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Exercise 16 (Estimating Volatility) (6 Points)

Estimates of the local volatility can be obtained from the implied grid. To this end,
the return R is investigated at each node (j, i). For a binomial tree, we have two samples
for Rj,i. Taking the return of the underlying process S in the sense R = log(Snew/Sold), the
expectation and variance are
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and

Var(Rj,i) = pj,i

[
log

Sj+1,i+1

Sj,i

− E(Rj,i)

]2

+ (1− pj,i)

[
log

Sj,i+1

Sj,i

− E(Rj,i)

]2

,

respectively. For the GBM model, the scaling is Var(Rj,i) = σ2
j,i∆t, which defines the local

volatility σj,i at node (j, i).
Show that
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Exercise 17 (EWMA) (6 Points)

Define

σ2
k :=

1

n

n∑
i=1

u2
k−i

The data are weighted as follows:

Replace
1
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αiu
2
k−i with
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αi = 1 .

The EWMA (exponentially weighted moving average, also EMA) method sets

αi+1 = λαi with 0 < λ ≤ 1 .

Show that
σ2

k = λσ2
k−1 + (1− λ)u2

k−1 +O(λn)


