Prof. Dr. Rüdiger Seydel Dipl.-Math. Christian Jonen

Computational Finance - 10th Assignment

Deadline: June 22

Exercise 30 (LU Decomposition of a Special Tridiagonal Matrix) (4 points)

A matrix of the form

$$A = \begin{pmatrix} a_1 & c_1 \\ b_2 & a_2 & c_2 \\ & \dots & \dots & \\ & & b_{n-1} & a_{n-1} & c_{n-1} \\ & & & b_n & a_n \end{pmatrix} =: \operatorname{tridiag}(b_{\mu}, a_{\mu}, c_{\mu})$$

with

$$|a_1| > |c_1| > 0,$$

 $|a_{\mu}| \ge |b_{\mu}| + |c_{\mu}|, b_{\mu} \ne 0, c_{\mu} \ne 0, 2 \le \mu \le n - 1,$
 $|a_n| \ge |b_n| > 0$

is called an *irreducible diagonally dominant* tridiagonal matrix.

Show that an irreducible diagonally dominant tridiagonal matrix $A = \text{tridiag}(b_{\mu}, a_{\mu}, c_{\mu})$ has an LU decomposition A = LU with $L = \text{tridiag}(b_{\mu}, \alpha_{\mu}, 0)$ and $U = \text{tridiag}(0, 1, \gamma_{\mu})$, where $\alpha_1 := a_1, \gamma_1 := c_1 \alpha_1^{-1}$ and

$$\alpha_{\mu} := a_{\mu} - b_{\mu} \gamma_{\mu-1}, \quad 2 \le \mu \le n,$$

$$\gamma_{\mu} := c_{\mu} \alpha_{\mu}^{-1}, \quad 2 \le \mu \le n - 1.$$

Exercise 31 (Crank-Nicolson Order)

(8 points)

Let the function $y(x,\tau)$ solve the equation

$$y_{\tau} = y_{xx}$$

and be sufficiently smooth. With the difference quotient

$$\delta_x^2 w_{i\nu} := \frac{w_{i+1,\nu} - 2w_{i\nu} + w_{i-1,\nu}}{\Delta x^2}$$

the local truncation error ϵ of the Crank-Nicolson method is defined as

$$\epsilon := \frac{y_{i,\nu+1} - y_{i\nu}}{\delta \tau} - \frac{1}{2} \left(\delta_x^2 y_{i\nu} + \delta_x^2 y_{i,\nu+1} \right).$$

Show

$$\epsilon = O(\Delta \tau^2) + O(\Delta x^2).$$

Exercise 32 (Transformation of the Boundary Conditions of BS)

(3 points)

In Exercise 7 the Black-Scholes equation is transformed into the equation

$$\frac{\partial y}{\partial \tau} = \frac{\partial^2 y}{\partial x^2} \,.$$

Transform the boundary conditions of the Black-Scholes equation accordingly.