1. KONVEXITAT

Folgender Satz wird in Analysis I behandelt. Wenn man seine Aus-
sage nicht kennt, sollte man den Satz als Ubungsaufgabe beweisen.

SATZ 1.1. Sei f : [a,b] — R eine stetige Funktion. Dann sind die
folgenden Bedingungen dquivalent:

(1) Fir alle z,y € [a,b] gilt f(l”ry) < M
(2) Fiir alle x,y € [a,b] und alle t € [0, 1} gilt f(tx + (1 —t)y) <
EF(@) + (1 — 1) f(y).

Erfillt f die Bedingungen des Satzes so heifit sie konvex. Ist f
zweimal differenzierbar, so ist f konvex genau dann, wenn f”(z) > 0
fir alle z € (a,b). Man hat auch die folgende strikte Version (Teil
derselben Ubungsaufgabe)

Sei f : [a,b] — R stetig und konvex. Gilt fir z,y € [a,b] und ein

€ (0,1) Gleichheit in (2), so gilt die Gleichheit in (2) fiir dieselben
x,y und fir alle ¢ € [0, 1].

Wir kénnen Ungleichung (2) wie folgt umformulieren. Fiir alle a <

v <z<y<bgilt f(z) <p- flx)+q- fy), wobei p = =2 und
|z—=]

ly—z|
I el | o .
In der Geometrie der Euklidischen und der hyperbolischen Ebene
spielt Konvexitat eine grofle Rolle. Alles basiert auf der folgenden
Beobachtung, die unabhangig von Axiom IV gilt:

SATZ 1.2. Sei D € E ein Punkt und sei [AC| eine Strecke, die wir
als Bild einer abstandserhaltenden Abbildung B : |a,c] — E darstellen.
Wir schreiben wie immer By = B(s). Dann ist die Funktion f(s) :=
DB konvex auf [a, c].

Fir Z € [XY] gilt DX - ZY + DY - ZX > DZ - XY . Gleichheit gilt
genau dann, wenn D in (XY)\ [XY]U{X,Y}.

Beweis. Wegen Satz 1.1 miissen wir lediglich fiir die Mitte Z der Strecke
[XY] die Ungleichung 2 - DZ < DX + DY beweisen und den Gleich-
heitsfall diskutieren.

Wihle einen Punkt D auf [DZ) mit ZD = ZD. Dann sind die
Dreiecke DZY und DZX kongruent. Folglich 2- DZ = DD < DX +
DX = DX + DY.

Gleichheit gilt genau dann, wenn X auf der Strecke [DD] liegt. Dies
ist genau der Fall, wenn D € (XY) \ [XY]U{X,Y}. O
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2. PTOLEMAISCHE UNGLEICHUNG

SATZ 2.1. Seien A, B, C, D paarweise verschiedene Punkte in E£. Dann
qilt
AB-CD+ BC-AD > AC - BD

Gleichheit gilt genau dann, wenn JABCD ein Sehnenviereck ist und
die Bogen oABC' und ocADC' wverschieden sind.

Beweis. Ist B € [AC], so ist es genau die Aussage von Satz 1.2.

Den allgemeinen Fall fithrt man auf diesen Spezialfall durch eine
Inversion zuriick, genau wie im Beweis von Theorem 9.10 im Skript.
Man benutzt dabei die Invarianz der Doppelverhaltnisse, der Zykel und
der Bogen unter Inversionen und folgendes Lemma. U

Lemma 2.2. Seien A, B, C' paarweise verschiedene Punkte in der Mobius-

Ebene E. Dann gibt es eine Inversion, so dass fir die Bilder dieser
Punkte B' € [A'C"] gilt.

Proof. Wahle den Zykel I' durch A, B, C' und einen Punkt O € T, der
nicht im Bogen cABC' liegt. Fiir jeden Kreis €2 mit Zentrum in O hat
die Inversion an {2 die gesuchten Eigenschaften. U

3. DOPPELVERHALTNIS

Da die Doppelverhéltnisse (cross-ratio) spéter eine wichtige Rolle
spielen werden, noch eine kurze Anmerkung dazu.

Das Doppelverhaltnis ‘gg"gﬁ kann man als g—g : g—g schreiben. Liegen
nun B und D auf der Strecke [AC], so geben die beiden Briiche die
Verhéltnisse an, in denen B und D die Strecke teilen. Das Dop-
pelverhaltnis ist die Proportion dieser beiden Verhéaltnisse.

4. WIEDER DER ZWISCHENWERTSATZ

Sei cABC' ein Kreisbogen und sei O das Zentrum des entsprechen-
den Kreises. Dann ist die Abbildung P — A{AOP eine bijektive
stetige Abbildung des Kreisbogens auf ein abgeschlossenes Intervall.
Die Umkehrung ist ebenfalls stetig.

Folglich ist der Kreisbogen zusammenhdngend, d.h., fiir jede stetige
Funktion f : cABC' — R und Py, P, € cABC mit a1 = f(P;) < as =
f(Py) und jedes a € [ay, as] gibt es ein P € cABC mit f(P) = a.

Betrachtet man als f die Abstandsfunktion zu einem Punkt O, so
sehen wir:

Lemma 4.1. Hat ein Kreis I' Punkte im Inneren und Auferen eines
Kreises ) so schneiden sich I' und € in zwei Punkten.
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