Topologie

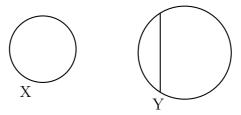
Abgabe: Mittwoch, 29.4.2015 bis 12:00 Uhr im Übungskasten dieser Vorlesung.

- 9. a) Zeigen Sie, dass eine offene Teilmenge in \mathbb{R}^n höchstens abzählbar viele Zusammenhangskomponenten hat.
 - *Hinweis:* Verwenden Sie eine abzählbare dichte Teilmenge in \mathbb{R}^n .
 - b) Seien U, V offene Teilmengen von \mathbb{R} . Zeigen Sie, dass U und V genau dann homöomorph sind, wenn sie dieselbe Anzahl von Zusammenhangskomponenten haben.

Hinweis: Aufgabe 4 und Aufgabe 6.

- 10. Sei X ein topologischer Raum mit $X = A \cup B$ für abgeschlossene Teilmengen $A, B \subset X$. Seien $f: A \to Y$ und $g: B \to Y$ stetige Abbildungen in einen topologischen Raum Y, die auf $C = A \cap B$ übereinstimmen. Dann definiert h(x) = f(x) für $x \in A$ bzw. h(x') = g(x') für $x' \in B$ eine stetige Abbildung $h: X \to Y$. Was hat das mit Aneinanderhängung von Wegen zu tun?
- 11. Sei X ein Kreis und Y ein Kreis vereinigt mit einer seiner Sehnen. Zeigen Sie, dass X und Y nicht homöomorph sind.

Hinweis: Entfernen Sie ein geeignetes Paar von Punkten.



- 12. a) Hat ein Hausdorff-Raum X eine Basis, deren Elemente alle gleichzeitig offen und abgeschlossen sind, so ist X total unzusammenhängend.
 - b) Sei X die Gerade mit der halboffenen Topologie (siehe Aufgabe 8). Zeigen Sie, dass X total unzusammenhängend ist.

 Hinweis: Benutzen Sie Teilaufgabe a).
 - c) Sei $C \subset [0,1]$ die übliche Cantor-Menge, die als Durchschnitt $C = \bigcap C_n$ einer absteigenden Folge ... $\subset C_n \subset C_{n-1}$... gegeben ist, wobei C_n aus 2^n disjunkten abgeschlossenen Intervallen $I_{n,k}$ besteht. (Seite 26 im Skript.) Zeigen Sie, dass die Schnitte von C mit den Intervallen $I_{n,k}$ eine Basis von C bilden, die aus gleichzeitig offenen und abgeschlossenen Teilmengen von C besteht.