

Costs

νmaxO(m), since only one LR-decomposition of A for ν = 0 is necessary (cheap for a
tridiagonal matrix). For each ν, only one backward loop is required, which costs O(m)
operations.

A weakness of this method (and of the explicit method) is the accuracy of the first order in
∆τ , the error is of the order

O(∆x2) +O(∆τ) .

4.3 Crank–Nicolson Method

It would be desirable to have a stable method with error O(∆τ2) for

∂y

∂τ
=

∂2y

∂x2
.

From the previous section, we assemble the forward quotient for ν

wi,ν+1 − wi,ν

∆τ
=

wi+1,ν − 2wi,ν + wi−1,ν

∆x2

and the backward quotient for ν + 1

wi,ν+1 − wi,ν

∆τ
=

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

∆x2
.

Adding both equations yields the scheme

wi,ν+1 − wi,ν

∆τ
=

1

2∆x2
(wi+1,ν − 2wi,ν + wi−1,ν + wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1) .

Theorem (Crank–Nicolson)

For this scheme the following assertions hold:

1.) For y ∈ C4 the method is of the order O(∆x2) +O(∆τ2).

2.) For each ν a system of linear equations in tridiagonal form must be solved.

3.) The method is stable for all ∆τ > 0.
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Proof:

1.) With the notation

δxxwi,ν :=
wi+1,ν − 2wi,ν + wi−1,ν

∆x2

the Taylor expansion for y ∈ C4 yields

δxxyi,ν =
∂2

∂x2
yi,ν +

∆x2

12

∂4

∂x4
yi,ν +O(∆x4) .

Then the local discretization error

ε :=
yi,ν+1 − yi,ν

∆τ
− 1

2
(δxxyi,ν + δxxyi,ν+1)

satisfies
ε = O(∆x2) +O(∆τ2) .

2.) With λ := ∆τ
∆x2 the scheme is rewritten

−λ

2
wi−1,ν+1 + (1 + λ)wi,ν+1 −

λ

2
wi+1,ν+1

=
λ

2
wi−1,ν + (1− λ)wi,ν +

λ

2
wi+1,ν .

With the preliminary boundary conditions w0,ν = wm,ν = 0 this is the matrix-vector
system

Aw(ν+1) = Bw(ν)

where

A :=




1 + λ −λ
2 0

−λ
2

. . .
. . .

. . .
. . . −λ

2

0 −λ
2 1 + λ




, B :=




1− λ λ
2 0

λ
2

. . .
. . .

. . .
. . . λ

2

0 λ
2 1− λ




.

By the theorem of Gerschgorin the eigenvalues of A lie between 1 and 1+2λ. So, zero
is no eigenvalue, A is non-singular, and the system of equations has a unique solution.

3.) Set

A = I + λ
2G with G :=




2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2


 and B = I − λ

2G .

Then
(2I + λG︸ ︷︷ ︸

=:C

)w(ν+1) = (2I − λG)w(ν)

= (4I − 2I − λG)w(ν)

= (4I − C)w(ν) ,
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which leads to the explicit form

w(ν+1) = (4C−1 − I)w(ν).

By Lemma 1 the stability requirement is
∣∣∣∣
4

µC
k

− 1

∣∣∣∣ < 1 for all k.

By Section 4.2D, the eigenvalues µC
k of C are

µC
k = 2 + λµG

k = 2 + 4λ sin2
kπ

2m
> 2 .

Hence the method is stable for all λ > 0 (∆τ > 0).

Algorithm (Crank–Nicolson)

start: Choose m, νmax; calculate ∆x,∆τ

w
(0)
i = y(xi, 0) (0 ≤ i ≤ m)

LR-decomposition (or RL-decomposition) of A

loop: for ν = 0, 1, ..., νmax − 1 :

c := Bw(ν) + 0 (preliminary boundary conditions 0)

Solve Ax = c (using the LR/RL-decomposition)

w(ν+1) := x

4.4 Boundary Conditions

Since the initial conditions are active only for the interval xmin ≤ x ≤ xmax, boundary
conditions

y(x, τ) for xmin and xmax, or
w0,ν and wm,ν for ν = 1, ..., νmax

are needed to make the problem well-posed. These boundary conditions are artificial and
have an influence on the accuracy of numerical solutions.

In the S-world, the GBM assumption for St implies

S(0) = 0 ⇒ St = 0 for all t

S(0) → ∞ ⇒ St large for all t ≤ T.

Hence for all t
VC(S, t) = 0 for S = 0, and

VP(S, t) → 0 for S → ∞ .
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We use these boundary conditions as approximations also for Smin ≈ 0 and Smax large.
And for the transformed x-values, provided −xmin = −x0 and xmax = xm are large enough,
as well:

call: “left” (S = 0) V = 0, i.e. w0,ν = 0 for all ν
put: “right” (S → ∞) V = 0, i.e. wm,ν = 0 for all ν

So far, the argumentation holds for both European and American options. Now we turn to
the question, what are reasonable V -values on the other ends of the interval?

We begin with European options, and apply the put-call parity

VP = VC − Se−δ(T−t) +Ke−r(T−t) .

This yields the boundary conditions at the other ends:

VC(S, t) = Se−δ(T−t) −Ke−r(T−t) for S → ∞
VP(S, t) = Ke−r(T−t) − Se−δ(T−t) for S → 0 .

After the transformation (S, t) → (x, τ) the asymptotic behavior is:

y(x, τ) = r1(x, τ) for x → −∞, y(x, τ) = r2(x, τ) for x → ∞, with

call: r1(x, τ) := 0, r2(x, τ) := exp
(
1
2 (qδ + 1)x+ 1

4 (qδ + 1)2τ
)

put: r1(x, τ) := exp
(
1
2 (qδ − 1)x+ 1

4(qδ − 1)2τ
)
, r2(x, τ) := 0

For the finite interval a := xmin ≤ x ≤ xmax =: b, r1, r2 are the dominating terms of the
boundary conditions and can be used as approximations. Accordingly, we choose

w0,ν = r1(a, τν)

wm,ν = r2(b, τν) .

These boundary conditions are of Dirichlet-type. In the Crank–Nicolson scheme the bound-
ary conditions lead to the additional terms

−λ

2
w0,ν+1 = −λ

2
r1(a, τν+1)

λ

2
w0,ν =

λ

2
r1(a, τν)

and

−λ

2
wm,ν+1 = −λ

2
r2(b, τν+1)

λ

2
wm,ν =

λ

2
r2(b, τν),

which are represented by the vector

d(ν) :=
λ

2
·




r1(a, τν+1) + r1(a, τν)
0
...
0

r2(b, τν+1) + r2(b, τν)




=
λ

2
·




w0,ν + w0,ν+1

0
...
0

wm,ν + wm,ν+1






Seydel: Course Notes on Computational Finance, Chapter 4 (Version 2015) 73

In the Crank–Nicolson algorithm the right-hand side of the system of equations is now

c := Bw(ν) + d(ν) ;

the matrix A is unchanged.

We still need to specify the boundary conditions (b.c.) for American-style options on
the “other” side, namely, left-hand b.c. for the put and right-hand b.c. for the call.

4.5 Early-Exercise Structure — Free-Boundary Problems

For a better understanding of American options a further analysis of the solution structure
is helpful.

Basics (for the put under the Black–Scholes model)

a) V (S, t) is continuous, V ≥ 0, and V → 0 for S → ∞.

b) For r > 0 and all t < T
V Eu
P (0, t) = Ke−r(T−t) < K ,

which implies: There is a S∗ = S∗Eu(t) such that V Eu
P (S∗, t) = K − S∗.

(t)fS
S

0

V

possible European option for t<T

possible American option for t<T

payoff function for t=T

K

K

c) VP is monotonic decreasing w.r.t. S, and convex. [R.C. Merton: Theory of Rational
Option Pricing (1973)]

Hence S∗ is unique.

d) V Am
P ≥ (K − S)+ and V Am

P ≤ K.

Assertion 1

Also for the American put with r > 0 there is an S∗ > 0, such that V Am
P (S∗, t) =

K − S∗.

Proof:

Assume: V Am
P > K − S for all S > 0.

Then
−V Am

P +K − S < 0 ,

i.e., exercising the put leads to a loss for all S. Accordingly, early exercise does not
make sense, and hence V Am

P = V Eu
P . Consequently,

V Eu
P = V Am

P > K − S ,
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for all S > 0, which contradicts the implication of b).

Redefine S∗ := max{S | V Am(S, t) = K − S .}
By c) and d), V = K − S for all S < S∗.

It remains to investigate the behavior of V for S ≥ S∗.

Assertion 2

The right-hand side derivative of the function V Am
P (S, t) at S∗ has the value −1.

Proof (outline):

We use the notation V := V Am
P , and ∂V

∂S stands for the right-hand derivative.

For the right-hand derivative ∂V (S∗,t)
∂S < −1 is impossible, because otherwise for S > S∗

the property d) is violated. Hence ∂V (S∗,t)
∂S ≥ −1.

Assumption:
∂V (S∗, t)

∂S
> −1 .

We lead this to a contradiction as follows:
Build a portfolio: Π := V + S, with initial wealth

Π∗ := V + S∗ .

(= K; borrow from the bank the amount K.) For our GBM

dS = rS dt+ σS dW

assume that dt is so small that
√
dt ≫ dt. If dt is small enough, then (intuitively)

dW > 0 ⇐⇒ dS > 0 .

The Itô-Lemma leads to

dΠ = (. . .)dt+
∂Π

∂S
σS dW

= O(dt) +

(
∂V

∂S
+ 1

)
σS dW.

For dS > 0 this is positive for sufficiently small dt because dW > 0.
For dS < 0 the wealth of the portfolio is Π ≡ K and hence dΠ = 0.

In summary: E(dΠ) > 0, and E(dΠ) is of the order O(
√
dt). Sell the portfolio after dt

and expect the following balance

Π∗ + E(dΠ)−Kerdt = V + S∗ + E(dΠ)−K(1 +O(dt))

= E(dΠ) +O(dt)

This is positive because E(dΠ) dominates, hence an arbitrage, and we have arrived at
a contradiction to the no-arbitrage principle.
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Often related proofs use an argument of maximizing the value of the option. In this way,
the perpetual option (an option that does not expire) can be analyzed, see the exercises.

In summary, for an American put the following holds:

(1) V (S∗, t) = K − S∗ (Dirichlet b.c.)

(2) ∂V (S∗,t)
∂S = −1 (Neumann b.c.)

(3) V (S, t) > K − S for S > S∗

(4) V (S, t) = K − S for S ≤ S∗

The property (2) is called high contact, or smooth pasting.

Such an S∗ exists for each t. This defines a function, which we denote Sf(t). The “f” stands
for free boundary.

The curve Sf(t) cuts the half strip into two parts, namely,

1.) S > Sf , called continuation region of the put.

2.) S ≤ Sf , called stopping region of the put.

For standard options without discrete dividend payments, these domains are simply con-
nected. The curve Sf(t) is the interface.

continuecontinue

T

S

stop

t

T

S

call

stop

t

S (T) S (T)

put

S 

f f

f
S f

Early-Exercise Curve

The curve Sf(t) is the early-exercise curve by the following reasons:

1.) In case VP > (K − S)+, exercising amounts to −V + K − S < 0. This is a loss.
Consequently, the holder continues to hold the option.

2.) In case the price S passes the curve, S < Sf(t), then immediate exercising makes sense
(“stopping”), because the amount K can be invested, leading for r > 0, t < T to the
profit:

Ker(T−t) −K = K(er(T−t) − 1).

By exercising, the final balance of Ker(T−t) is larger than Seδ(T−t), at least for r(T −
t) < 1.

Free-Boundary Problem means:

The Black–Scholes equation is valid only in the continuation region, not in the stopping
region. Hence the domain for the BS equation for an American-style put is

Sf(t) < S < ∞ .



Seydel: Course Notes on Computational Finance, Chapter 4 (Version 2015) 76

The left-hand boundary Sf(t) is “free” in the sense that it is unknown initially. It is
calculated numerically, based on the additional boundary condition provided by the
contact condition ∂V

∂S = −1. This condition fixes the location of Sf(t).

The properties of a call are derived analogously.

Important Properties of the early-exercise curve in case of a put under the Black–Scholes
model (continuous dividend rate δ ≥ 0 possible, but discrete dividend here excluded!) are:

1.) Sf(t) is continuously differentiable for t < T .

2.) Sf(t) is monotonic increasing.

3.)

Sf(T ) := lim
t→T
t<T

Sf(t) =

{
K für 0 ≤ δ ≤ r
r
δK für r < δ

Proof of 3.) (notation V = V Am
P )

V Am ≥ V Eu implies Sf(t) ≤ S∗eu(t) < K for all t < T . Hence Sf(T ) ≤ K .

Notice that V ≥ Ψ implies
∂V (S, t)

∂t
≤ 0

for t = T . To prepare for some indirect proofs, we first study for Sf(T ) < K how the
BS equation is consistent with the sign of ∂V

∂t . At t = T and for Sf(T ) < S < K

V (S, T ) = K − S

holds, and the BS equation is

∂V

∂t
+ 0− (r − δ)S − rV = 0

=⇒ ∂V (S, T )

∂t
= rK − δS .

We will check for which combinations of (δ, r) the sign of ∂V (S,T )
∂t

is consistent with
∂V
∂t

≤ 0.

Case δ > r

Here r
δK < K. Then either Sf(T ) = r

δK (the assertion), or there exists one of two
open intervals (i) Sf(T ) <

r
δK and (ii) r

δK < Sf(T ).

(i) For S in the interval Sf(T ) < S < r
δK we have ∂V (S,T )

∂t = rK − δS > 0, a
contradiction to

∂V

∂t
≤ 0 .

(ii) For each S in the interval r
δ
K < S < Sf(T ) there is a small dt such that (S, T−dt)

is in the stopping region. The inequality rK < δS holds, and thus rKdt < δSdt,
which leads to

K(erdt − 1) < S(eδdt − 1) .
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Since S < K, this means that in case of stopping of the option for the time
interval dt the dividend yield is larger than the return of investing K at the
risk-free rate. Hence early exercise is not optimal, which is in conflict with the
meaning of S < Sf(t).

Hence Sf(T ) =
r
δK holds in case δ > r.

Case δ ≤ r

Assume Sf(T ) < K. Then for S in the interval Sf(T ) < S < K a contradiction is
obtained from

∂V

∂t︸︷︷︸
≤0

= rK − δS︸ ︷︷ ︸
>0

.

For a call with δ > 0 but without discrete dividend:

1.) Sf(t) is continuously differentiable for t < T .

2.) Sf(t) is monotonic decreasing.

3.)

Sf(T ) := lim
t→T
t<T

Sf(t) = max
{
K,

r

δ
K
}

Remark: In case of discrete dividend payment the above assertions must be modified. In
particular, Sf then is not continuous! For example, for an American put early exercise is
not optimal within a certain time interval before ex-dividend date.

4.6 Linear Complementarity

We need a numerical method that does not use the unknown Sf explicitly.

A. Inequality

As argued above, for American-style options the Black–Scholes equation does not hold in
the entire half strip 0 ≤ t ≤ T, 0 < S, but only in the continuation region. Now, what
happens in the stopping region?

With the notation:

LBS(V ) :=
1

2
σ2S2 ∂

2V

∂S2
+ (r − δ)S

∂V

∂S
− rV

the Black–Scholes equation can be written

∂V

∂t
+ LBS(V ) = 0 .

For for a put and S < Sf the identity V ≡ Ψ holds, so

V = K − S,
∂V

∂S
= −1,

∂2V

∂S2
= 0,

∂V

∂t
= 0,
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hence
∂V

∂t
+ LBS(V ) = δS − rK .

For S < Sf(T ) we conclude

in case r < δ: S < r
δK, hence δS − rK < 0

in case r ≥ δ: δS − rK ≤ r(S −K) < 0 because S < K

and thus
∂V

∂t
+ LBS(V ) < 0 .

For a call the same result follows by analogous arguments.

In summary for all S > 0, 0 ≤ t ≤ T the partial differential inequality

∂V

∂t
+ LBS(V ) ≤ 0

holds, both for put and call.

Overview
put: V Am

P = K − S for S ≤ Sf

V Am
P solves the BS equation for S > Sf

contact condition:
∂V (Sf , t)

∂S
= −1

call: V Am
C = S −K for S ≥ Sf

V Am
C solves the BS equation for S < Sf

contact condition:
∂V (Sf , t)

∂S
= 1

The second derivative of V with respect to S is not continuous at Sf . That is, the value
function V is smooth in the interior of the continuation region, but not on the entire half
strip.

Remark: The transformation of Section 4.1 leads to

∂V

∂t
+ LBS(V ) = −∂y

∂τ
+

∂2y

∂x2
.

B. Formulation with Penalty Term

A unified treatment of ∂V
∂t

+ LBS(V ) ≤ 0 on the entire half strip is possible. To this end,
introduce a suitable function p(V ) ≥ 0 requiring the penalty PDE

∂V

∂t
+ LBS(V ) + p(V ) = 0

to hold. The penalty term p should be 0 in the continuation region, and positive in the
stopping region. The distance to Sf is not known, but the distance V −Ψ of V to the payoff
Ψ is available and is used as control. One example of a penalty function is

p(V ) :=
ǫ

V −Ψ
for a small ǫ > 0 .
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Let Vǫ(S, t) denote the solution of the penalty PDE. Two extreme cases characterize the
effect of the penalty term for (S, t) in the continuation area and in the stopping area:

• Vǫ −Ψ ≫ ǫ implies p ≈ 0. Then essentially the Black–Scholes equation results.

• 0 < Vǫ−Ψ ≪ ǫ implies a large value of p, which means that the BS-part of the equation
is dominated by p. The BS equation is switched off, and Vǫ ≈ Ψ.

The corresponding branches of the solution Vǫ may be called the “continuation branch”
(p ≈ 0) and the “stopping branch” (Vǫ ≈ Ψ). Obviously these two branches approximate
the true solution V of the Black–Scholes problem. The intermediate range Vǫ − Ψ ≈ O(ǫ)
characterizes a boundary layer between the continuation branch and the stopping branch.
In this layer around the early-exercise curve Sf the solution Vǫ can be seen as a connection
between the BS surface and the payoff plane.a

Remarks: p and the resulting PDE are nonlinear in V . An implementation that avoids
Vǫ ≤ Ψ is not easy; not every choice of ǫ or ∆t will be successful.

Penalty methods are powerful in general. But for the relatively simple situation of
the single-asset American option, a more elegant solution is possible. We shall describe this
approach next.

C. Simple Obstacle Problem

Consider an “obstacle” g satisfyingb

g > 0 for a subinterval of − 1 < x < 1, g ∈ C2, g′′ ≤ 0, g(−1) < 0 and g(1) < 0.

g(x)

α β
x

u(x)

1−1

A function u ∈ C1 with minimal length, and with u(−1) = u(1) = 0 and u ≥ g for the g of
the figure can be characterized as follows: There is α, β such that

−1 < x < α : u′′ = 0 (u > g)

α < x < β : u = g (u′′ = g′′ ≤ 0)

β < x < 1 : u′′ = 0 (u > g)

This expresses a complementarity in the sense of

in case u− g > 0, then u′′ = 0,

in case u− g = 0, then u′′ ≤ 0.

a This is illustrated in Topic 9, see the Topics for CF on the homepage www.compfin.de;
Topic 9 also also illustrates the penalty function p.

b This and other parts of this chapter were inspired by [P. Wilmott, J. Dewynne, S. How-
ison: The Mathematics of Financial Derivatives].
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For options, the analogy is

in case V −Ψ > 0, then V̇ + LBS(V ) = 0 ,

in case V −Ψ = 0, then V̇ + LBS(V ) ≤ 0 .

For the simple obstacle problem an equivalent formulation is

Find a function u such that

u′′(u− g) = 0, −u′′ ≥ 0, u− g ≥ 0, (∗)
u(−1) = u(1) = 0, u ∈ C1[−1, 1].

In this version, α and β do not occur explicitly. After the numerical solution, the values of
α and β will become apparent. The problem (∗) is a linear complementarity problem
(LCP); it has the form

A · B = 0, A ≥ 0, B ≥ 0, for suitable A,B.

For a numerical solution of the simple obstacle problem we use the grid

xi = −1 + i∆x, ∆x :=
2

m
, gi := g(xi) .

This leads to the discrete form of the obstacle problem

(wi−1 − 2wi + wi+1)(wi − gi) = 0,

−wi−1 + 2wi − wi+1 ≥ 0,

wi − gi ≥ 0





for 0 < i < m

with w0 = wm = 0. Correspondingly we define

G :=




2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2


 and w :=




w1
...

wm−1


 , g :=




g1
...

gm−1




to rewrite the linear complementarity problem in vector notation:

(w − g)trGw = 0

Gw ≥ 0

w − g ≥ 0





D. Complementarity of the Black–Scholes Problem

Specifically for the American put let us formulate the transformed problem

∂y

∂τ
=

∂2y

∂x2
as long as V Am

P > (K − S)+
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as LCP. This requires to transform also the side conditions:

V Am
P (S, t) ≥ (K − S)+

= Kmax{1− ex, 0}

with q = 2r
σ2 leads to (here specially for δ = 0):

y(x, τ) ≥ exp{ 1
2
(q − 1)x+ 1

4
(q + 1)2τ}max{1− ex, 0}

= exp{ 1
4(q + 1)2τ}max{(1− ex)e

1
2 (q−1)x, 0}

= exp{ 1
4(q + 1)2τ}max{e 1

2 (q−1)x − e
1
2 (q+1)x, 0}

=: g(x, τ).

It turns out that both the boundary- and the initial conditions can be written with this g:

y(x, 0) = g(x, 0)

y(xmin, τ) = g(xmin, τ)

y(xmax, τ) = g(xmax, τ)

Now the linear complementarity problem for the American put is written

(
∂y

∂τ
− ∂2y

∂x2

)
(y − g) = 0

∂y

∂τ
− ∂2y

∂x2
≥ 0

y − g ≥ 0





with boundary- and initial conditions as stated above.

This formulation is identical to that one for the general case δ 6= 0, except for an adapted g:

q =
2r

σ2
, qδ =

2(r − δ)

σ2
,

put: (r > 0) g(x, τ) := exp{ 1
4 ((qδ − 1)2 + 4q)τ}max{e 1

2 (qδ−1)x − e
1
2 (qδ+1)x, 0}

call: (δ > 0) g(x, τ) := exp{ 1
4((qδ − 1)2 + 4q)τ}max{e 1

2 (qδ+1)x − e
1
2 (qδ−1)x, 0}

Remark: For an American call without dividend and r > 0, t < T , the equality V Am
C =

V Eur
C holds. Proof for δ = 0:

V Am
C ≥ V Eur

C ≥ S −Ke−r(T−t) > S −K

Hence V Am
C >payoff; no early exercise.
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4.7 Numerical Realization

A. Discretization

Now we discretize the LCP-problem with the grid from Section 4.2B:

wi,ν+1 − wi,ν

∆τ
= θ

wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1

∆x2
+

(1− θ)
wi+1,ν − 2wi,ν + wi−1,ν

∆x2

(“theta method”), with θ = 0 (explicit method), θ = 1
2
(Crank–Nicolson) or θ = 1 (BTCS-

method). With the notation λ := ∆τ
(∆x)2 the inequality ∂y

∂τ − ∂2y
∂x2 ≥ 0 becomes

wi,ν+1 − λθ(wi+1,ν+1 − 2wi,ν+1 + wi−1,ν+1)

− wi,ν − λ(1− θ)(wi+1,ν − 2wi,ν + wi−1,ν) ≥ 0 .
(∗)

Ordering these terms leads to define for the ν-level terms

bi,ν := wi,ν + λ(1− θ)(wi+1,ν − 2wi,ν + wi−1,ν), for i = 2, . . . , m− 2.

The boundary conditions are included in b1,ν and bm−1,ν:

b1,ν := w1,ν + λ(1− θ)(w2,ν − 2w1,ν + g0,ν) + λθg0,ν+1

bm−1,ν := wm−1,ν + λ(1− θ)(gm,ν − 2wm−1,ν + wm−2,ν) + λθgm,ν+1 ,

where
gi,ν := g(xi, τν) (0 ≤ i ≤ m, 0 ≤ ν ≤ νmax).

This completes the vector
b(ν) := (b1,ν , . . . , bm−1,ν)

tr

and analogously, w(ν), g(ν). With the matrix

A :=




1 + 2λθ −λθ 0

−λθ
. . .

. . .
. . .

. . . −λθ
0 −λθ 1 + 2λθ


 ∈ IR(m−1)×(m−1)

the problem (∗) is reformulated as

Aw(ν+1) ≥ b(ν) for all ν.

And y − g ≥ 0 reads
w(ν) ≥ g(ν),

and finally
(

∂y
∂τ − ∂2y

∂x2

)
(y − g) = 0 becomes

(
Aw(ν+1) − b(ν)

)tr (
w(ν+1) − g(ν+1)

)
= 0.
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This constitutes the following macro-algorithm:

Algorithm

For ν = 0, 1, ..., νmax − 1 :

compute g := g(ν+1), b := b(ν), as above;

compute w as solution of

Aw − b ≥ 0, w ≥ g, (Aw − b)tr(w − g) = 0. (∗∗)
set w(ν+1) := w

For each time level ν the LCP (∗∗) must be solved. This topic is analyzed next.

Assertion

With the transformation x := w − g and y := Aw − b the LCP (∗∗) is equivalent to

Compute vectors x, y, such that for b̂ := b−Ag the following holds:

Ax− y = b̂, x ≥ 0, y ≥ 0, xtry = 0

(∗ ∗ ∗)
Notice that in this context x, y are general vectors ∈ IRm−1.

Proof: Apply the transformation.

Lemma

The problem (∗ ∗ ∗) has a unique solution.

Proof:

1.) Define

G(x) :=
1

2
xtrAx− b̂trx

with the A from above,

A = I + λθ




2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2




By Lemma 2 of Section 4.2D the eigenvalues of the matrix A are

µA
k = 1 + λθ4 sin2(kπ/2m) ≥ 1 , k = 1, . . . , m− 1

So the symmetric matrix A is positive definite. Differentiating G w.r.t. x yields

Gx = Ax− b̂ , Gxx = A ,
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which shows that A is the Hessian matrix of G. For G ∈ C2 recall

G is strictly convex. ⇐⇒ The Hessian matrix of G is positive definite.

Hence the quadratic form G defined above is strictly convex and has a unique minimum
on each convex subset of IRN , N = m− 1. Notice that x ≥ 0 defines a convex set.

2.) Apply the Theorem of Karush, Kuhn, Tucker (KKT):

For the minimum x∗ of a convex function G under the side conditions Hi(x) ≤ di
for i = 1, . . . , N , where Hi are convex, the following holds: There are yi ≥ 0
such that

∂G(x∗)

∂xj
+ y1

∂H1(x
∗)

∂xj
+ . . .+ yN

∂HN (x∗)

∂xj
= 0 (j = 1, . . . , N)

with Hi(x
∗) ≤ di and yi(Hi(x

∗)− di) = 0 for i = 1, . . . , N .
(references include [Stoer & Witzgall], [Strang])

In our application, N = m−1. Inequality x ≥ 0 or xi ≥ 0 for all i = 1, . . . , m−1 leads
to di = 0 and Hi(x) = −xi . The Theorem of KKT implies the existence of y ≥ 0 with

∂G

∂xj
+ yj

∂Hj

∂xj
+ 0 =

∂G

∂xj
− yj = 0

and yixi = 0 for all i. For our special G we conclude

Gx = Ax− b̂ =⇒ Ax− b̂− y = 0

Hence (∗ ∗ ∗) results from the KKT-Theorem and processes a unique solution. This then
carries over to (∗∗).

B. Numerical Solution

A direct solution of (∗∗) is possible. Brennan & Schwartz suggest to proceed as follows:

Solve Aw = b componentwise such that

the side condition w ≥ g is obeyed.

This is a somewhat vague outline of an approach: the implementation matters. It is based
on the Gaussian elimination, which in its first phase transforms Aw = b into an equivalent
system Ãw = b̃, so that Ã is a triangular matrix (here bidiagonal). Then, in the second
phase, the above principle of Brennan & Schwartz can be solved with one loop. When Ã
is upper triangular, then this loop to solve Ãw = b̃ is a backward recursion. For a lower
triangle Ã, the loop is forward. If in the ith step of the loop w̃i denotes the component of
the solution of Ãw = b̃, then wi := max{w̃i, gi} appears to be a realization.

But w depends on the loop’s order. Only one direction works. An implementation
must make sure that the characteristic structure of the option is matched. For a put this
means:
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Let if be the index of the node Si that is closest to the contact point∗, where V touches
the payoff. Or more definitely, in the transformed variables,

wi = gi for i ≤ if , and

wi > gi for if < i ≤ m.

This structure is known from the theory, but if is unknown. For the put, w1 = g1 is the
starting point, and the wi := max{w̃i, gi}-loop is forward. Hence Ã must be a lower triangle,
which amounts to an RL-decomposition of A. This establishes the lower triangle Ã := L,
and b̃ is solution of Rb̃ = b. The first components of the loop will be wi = gi, until the first
index with wi > gi. This fixes the index if .

Algorithm (put)

1st phase: Calculate the RL-decomposition of A. Then set Ã = L and obtain b̃
from Rb̃ = b (backward loop).

2nd phase: forward loop, start with i = 1. Calculate the next component
of Ãw = b̃; denote it w̃i.
Set wi := max{w̃i, gi}.

The costs are low (solution of a linear system with tridiagonal matrix). It can be shown
that the above procedure for a standard option with the underlying matrix A works well.

For a call one proceeds the other way: The loop starts with wm = gm and the second
phase is a backward loop. To make this possible, in the first phase the “traditional” LR-
decomposition of A establishes an upper triangle Ã = R, and b̃ is obtained from Lb̃ = b in
a foward loop.

Remark on the accuracy:

Since V (S, t) fails to be twice continuously differentiable w.r.t. S at Sf(t), we expect
some bad influence on the accuracy. (Recall that Crank–Nicolson even assumes y ∈
C4.) But in spite of this lack of smoothness, the Crank–Nicolson approach here is
sufficiently accurate, oscillations diminish rapidly. The lack of smoothness in the
payoff is worse. Even extrapolation works rather well, although the assumptions of
smoothness are not satisfied.

∗ provided the chosen interval is large enough, S1 < Sf
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Outlook

This concludes the introduction in basic Computational Finance. An essential part of the
course are the exercises (down-loadable), in particular the programming assignments.

If this is the material for one semester, then there will be more time left for some
additional topics. (In my course, typically, there are two weeks left.) This additional
material is not included in these course notes, because it will differ from course to course,
depending on the interests and the knowledge of the students. For a textbook explaining
additional material, see [Seydel: Tools for Computational Finance, Sixth Edition (2017)],
from which we take the following section numbers. Possible topics include

• as further analytic method the integral equation of Kim (§4.8.4)
• upwind scheme and its relevance (§6.4 – 6.5)

• a penalty method in the two-dimensional case (§6.7)
• case studies, such as the two-dimensional tree method of Exercise 6.2

• jump diffusion (§1.9, §7.3)

If there is enough time for a two-semester course or an accompanying seminar, then
one may address

• finite elements (Chapter 5)

• nonlinear Black–Scholes problems (§7.1 – 7.2)


