
1. Konvexität

Folgender Satz wird in Analysis I behandelt. Wenn man seine Aus-
sage nicht kennt, sollte man den Satz als Übungsaufgabe beweisen.

SATZ 1.1. Sei f : [a, b] → R eine stetige Funktion. Dann sind die
folgenden Bedingungen äquivalent:

(1) Für alle x, y ∈ [a, b] gilt f(x+y
2

) ≤ f(x)+f(y)
2

.
(2) Für alle x, y ∈ [a, b] und alle t ∈ [0, 1] gilt f(tx + (1 − t)y) ≤

tf(x) + (1− t)f(y).

Erfüllt f die Bedingungen des Satzes so heißt sie konvex. Ist f
zweimal differenzierbar, so ist f konvex genau dann, wenn f ′′(x) ≥ 0
für alle x ∈ (a, b). Man hat auch die folgende strikte Version (Teil
derselben Übungsaufgabe):

Sei f : [a, b] → R stetig und konvex. Gilt für x, y ∈ [a, b] und ein
t ∈ (0, 1) Gleichheit in (2), so gilt die Gleichheit in (2) für dieselben
x, y und für alle t ∈ [0, 1].

Wir können Ungleichung (2) wie folgt umformulieren. Für alle a ≤
x < z < y ≤ b gilt f(z) ≤ p · f(x) + q · f(y), wobei p = |y−z|

|y−x| und

q = |z−x|
|y−x| .

In der Geometrie der Euklidischen und der hyperbolischen Ebene
spielt Konvexität eine große Rolle. Alles basiert auf der folgenden
Beobachtung, die unabhängig von Axiom IV gilt:

SATZ 1.2. Sei D ∈ E ein Punkt und sei [AC] eine Strecke, die wir
als Bild einer abstandserhaltenden Abbildung B : [a, c]→ E darstellen.
Wir schreiben wie immer Bs = B(s). Dann ist die Funktion f(s) :=
DBs konvex auf [a, c].

Für Z ∈ [XY ] gilt DX ·ZY +DY ·ZX ≥ DZ ·XY . Gleichheit gilt
genau dann, wenn D in (XY ) \ [XY ] ∪ {X, Y }.

Beweis. Wegen Satz 1.1 müssen wir lediglich für die Mitte Z der Strecke
[XY ] die Ungleichung 2 ·DZ ≤ DX + DY beweisen und den Gleich-
heitsfall diskutieren.

Wähle einen Punkt D̄ auf [DZ) mit ZD̄ = ZD. Dann sind die
Dreiecke DZY und D̄ZX kongruent. Folglich 2 ·DZ = D̄D ≤ DX +
D̄X = DX + DY .

Gleichheit gilt genau dann, wenn X auf der Strecke [DD̄] liegt. Dies
ist genau der Fall, wenn D ∈ (XY ) \ [XY ] ∪ {X, Y }. �
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2. Ptolemäische Ungleichung

SATZ 2.1. Seien A,B,C,D paarweise verschiedene Punkte in E. Dann
gilt

AB · CD + BC · AD ≥ AC ·BD

Gleichheit gilt genau dann, wenn �ABCD ein Sehnenviereck ist und
die Bögen ◦ABC und ◦ADC verschieden sind.

Beweis. Ist B ∈ [AC], so ist es genau die Aussage von Satz 1.2.
Den allgemeinen Fall führt man auf diesen Spezialfall durch eine

Inversion zurück, genau wie im Beweis von Theorem 9.10 im Skript.
Man benutzt dabei die Invarianz der Doppelverhältnisse, der Zykel und
der Bögen unter Inversionen und folgendes Lemma. �

Lemma 2.2. Seien A,B,C paarweise verschiedene Punkte in der Möbius-
Ebene Ê. Dann gibt es eine Inversion, so dass für die Bilder dieser
Punkte B′ ∈ [A′C ′] gilt.

Proof. Wähle den Zykel Γ durch A,B,C und einen Punkt O ∈ Γ, der
nicht im Bogen ◦ABC liegt. Für jeden Kreis Ω mit Zentrum in O hat
die Inversion an Ω die gesuchten Eigenschaften. �

3. Doppelverhältnis

Da die Doppelverhältnisse (cross-ratio) später eine wichtige Rolle
spielen werden, noch eine kurze Anmerkung dazu.

Das Doppelverhältnis AB·CD
BC·DA

kann man als AB
BC

: AD
CD

schreiben. Liegen
nun B und D auf der Strecke [AC], so geben die beiden Brüche die
Verhältnisse an, in denen B und D die Strecke teilen. Das Dop-
pelverhältnis ist die Proportion dieser beiden Verhältnisse.

4. Wieder der Zwischenwertsatz

Sei ◦ABC ein Kreisbogen und sei O das Zentrum des entsprechen-
den Kreises. Dann ist die Abbildung P → ]AOP eine bijektive
stetige Abbildung des Kreisbogens auf ein abgeschlossenes Intervall.
Die Umkehrung ist ebenfalls stetig.

Folglich ist der Kreisbogen zusammenhängend, d.h., für jede stetige
Funktion f : ◦ABC → R und P1, P2 ∈ ◦ABC mit a1 = f(P1) < a2 =
f(P2) und jedes a ∈ [a1, a2] gibt es ein P ∈ ◦ABC mit f(P ) = a.

Betrachtet man als f die Abstandsfunktion zu einem Punkt O, so
sehen wir:

Lemma 4.1. Hat ein Kreis Γ Punkte im Inneren und Äußeren eines
Kreises Ω so schneiden sich Γ und Ω in zwei Punkten.
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