

Winter 2009/10 December 10

(4 Points)

(8 Points)

Computational Finance 2 - 9th Assignment

Deadline: December 17

Exercise 20 (Nonlinear Black–Scholes Models I)

According to the lecture, consider the following nonlinear PDE

$$V_t + 0.5\sigma^2(t, S, V_{SS})S^2V_{SS} + (r - \delta)SV_S - rV = 0,$$

where $\sigma^2(t, S, V_{SS})$ depends on the particular model; r is the risk-free interest rate and δ is the continuous dividend yield. Apply the transforms

$$x = \log(S/K), \ \tau = 0.5\sigma_0^2(T-t), \ u(x,\tau) = e^{-x}V(S,t)/K,$$

with K > 0 and a model-dependent parameter σ_0 .

Exercise 21 (Nonlinear Black–Scholes Models II)

Consider the fully implicit equation discretizing nonlinear Black–Scholes models. Recall the two criteria for $\tilde{\sigma}^2(x, \tau, s)$ with $s := u_x + u_{xx}$

(i) $\tilde{\sigma}^2(x,\tau,s)s$ is continuous and monotone increasing in s,

(ii) there exists a constant $c_+ > 0$ such that for all s and $\epsilon > 0$

$$\tilde{\sigma}^2(x,\tau,s+\epsilon)(s+\epsilon) \ge \tilde{\sigma}^2(x,\tau,s)s+c_+\epsilon$$

out of the three criteria for monotony. For

(a) Leland's model of transaction costs, with parameter γ , and

(b) the model of uncertain volatility with $\sigma_{\min} \leq \sigma \leq \sigma_{\max}$,

show that (i) and (ii) are satisfied. What are the constants c_+ ? For (b), σ^- suffices.