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Abstract

The normalized or game-theoretic p-Laplacian operator given by−∆N
p u :=

− 1
p
|∇u|2−p∆p(u) for p ∈ (1,∞) with ∆pu = div(|∇u|p−2∇u) has no apparent

variational structure. Showing the existence of a first (positive) eigenvalue of
this fully nonlinear operator requires heavy machinery as in [6]. Restricted to
the class of radial functions, however, the normalized p-Laplacian transforms
into a linear Sturm-Liouville operator. We investigate radial eigenfunctions
to this operator under homogeneous Dirichlet boundary conditions and come
up with an explicit complete orthonormal system of Bessel functions in a suit-
ably weighted L2-space. This allows us to give a Fourier-series representation
for radial solutions to the corresponding evolution equation ut −∆N

p u = 0.

1 Introduction

In [9] (and [20], [4], [16]) radial solutions to the eigenvalue problem

∆pu+ λ|u|p−2u = 0 in BR(0), u = 0 on ∂BR(0), (1.1)

were investigated, and it was shown that there exists an increasing sequence λk of
eigenvalues, each of them simple, and that the k-th radial eigenfunction vk(r) =
uk(|x|) has exactly (k − 1) simple zeroes in (0, R). There are also nonradial eigen-
functions, a fact that is well known for the linear case p = 2, but much harder to
prove for the nonlinear case, see [3]. Notice that (1.1) is quasilinear and homoge-
neous of degree (p− 1), since for any t ∈ R+ we have ∆ptu = tp−1∆pu.

In [7] similar results were shown for eigenvalues and radial eigenfunctions of the
Pucci operator, which associates to a symmetric matrix M and two positive real
numbers a < A the operatorMa,A(M) = A trace(M+)− a trace(M−). This time
the eigenvalue problem

Ma,A(D2u) + λu = 0 in BR(0), u = 0 on ∂BR(0), (1.2)

is fully nonlinear and homogeneous of degree 1.
More recently there have been investigations of closely related problems with

different degrees of homogeneity. To be precise, for any α > −1, the operators
|Du|α+2−p∆pu and |Du|αMa,A(D2u) were studied in [6, 10] and again the existence
of countably many (radial) eigenvalues tending to ∞ was shown. For α = 0 these
equations are homogeneous of degree 1. In [17] the authors study an evolution
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equation in the limit case of 1
p |Du|

α+2−p∆pu as p → ∞ for α = h − 1 > 0, while

[11, 2] look at the evolution equation for finite p and α = 0. It is the purpose of
this note to point out that in the case α = 0 we can explicitly calculate the radial
eigenvalues and eigenfunctions of the 1-homogeneous version of (1.1), i.e. of (2.2)
given below. As a byproduct we obtain an explicit Fourier-series representation for
radial solutions to a corresponding initial boundary value problem for ut−∆N

p u = 0.
One should also expect many nonradial eigenfunctions to exist, but for p 6= 2

we are not aware of any results in this direction, not even in two dimensions. The
normalized p-Laplacian ∆N

p is not of divergence type. That rules out variational
characterizations of eigenfunctions as in the case of the usual p-Laplace operator
∆p. On the other hand ∆N

p is in general strongly nonlinear, but then spectral
theory for linear operators which are not in divergence form cannot be applied
either.

2 Result

As shown in [14], in intrinsic coordinates the normalized p-Laplacian is a convex
combination of the normalized∞-Laplacian and the normalized 1-Laplacian. If ν =
− ∇u|∇u| denotes the unit vector pointing out of a level set Ωc := {x ∈ Ω ; u(x) ≥ c},
then

∆N
p u =

p− 1

p
∆N
∞u+

1

p
∆N

1 u =
p− 1

p
uνν +

1

p
(n− 1)Huν , (2.1)

with H denoting the mean curvature of ∂Ωc. Parabolic versions, i.e. equations of
type ut − ∆N

p u = 0 have recently been investigated in [11, 2], and for p = ∞ in
[13, 1]. The asymptotic decay of solutions depends on the first eigenvalue.

For radial functions the eigenvalue problem

∆N
p u+ λu = 0 in BR(0), u = 0 on ∂BR(0), (2.2)

using the decomposition (2.1) and the Ansatz u(x) = v(|x|), our eigenvalue problem
(2.2) transforms into

v′′(r) +
n− 1

p− 1

1

r
v′(r) +

p

p− 1
λv(r) = 0 in (0, R) (2.3)

with boundary conditions
v′(0) = 0 = v(R). (2.4)

In this context, weighted spaces appear naturally, and we will use the following
notation for them throughout the article: Given a domain Ω ⊂ Rn and a weight
function w : Ω → [0,∞) we write L2

w(x)(Ω) for the space of measurable functions
u : Ω→ R such that

‖u‖2L2
w(x)

:=

∫
Ω

w(x)2u(x)2 dx <∞.

If w is positive a.e. in Ω, this defines a norm, and L2
w(x)(Ω), equipped with the

associated scalar product, is a Hilbert space.

Remark 2.1. For p = ∞, (2.3),(2.4) is the equation for a vibrating string, and
as noted in [13], Section 4, the first eigenvalue is λ1 = ( π

2R )2 and the first eigen-

function is just cos(
√
λr). This and higher eigenfunctions for p =∞ are obviously

given by

vk(r) =

√
2

R
cos
(√

λkr
)

with λk =

(
(2k − 1)π

2R

)2

for k ∈ N.
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They form a complete orthonormal system normalized in L2(0, R), that spans {v ∈
W 1,2(0, R) ; v(R) = 0}.

Correspondingly, the sequence of functions uk(x) = vk(|x|), k ∈ N, forms an
orthonormal basis in the subspace W of the weighted space L2

|x|
1−n
2

(BR(0)), where

W consists of all radial functions u : BR(0) → R satisfying u(R) = 0. We should
also point out that the case n = 1 is well understood, and that for p = 1 the
Dirichlet-eigenvalue problem (2.2) has no nontrivial radial solution.

From now on we study the case n ≥ 2, p ∈ (1,∞) and note that for p = n the
differential equation (2.3) is known as Bessel’s equation. The corresponding Bessel
functions, evaluated at |x|, are then radial eigenfunctions of (2.2) on a ball in Rn.
If we choose

m =
p+ n− 2

p− 1
, (2.5)

then (2.3) reads
v′′ + m−1

r v′ + λ̃v = 0

(with λ̃ = pλ) and can be interpreted as the usual Bessel equation for balls in Rm.
Notice that m > 1 is in general not a natural number. Nevertheless we can state
and prove the following result.

Theorem 2.2. Suppose that α = p−n
2(p−1) , β = n−1

p−1 , γ = β− (n− 1) and J−α is the

Bessel function, cf. (4.9). Then for R = 1 the eigenfunctions of (2.3), (2.4) are
given by

vk(r) = ckr
αJ−α

(
µ

(−α)
k r

)
with ck =

(∫ 1

0

rβ
(
rαJ−α

(
µ

(−α)
k r

))2

dr

)−1/2

,

and they form a complete orthonormal system in the weighted space L2
rβ/2

((0, 1)).

Here µ−αk are the positive zeroes of the Besselfunction J−α.
Correspondingly, the radially symmetric eigenfunctions of (2.2) are given by

uk(x) = vk(|x|/R) and the associated eigenvalues are

λk =
p− 1

p

(
µ

(−α)
k

R

)2

.

These eigenfunctions form a complete orthonormal system in the subspace
L2
rad,|x|γ/2(BR(0)) of radial functions in L2

|x|γ/2(BR(0)).

The proof is the content of the final two sections.

Remark 2.3. The weight exponent γ = (2 − p)(n − 1)/(p − 1) is positive for
p ∈ (1, 2), negative for p ∈ (2,∞) and vanishes only for p = 2.

Remark 2.4. The radial eigenfunctions of (2.2) also form a complete orthogonal
system in the weighted Sobolev space

W 1,2

0,rad,|x|γ/2(BR(0)) :=
{
u ∈W 1,2

|x|γ/2(BR(0))
∣∣∣ u is radially symmetric

and u|∂BR(0) = 0

}
.

To see this, observe that for all sufficiently smooth, compactly supported, radially
symmetric functions in W 1,2

|x|γ/2 (a dense subspace containing our eigenfunctions),

an integration by parts in the scalar product of W 1,2

|x|γ/2 gives

〈u1, u2〉W 1,2

|x|γ/2
=

∫
BR(0)

(−∆N
p u1 + u1)u2 |x|γ dx.
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(W 1,2

0,rad,|x|γ/2 and its scalar product correspond to the space D0 and the scalar prod-

uct 〈·, ·〉+ in Section 3 below.) As a consequence, the eigenfunctions of ∆N
p , which

are pairwise orthogonal in L2
|x|γ/2 , inherit this property with respect to the scalar

product in W 1,2

|x|γ/2 , and the constant zero is the only function in W 1,2

0,rad,|x|γ/2 or-

thogonal to all of them, because any such function also has to be orthogonal to all
eigenfunctions with respect to the scalar product in L2

|x|γ/2 .

Our result has an immediate application to the corresponding initial-boundary
value problem IBVP

ut(x, t)−∆N
p u(x, t) = 0 in BR(0)× (0,∞),

u(x, 0) = u0(x) in BR(0),

u(x, t) = 0 on ∂BR(0)× (0,∞).

Corollary 2.5. With the notation of Theorem 2.2 and Remark 2.4 suppose that
u0 ∈ L2

rad,|x|γ/2(BR(0)). Then the solution of IBVP is given by

u(x, t) =

∞∑
k=1

dk e
−λkt uk(x) where dk = 〈u0, uk〉L2

|x|γ/2
(BR(0)) . (2.6)

3 Radial eigenfunctions as a complete orthogonal
system

Following a standard approach in functional analysis, we will show that solutions
of (2.3) can be interpreted as eigenfunctions of an unbounded self-adjoint linear
operator in H := L2

rβ/2
((0, 1)) with compact inverse. By and large, our arguments

are certainly known in the context of Sturm-Liouville eigenvalue problems, but we
are not aware of any references fully covering the singular problem at hand, and
for this reason, proofs are given below.

We recall that the scalar product in H is given by

〈v1, v2〉H :=

∫ 1

0

rβv1(r)v2(r) dr, with β =
n− 1

p− 1
.

Multiplying (2.3) by (−1) and adding v on either side (which ensures inver-
tibility of the self-adjoint extension later on), we are led to study the operator
B : D(B)→ H defined by

B(v)(r) := −v′′(r)− n− 1

p− 1

v′(r)

r
+ v(r) = −v′′(r)− β v

′(r)

r
+ v(r),

for
v ∈ D(B) := {v ∈ C∞([0, 1]) | v′(0) = v(1) = 0} ⊂ H.

An integration by parts shows that B is symmetric, and

〈Bv, v〉H =

∫ 1

0

[(v′)2 + v2]rβ dr ≥ ‖v‖2H for every v ∈ D(B),

whence B is positive definite and, in particular, semi-bounded. Since D(B) is dense
in H, this implies that B has a self-adjoint extension BF (Friedrichs’ extension,
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for instance see [12], Section XII.5, or [19], Section 17). Its domain of definition is
given by

D(BF ) = {v ∈ H | v ∈ D(B∗) ∩D0},

where B∗ denotes the adjoint of B, and D0 ⊂ H is the closure of D(B) with respect
to the norm ‖·‖+ generated by the scalar product

〈v, w〉+ := 〈Bv,w〉H .

Moreover, BF is semibounded with the same bound as B, i.e.,

〈BF v, v〉H ≥ ‖v‖
2
H for every v ∈ D(BF ).

Note that in our case, D0 can be explicitly characterized as D0 = W 1,2
rβ/2

((0, 1)) ∩
{v(1) = 0}, the space of weakly differentiable functions v in H with weak derivative
v′ in H and zero trace on the right boundary point r = 1.

The compactness of the inverse of BF rests on the following compact embedding.
For the reader’s convenience, we provide a short proof based on well known standard
embeddings without weights.

Lemma 3.1. W 1,2
rβ/2

((0, 1)) is compactly embedded in H = L2
rβ/2

((0, 1)).

Proof. Since W 1,2 is compactly embedded in L2 (on any bounded interval, without
the weights), the only possible problem is the behavior of functions near r = 0,
which can be controlled as follows: For every 0 < ε < 1, using that β ≥ 0,∫ ε

0

u2(r)rβ dr ≤ εβ+1

β + 1
u2(1) +

∫ ε

0

∫ 1

r

2 |u(s)u′(s)| ds rβ dr

≤ εβ+1

β + 1
u2(1) + ε

∫ 1

0

[u2(s) + u′2(s)]sβ ds

≤ (C + 1) max
{
ε,
εβ+1

β + 1

}
‖u‖2W 1,2

rβ/2
((0,1)) .

Here, C > 0 is a constant coming from the continous embedding of W 1,2 into
C0 on ( 1

2 , 1) which we employed to estimate |u(1)|. Consequently, the norm of
u in L2

rβ/2
on (0, ε) becomes small for small ε, uniformly for all u in a bounded

subset of W 1,2
rβ/2

((0, 1)). Together with the compact embedding of W 1,2
rβ/2

((ε, 1)) into

L2
rβ/2

((ε, 1)) for fixed ε, this implies the assertion.

Proposition 3.2. BF : D(BF ) → H is invertible, and as a linear operator from
H into H, the inverse B−1

F is bounded and compact.

Proof. Being positive definite, BF is obviously one-to-one. Let R denote the range
of BF . Recall that D0 is a closed subspace of W 1,2

rβ/2
((0, 1)) and that the scalar

product on D0, given by 〈·, ·〉+ = 〈BF ·, ·〉H , coincides with that of W 1,2
rβ/2

((0, 1))

restricted to D0. Consequently, for every z ∈ R, we have that∥∥B−1
F z

∥∥2

+
=
〈
BFB

−1
F z,B−1

F z
〉
H
≤ ‖z‖H

∥∥B−1
F z

∥∥
H
≤ ‖z‖H

∥∥B−1
F z

∥∥
+
,

whence B−1
F : R → D0 is bounded, with respect to the norm of H = L2

rβ/2
((0, 1))

in R and the norm of W 1,2
rβ/2

((0, 1)) in D0. Since D0 is compactly embedded in H,

we see that B−1
F : R→ H is compact.

We proceed to show that R is closed in H. Suppose that BFwk → z in H with
some z ∈ H and a sequence (wk) ⊂ D(BF ). As a convergent sequence, (BFwk) is
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bounded in H, whence (wk) = (B−1
F BFwk) is relatively compact in H. Selecting

a convergent subsequence of (wk) (not relabeled), we get that wk → w in H for
some w ∈ H. Due to the fact that Bf is a self-adjoint and hence closed operator,
we infer that w ∈ D(BF ) and BFw = z. In particular, z ∈ R.

It remains to show that R = H. Since BF is positive definite, the kernel of
B∗F = BF is {0}. Since R is closed, the orthogonal complement of R in H is {0}
by the closed range theorem, and as a consequence, R = H.

In view of the spectral theorem for compact self-adjoint operators (Theorem
VI.16 in [18], e.g.), applied to B−1

F and combined with the fact that each eigenfunc-
tion of B−1

F is also an eigenfunction of BF associated to the reciprocal eigenvalue,
we conclude:

Theorem 3.3. There exist countably many eigenvalues 0 < λ1 ≤ λ2 ≤ . . . of BF
with λk → ∞ as k → ∞, and the associated eigenfunctions uk ∈ D(BF ) form a
complete orthogonal system in H = L2

rβ/2
((0, 1)).

Finally, we observe that each uk is a classical solution of (2.3), which allows us
to explicitly calculate the eigenfunctions and eigenvalues in the last section.

Proposition 3.4. For each of the eigenfunctions uk obtained in Theorem 3.3, we
have that uk ∈ C∞((0, 1]),

lim
r→0+

u′k(r)rβ = 0, uk(1) = 0, (3.7)

and uk solves (2.3) in the classical sense, for λ = p−1
p (1− λk).

Proof. Clearly, 〈BFuk − λkuk, v〉H = 〈uk, Bv − λkv〉H = 0 for every v ∈ D(B).

Using that uk ∈ D0 = W 1,2
rβ/2

((0, 1))∩{u(1) = 0} ⊂ D(BF ), an integration by parts
yields that ∫ 1

0

[u′kv
′ + (1− λk)ukv]rβ dr = 0 (3.8)

for every v ∈ D(B) and thus, by density, even every v ∈ D0. In particular, uk is
a weak solution of (2.3) with the appropriate choice of λ, and by standard elliptic
theory, uk ∈ C∞([ε, 1]) for every ε > 0. As a consequence, uk ∈ C∞((0, 1]) solves
(2.3) in the classical sense. Finally, (3.7) is the natural boundary condition for uk
at r = 0 implied by (3.8) (using that for arbitrary v ∈ D0, the value of v(0) is
unrestricted).

4 Classical radial eigenfunctions

In this section we will finally derive the classical solutions of (2.3), (2.4). Below Jν
denotes the Bessel function of order ν,

Jν(t) =

∞∑
j=0

(−1)j
(
t
2

)ν+2j

j!Γ(ν + j + 1)
(4.9)

(see §84 in [8]), and as defined in Theorem 2.2 we have α = p−n
2(p−1) and β = n−1

p−1 .

Notice that 2α − 1 = −β. For any δ > 0 such that Jν 6= 0 on (0, δ), we have the
representation

u(r) = c1Jν(r) + c2Jν(r)

∫ δ

r

τ−1J−2
ν (τ)dτ
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of the general solution of Bessel’s equation

r2u′′(r) + ru′(r) + (r2 − ν2)u(r) = 0

(see §102 in [8]). Following the derivation of transformed Bessel’s equations in §104
in [8], we obtain

c1r
θJν(ηr) + c2r

θJν(ηr)

∫ ε

ηr

τ−1J−2
ν (τ)dτ,

where ε > 0 can be any sufficiently small number, as general solution of the trans-
formed Bessel equation

u′′(r)− 2θ − 1

r
u′(r) +

(
θ2 − ν2

r2
+ η2

)
u(r) = 0. (4.10)

Comparing the coefficients of equation (4.10) to the coefficients of equation (2.3),
we infer that general solution of (2.3) is given by

v(r) = c1r
αJ−α(ηr) + c2r

αJ−α(ηr)

∫ ε

ηr

τ−1J−2
−α(τ)dτ =: c1z1(r) + c2z2(r). (4.11)

Here, η =
√
λ p
p−1 . Note that ν and η appear only quadratically in (4.10). We

can get another representation of the general solution if we replace J−α by Jα in
(4.11) or η by −η. But, since choosing −η only yields a reflection in 0 and the
term rαJ−α is easier to handle with respect to the following calculations, we stick
to (4.11).

To single out the solutions satisfying the boundary conditions, in particular
(3.7), we now discuss the asymptotic behavior of the terms z1(r) and z2(r) in
(4.11) near r = 0. As this is not affected by the value of η > 0, we choose η = 1
for simplicity.

We start with z2(r). In the following, for each i, Bi(r) denotes a power series
with positive radius of convergence and Bi(0) 6= 0. Using this notation, the explicit
representation of Bessel function (4.9) gives rαJ−α(r) = B1(r2). Note that J2

−α
has no roots close to the origin. That is why for all small r,∫ ε

r

τ−1J−2
−α(τ)dτ =

∫ ε

r

τ−1+2αB2(τ2)dτ

=

∫ ε

r

b0τ
−1+2α + b1τ

1+2α + b2τ
3+2α + . . . dτ

= cα + r2αB3(r2) + b−α log(r)

with a constant cα ∈ R, and b−α := 0 if −α is not a non-negative integer. Hence

z2(r) = rαJ−α(r)

∫ ε

r

τ−1J−2
−α(τ)dτ

= B1(r2)
(
cα + r2αB3(r2) + b−α log(r)

)
.

The derivative is

z′2(r) =2rB′1(r2)
(
cα + r2αB2(r2) + b−α log(r)

)
+ B1(r2)

(
2αr2α−1B3(r2) + 2r2α+1B′3(r2) + b−αr

−1
)
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If we take into account that b−α = 0 for α /∈ Z, b0 6= 0, 2α− 1 < 0 and Bi(0) 6= 0,
the leading term in z′2(r) as r → 0+ is either

B1(0)b−αr
−1 (if α = 0) or B3(0)2αr2α−1B2(0) (if α 6= 0).

In both cases,
lim inf
r→0+

∣∣rβz′2(r)
∣∣ = lim inf

r→0+

∣∣r1−2αz′2(r)
∣∣ > 0,

i.e, z′2 violates the natural boundary condition (3.7) and a fortiori (2.4) at the
origin.

Analyzing the first term z1(r) = rαJ−α (ηr) of the general solution (4.11), the
explicit representation of the Bessel function yields

z1(r) =

∞∑
j=0

(−1)j
(
η
2

)−α+2j
r2j

j!Γ(−α+ j + 1)

and the derivative is

z′1(r) =

∞∑
j=1

(−1)j
(
η
2

)−α+2j
2j

j!Γ(−α+ j + 1)
r2j−1.

This shows that z1 satisfies the boundary condition z′1(0) = 0 from (2.4) and a
fortiori (3.7). Consequently, for classical solutions of (2.3), (3.7) is equivalent to
v′(0) = 0, and subject to this condition, the general solution of (2.3) is given by

v(r) = crαJ−α (ηr) , c ∈ R.

The other boundary condition v(R) = 0 holds true if and only if η =
µ
(−α)
k

R for

some k, where {µ(−α)
k }k∈N are the positive zeros of J−α as before. Recalling that

η =
√
λ p
p−1 , we get

vk(r) = ckr
αJ−α

(
µ

(−α)
k

R
r

)
(4.12)

as the classical solution of (2.3), for

λ = λk :=

(
µ

(−α)
k

R

)2
p− 1

p
.

Since all results of Section 3 also hold in the interval (0, R), we can deduce from
Theorem 3.3 and Proposition 3.4 that the solutions in (4.12) form a complete
orthonormal system in H = L2

rβ/2
((0, R)), which concludes the proof of Theorem

2.2.
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