Prof. Dr. Rüdiger Seydel Dipl.-Math. Christian Jonen

Computational Finance - 3rd Assignment

Deadline: April 27

Exercise 6 (Approximation Formula for F)

(3+4 points)

The function

$$f(x) := \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

is the density function of the standard normal distribution. Then

$$F(x) := \int_{-\infty}^{x} f(t)dt$$

is the associated distribution function (compare Exercise 4). The following relation holds for $0 \le x < \infty$:

$$F(x) = 1 - f(x)(a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5) + \varepsilon(x),$$

where

$$z := \frac{1}{1 + 0.2316419x},$$

$$a_1 = 0.319381530, \quad a_2 = -0.356563782, \quad a_3 = 1.781477937,$$
 $a_4 = -1.821255978, \quad a_5 = 1.330274429$

and the absolute error ε is bounded by

$$|\varepsilon(x)| < 7.5 \cdot 10^{-8}.$$

Hence we have the approximating formula

$$F(x) \approx 1 - f(x)z((((a_5z + a_4)z + a_3)z + a_2)z + a_1).$$

- a) Use this approximation formula to compute the option prices of Exercise 4 b). Compare these results with those obtained with your computer program.
- b) How many subintervals do you need for the computation of F(x) via a trapezoidal sum in order that the error is smaller than $7.5 \cdot 10^{-8}$? Use the error formula for the trapezoidal sum to answer this question.

Exercise 7 (Transforming the Black-Scholes Equation) (5+4+3 points)

Show that the Black-Scholes equation

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} - r V = 0$$
 (BS)

for V(S,t) with constant σ and r is equivalent to the equation

$$\frac{\partial y}{\partial \tau} = \frac{\partial^2 y}{\partial x^2}$$

for $y(x,\tau)$. For proving this, you may proceed as follows:

a) Use the transformation $S = Ke^x$ and a suitable transformation $t \leftrightarrow \tau$ to show that (BS) is equivalent to

$$-\dot{V} + V'' + \alpha V' + \beta V = 0$$

with $\dot{V} = \frac{\partial V}{\partial \tau}, \ V' = \frac{\partial V}{\partial x}, \ \alpha, \ \beta$ depending on r and σ .

b) Next apply a transformation of the type

$$V = K \exp(\gamma x + \delta \tau) y(x, \tau)$$

for suitable γ , δ .

c) Transform the terminal condition of the Black–Scholes equation accordingly.

Exercise 8 (On the Binomial Method)

(4+5+5 points)

a) For $ud = \gamma$ in the binomial method show

$$u = \beta + \sqrt{\beta^2 - \gamma}$$
, where $\beta := \frac{1}{2} (\gamma e^{-r\Delta t} + e^{(r+\sigma^2)\Delta t})$.

b) For $\gamma = 1$ show

$$u = \exp\left(\sigma\sqrt{\Delta t}\right) + O\left(\sqrt{(\Delta t)^3}\right)$$
 and $d = \exp\left(-\sigma\sqrt{\Delta t}\right) + O\left(\sqrt{(\Delta t)^3}\right)$.

c) Show that

$$\Delta_{Binom} := \frac{V^{(u)} - V^{(d)}}{S_0(u-d)},$$

where $V^{(u)} = V(uS_0, t + \Delta t)$ and $V^{(d)} = V(dS_0, t + \Delta t)$, fulfils

$$\Delta_{Binom} = \frac{\partial V}{\partial S} + O(\Delta t).$$

Exercise 9 (Martingale)

(2+2 points)

Show that W_t and $W_t^2 - t$ are martingales.

Information:

• The deadline for the programming exercise is April 27. Please turn in a printed version of your code and send it to numerik_programm@gmx.de.