
1. Eindeutigkeit der Euklidischen Ebene

Exercise 6.15 aus dem Skript zeigt, dass man für jede Euklidische
Ebene E eine Isometrie f : E → (R2, d2) findet. Daraus schließen wir:

SATZ 1.1. Sind E1, E2 Euklidische Ebenen mit Winkelmaßen ]1,]2,
so gibt es eine Isometrie f : E1 → E2, die die Winkelmaße erhält.

Beweis. Wähle Isometrien f1 : E1 → R2 und f2 : E2 → R2 und be-
trachte f = f1 ◦ f−12 : E1 → E2. Als Komposition von Isometrien
ist f eine Isometrie. Benutzt man, dass E2 eine Euklidische Ebene
ist, so sieht man, dass die Abbildung ]̃1 : W → (−π, π] gegeben
durch (A,B,C)→ ]2f(A)f(B)f(C) ein zulässiges Winkelmaß auf E1

definiert, im Sinne der Aufgabe 12 vom Übungsblatt 3. Hierbei ist W
wieder die Menge aller Tripel (A,B,C) ∈ E3

1 mit A 6= B 6= C.

Deswegen gilt ]̃1 = ]1 oder ]̃1 = −]1. Im ersten Fall erhält also f
alle Winkelmaße. Im zweiten Fall ändert f jedes Winkelmaß um das
Vorzeichen. Im zweiten Fall ersetzt man f durch f̂ = Sl ◦ f , wobei Sl
die Spiegelung an einer beliebigen Geraden in E1 bezeichnet. �

2. Komplexe Zahlen

Wir identifizieren R2 wie üblich mit dem Körper C der komplexen
Zahlen. Wir benutzen im Folgenden Eigenschaften komplexer Zahlen,
die in der Analysis-Vorlesung behandelt werden. Man kann das meiste
im Kapitel 15 des Skripts nachlesen.

Jede komplexe Zahl z 6= 0 kann man eindeutig als z = |z| · eiφ mit
einer Zahl φ ∈ (−π, π] schreiben. Diese Zahl φ wird das Argument von
z genannt und als arg(z) bezeichnet.

Die Abbildung z → arg(z) ist stetig auf dem Komplement des Strahls
(−∞, 0] ⊂ R ⊂ C. Ferner gilt arg( v

w
) ≡ arg(v) − arg(w) für alle

v, w ∈ C \ {0}.
Für die komplexe Konjugation z → z̄ gilt arg(z̄) = − arg(z) und

z · z̄ = |z|2.
Bezeichnet man mit < v,w > das Standard-Skalarprodukt auf C,

(das man durch 2 < v,w >= v · w̄ + v̄ · w = |v + w|2 − |v|2 − |w|2
definieren kann), so gilt

< v,w >

|v| · |w|
= cos(arg(

v

w
))

arccos(
< v,w >

|v| · |w|
) = | arg(

v

w
)|

Wir erinnern uns ferner wie alle orthogonale Matrizen in O(2) ausse-
hen:
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Lemma 2.1. Eine R-lineare Abbildung f : R2 = C → R2 = C ist
genau dann eine orthogonale Abbildung, wenn f(x) = z ·x oder f(x) =
z̄ · x̄ für ein z ∈ C mit |z| = 1 gilt. Im ersten Fall gilt det(f) = 1, im
zweiten Fall gilt det(f) = −1.

3. Existenz der Euklidischen Ebene. Komplexe
Koordinaten

Wir definieren nun auf dem metrischen Raum E = C = R2 mit der
Metrik d2 das Winkelmaß durch

]ABC := arg(C −B)− arg(A−B) = arg(
C −B
A−B

)

.
Wir möchten zeigen, dass R2 versehen mit diesem Winkelmaß alle

Axiome der Euklidischen Ebene erfüllt.
Axiom I war Teil der Aufgabe 1. Die Stetigkeit und Additivität in

Axiom II folgen aus der Stetigkeit von arg und der Definition. Um
weitere Axiome zu verifizieren, erinnern wir uns, dass jede Bewegung
von E die Form f(x) = tv ◦T hat, wobei T : R2 → R2 eine orthogonale
lineare Abbildung ist, und die Translation tv : E → E durch tv(x) :=
x+ v definiert ist.

Lemma 3.1. Jede Bewegung von E erhält |]|, d.h |]ABC| = |]A′B′C ′|,
wenn A′, B′, C ′ = f(A,B,C) für eine Bewegung f : E → E gilt.

Proof. Fr jede Translation tv gilt arg(tv(P )− tv(Q)) = arg(P −Q) für
alle P,Q ∈ E. Damit erhält jede Translation ]. Jede orthogonale
lineare Abbildung erhält nach Definition Skalarprodukte und Normen
und deswegen auch | arg(C−B

A−B )|. �

Die Verifizierung der restlichen Axiome ergibt sich leicht durch mehrfache
Anwendung dieses Lemmas. So kann man in Axiom II (a) annehmen,
dass der Punkt O der Ursprung 0 von C ist (nach Anwendung einer
Translation). Nach Anwendung eine Drehung kann man annehmen,
dass [OA) der Strahl der positiven reellen Zahlen ist. Dann ist die
Existenz und Eindeutigkeit des Strahls [OB) mit ]AOB = φ die
Wohldefiniertheit des Arguments und der Zahl eiφ.

Eine Richtung des Axioms III folgt direkt aus dem obigen Lemma.
Um die ”if”-Richtung zu zeigen, benutzt man das Lemma, und bewegt
die Dreiecke so, dass B = B′ = 0 gilt und dass A = A′ eine positive
reelle Zahl in R ⊂ C ist. Dann gilt |C| = BC = B′C ′ = |C ′| und
| arg(C)| = | arg(C ′)|. Also ist entweder bereits C = C ′ der C = f(C ′),
wobei f die Konjugation ist. Es gilt dann auch f(A) = A = A′,
f(B) = B = B′.
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Ebenso führt man das Axiom IV auf den Fall A = 0 zurück. In
diesem Fall folgt die Behauptung aus der Beobachtung, dass die lineare
Abbildung z → k · z alle Längen um den Faktor k streckt und alle
Argumente und damit alle Winkelmaße erhält.

4. Weitere Anmerkungen zu Winkeln, linearen und
nicht-linearen Abbildungen

SATZ 4.1. Sei L : C = R2 → C = R2 eine bijektive R-lineare Abbil-
dung. Die Abbildung erhält das Winkelmaß ] genau dann, wenn die
Abbildung L die Form L(x) = z · x mit einem z ∈ C gilt, also wenn L
eine C-lineare Abbildung ist.

Beweis. Jede C-lineare Abbildung x → z · x erhält nach Definition
das Winkelmaß. Erhält andererseits L das Winkelmaß, so kann man
nach einer Komposition mit einer C-linearen Abbildung annehmen,
dass L(1) = 1 gilt. Dann muss L(i) = t · i mit reellem t > 0 gelten.
Ist t 6= 1, so wird von L das Winkelmaß des Winkels zwischen 1, 0 und
1 + i nicht erhalten. �

Korollar 4.2. Sei L : C → C eine bijektive R-lineare Abbildung, die
das Winkelmaß ] auf −] schickt. Dann hat L die Form L(x) = z · x̄
für ein z ∈ C.

Beweis. Wende den obigen Satz auf die Komposition von L mit der
Konjugation. �

Zieht man Differentialrechnung im R2 hinzu, so kann man die Aus-
sage von Theorem 9.19 aus dem Skript wie folgt interpretieren (und be-
weisen): Jede Inversion ist eine differenzierbare Abbildung (in den kom-
plexen Koordinaten) und jedes Differential ist eine komplex-antilineare
Abbildung wie im obigen Korollar.

5. Bemerkung über Winkel in der absoluten Ebene

Lemma 5.1. Sei E eine absolute Ebene. Sei l eine Gerade in E, die
das Bild einer abstandserhaltenden Abbildung q : R → E ist. Schreibe
Qt := q(t). Sei M ∈ l und P /∈ l. Dann ist die Abbildung g : R →
(−π, π] gegeben durch g(t) = ]MPQt stetig und strikt monoton. Das
Bild g(R) ist ein offenes Intervall.

Beweis. Nach Eigenschaften des Winkelmaßes ist die Funktion g stetig
und injektiv. Aus dem Zwischenwertsatz folgt, dass jede stetige und
injektive auf einem offenen Inervall definierte Abbildung strikt monoton
ist, und dass ihr Bild ein offenes Intervall ist. �
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Wir werde die Größe dieses Bildintervalls später untersuchen. Jetzt
ziehen wir daraus den folgenden Schluß, den wir auch direkt und viel
früher aus Eigenschaften der Halbebenen hätten herleiten können:

Corollary 5.2. Sei ∆ABC ein nicht-ausgeartetes Dreieck und sei ∠ABC
positiv. Ein Strahl [BX) schneidet die Seite [AC] genau dann, wenn
0 ≤ ]ABX ≤ ]ABC gilt.

Beweis. Das Bild der Abbildung D ∈ [AC]→ ]ABD ist das Intervall
[0,]ABC]. �
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