
1. Hyperbolische Geometrie

Definition 1.1. Eine hyperbolische Ebene ist eine absolute Ebene in
der Axiom IV nicht erfüllt ist.

In jeder hyperbolischen Ebene ist also der Defekt von jedem Dreieck
positiv und der Parallelitätswinkel φ(t) ist positiv für alle t > 0.

SATZ 1.2. Zwei nicht-ausgeartete Dreiecke ∆ABC und ∆A′B′C ′ sind
kongruent genau dann, wenn die entsprechenden Winkel bis auf das
Vorzeichen gleich sind.

Beweis. Die ”nur dann” Aussage folgt aus Axiom III. Seien nun die
Winkel gleich bis auf das Vozeichen. O.B.d.A. können wir A′B′ ≤ AB
annehmen. Mit Axiom III finden wir ein zu ∆A′B′C ′ kongruentes
Dreieck ∆AB′′C ′′ mit B′′ ∈ [AB] und C ′′ ∈ [AC). Da ]AB′′C ′′ =
]ABC, gilt (B′′C ′′)||(BC).

Wenn B = B′′, so sind die Dreiecke kongruent. Sonst ist �B′′BCC ′′

ein konvexes Viereck, dessen Winkelsumme ≡ 0 modulo 2π ist. Dies
widersprich Aufgabe 37. �

SATZ 1.3. Sei H eine hyperbolische Ebene. Die Funktion t → φ(t)
ist strikt monoton und es gilt limt→∞ φ(t) → 0. Für jedes 0 < α < π
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gibt es genau ein t > 0, so dass φ(t) = α gilt.

Beweis. Sei also ]NMP = π
2
. Sei Pt ∈ [MP ) mit MPt = t. Sei Xt so

gewählt, dass PtXt = 1 und [PtXt)|||[MN).
Ist φ nicht strikt monoton, so gibt es 0 < t < smit φ(t) = φ(s). Dann

sind [PtXt) und [PsXs) asymptotische Strahlen mit gleichen Wechsel-
winkeln, was nicht möglich ist (Aufagbe 38).

Sei nun α > 0 vorgegeben und nehmen wir an, dass φ(t) > α für alle
t. Sei [PtSt) der Strahl, mit ]MPtSt = α. Nach Annahme schneidet
der Strahl [MN). Also können wir St ∈ [MN) annehmen.

Wir behaupten defekt(∆PPtSt) ≤ 2 ·defekt(∆PPrSr), wenn r = 2t
gilt. Da der Defekt jedes Dreiecks kleiner π ist, erhielten wir einen
Widerspruch für r = 2nt0 und n groß genug.

Die Behauptung folgt aber durch eine zweifache Anwendung von
Exercise 10.9. �

SATZ 1.4. Sei r so gewählt, dass φ(r) = π
3
. Dann ist der Radius des

Inkreises von jedem Dreieck ∆ABC kleiner als r.

Beweis. Sei O das Zentrum des Inkreises, sei t der Radius des Inkreises
und seien X, Y, Z die Fußpunkte von O auf den Seiten. Die Winkelhal-
bierenden und die Lote bilden 6 Winkel an O, von denen mindestens
einer nicht kleiner als π

3
ist. Also könnten sich die entsprechende Seite

und Winkelhalbierende nicht schneiden, wenn φ(t) ≤ π
3

gilt. �
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Schaut man sich die Konvexitätsbeweise in der absoluten Ebene an
und benutzt, dass der Defekt von jedem nicht-ausgearteten Dreieck
positiv ist, so erhält man:

Lemma 1.5. In jedem nicht-ausgearteten Dreieck ist die Länge der
Verbindung zweier Seitenmittelpunkte kürzer als die Hälfte der dritten
Seite.

Und genauso:

Lemma 1.6. Sind l,m verschiedene Geraden, so ist die Funktion t→
dl(m(t)) strikt konvex. Insbesondere nimmt dl auf jeder Strecke aus m
das Minimum auf dieser Strecke in genau einem Punkt an.

Definition 1.7. Zwei Geraden heißen ultraparallel, wenn sie parallel
sind und keine asymptotischen Strahlen enthalten.

SATZ 1.8. Seien l,m zwei verschiedene Geraden. Die Geraden l und
m ultraparallel genau dann, wenn sie eine gemeinsame Senkrechte n
besitzen.

Beweis. Seien l und m ultraparallel. Die konvexe Funktion f(t) =
dl(m(t)) läuft gegen ∞, wenn t → ±∞. Also wird das Minimum
von f angenommen. Sei P der entsprechende Punkt auf m und Q
sein Fußpunkt auf l. Dann gilt PQ ≤ P ′Q′ für alle P ′ ∈ m,Q′ ∈ l.
Folglich ist Q der Fußpunkt von P auf m und (PQ) ist eine gemeinsame
Senkrechte.

Wenn l und m eine gemeinsame Senkrechte besitzen so sind sie par-
allel. Da φ(t) < π

2
für alle t > 0, sind l und m ultraparallel. �

Andererseits gilt:

SATZ 1.9. Seien Geraden l,m Geraden die asymptotische Strahlen
enthalten. Dann gilt inf dl(m(t)) = 0.

Beweis. Auf jeder solchen Geraden m 6= l gilt supt∈R dl(m(t)) = ∞.
Sind m1 6= l 6= m2 zwei verschiedene zu l asymptotische (also parallele
und nicht ultraparallele) Geraden so finden wir eine Bewegung, die
l auf sich abbildet und m1 auf m2. (Man nehme Punkte Pi ∈ mi

mit gleichem Abstand zu l und finde eine Bewegung die l und die
Orientierung von l erhält und P1 auf P2 abbildet). Damit hängt also
das Infimum auch nicht von der Geraden m ab. Insbesondere kann es
beliebig klein werden. �

Genauso wie bei der Untersuchung des Parallelitätswinkels zeigen
wir:
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Lemma 1.10. Sei l eine Gerade und s ein Strahl, der nicht asympto-
tisch zu l ist. Sei Pt = l(t). Sei st der in Pt startende zu s asymptotis-
che Strahl. Sei α(t) das Winkelmaß des positiven Winkels zwischen st
und l. Dann ist die Abbildung t → αt stetig, injektiv und ihr Bild ist
(0, π).

Daraus können wir schließen:

SATZ 1.11. Seien s± zwei nicht asymptotische Strahlen. Dann gibt es
genau eine Gerade l, deren Strahlen l± zu den Strahlen s± asymptotisch
sind.

Beweis. Wir können annehmen, dass s+ = [PM) und s− = [PN).
Wähle die Winkelhalbierende m von ∠MPN . Finde auf m einen
Punkt Q, so dass der in Q startende zu s+ asymptotische Strahl [QX)
senkrecht auf m steht (dies ist nach dem vorherigen Lemma möglich).
Dann ist (XQ) die gesuchte Gerade.

Gäbe es eine andere solche Gerade l, so wäre dl beschränkt auf (XQ).
Dies ist aber nur möglich wenn m = (XQ). �
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