Prof. Dr. Rüdiger Seydel Dipl.-Math. Christian Jonen

Computational Finance - 8th Assignment

Deadline: June 1

Exercise 24 (Integration by Parts for Itô Integrals)

(2+3 points)

a) Show

$$\int_{t_0}^t s \ dW_s = tW_t - t_0 W_{t_0} - \int_{t_0}^t W_s \ ds.$$

Hint: Start with the Wiener process $X_t = W_t$ and apply the Itô Lemma with the transformation y = g(x, t) := tx.

b) Denote $\Delta Y := \int_{t_0}^t \int_{t_0}^s dW_z ds$, $\Delta W := W_t - W_{t_0}$ and $\Delta t := t - t_0$. Show by using a) that

$$\int_{t_0}^t \int_{t_0}^s dz \ dW_s = \Delta W \Delta t - \Delta Y.$$

Exercise 25 (Integral Representation)

(8 points)

For an European put with time to maturity $\tau := T - t$ prove that

$$[V(S_t, t) =]e^{-r\tau} \int_0^\infty (K - S_T)^+ \frac{1}{S_T \sigma \sqrt{2\pi\tau}} \exp\left\{-\frac{\left[\ln(S_T/S_t) - (r - \frac{\sigma^2}{2})\tau\right]^2}{2\sigma^2 \tau}\right\} dS_T$$
$$= e^{-r\tau} KF(-d_2) - S_t F(-d_1),$$

where F, d_1 and d_2 were defined in Exercise 4.

Hint: Use $(K - S_T)^+ = 0$ for $S_T > K$, and get two integrals.

Exercise 26 (Random Number Generators and Monte Carlo) (25P points)

a) Implement the linear congruential generator given by

$$N_i = (aN_{i-1} + b) \mod M$$
 with $a = 1366, b = 150889, M = 714025.$

The seed N_0 should be the input value.

Use your program to compute 10000 pairs (U_{i-1}, U_i) in the unit square and plot them.

b) Implement the Fibonacci generator given by

$$U_i := U_{i-17} - U_{i-5},$$

 $U_i := U_i + 1 \text{ if } U_i < 0.$

Calculate U_1, \ldots, U_{17} with the linear congruential generator of a). Use your program to compute 10000 pairs (U_{i-1}, U_i) in the unit square and plot them.

- c) Implement the *polar method of Marsaglia*. Calculate the initial values with the Fibonacci generator of b).
 - Use your program to compute 10000 standard normally distributed numbers and plot them in two dimensions by separating them vertically with distance 10^{-4} . Furthermore, divide the x-axis into subintervals having the same length and count the computed numbers in each subinterval. Then set up the corresponding histogram.
- d) Implement a Monte Carlo method for single-asset European options, based on the Black-Scholes model. Perform experiments with various values of N (see below) and a random number generator of your choice. To obtain values for S_T , use the analytic solution formula for S_t and also alternatively Milstein's discretization. (Compare the different results.)

Input values: S_0 , number of simulations (trajectories) N, payoff function $\Lambda(S)$, risk-neutral interest rate r, volatility σ , time to maturity T, strike K.

Output value: approximated value of the option $V_0^{(N)}$.

Compute approximations $V_0^{(N)}$ for N=1,10,100,1000,10000 for the following option prices at time t=0:

- i) European put with r = 0.06, $\sigma = 0.3$, T = 1, K = 10, S = 5, $\delta = 0$,
- ii) European call with the same parameters,
- iii) binary call with the same parameters.

For i) and ii), compare your results with the values obtained via the Black Scholes formula.

Information:

- The deadline for the programming exercise is June 8. Please turn in a printed version of your code and send it to numerik_programm@gmx.de.
- The first session of the Cologne Computational Finance Laboratory takes place after exercises on June 6 and on June 8.