1. EINDEUTIGKEIT DER EUKLIDISCHEN EBENE

Exercise 6.15 aus dem Skript zeigt, dass man fiir jede Euklidische
Ebene E eine Isometrie f : E — (R? dy) findet. Daraus schlieBen wir:

SATZ 1.1. Sind Ey, Ey Euklidische Ebenen mit Winkelmaflen 41, 45,
so gibt es eine Isometrie f : By — Es, die die Winkelmafe erhdlt.

Beweis. Wahle Isometrien f; : F; — R? und f, : B — R? und be-
trachte f = fio f, ' : By — FE,. Als Komposition von Isometrien
ist f eine Isometrie. Benutzt man, dass F, eine Euklidische Ebene
ist, so sicht man, dass die Abbildung &, : W — (—n, 7] gegeben
durch (A, B,C) — £y f(A)f(B)f(C) ein zuldssiges Winkelmafl auf F;
definiert, im Sinne der Aufgabe 12 vom Ubungsblatt 3. Hierbei ist W
wieder die Menge aller Tripel (A4, B,C) € £} mit A # B # C.
Deswegen gilt £1 = £; oder £; = —«;. Im ersten Fall erhalt also f
alle Winkelmafle. Im zweiten Fall andert f jedes Winkelmafl um das
Vorzeichen. Im zweiten Fall ersetzt man f durch f = Sy o f, wobei S
die Spiegelung an einer beliebigen Geraden in F; bezeichnet. O

2. KOMPLEXE ZAHLEN

Wir identifizieren R? wie iiblich mit dem Korper C der komplexen
Zahlen. Wir benutzen im Folgenden Eigenschaften komplexer Zahlen,
die in der Analysis-Vorlesung behandelt werden. Man kann das meiste
im Kapitel 15 des Skripts nachlesen.

Jede komplexe Zahl z # 0 kann man eindeutig als z = |z| - € mit
einer Zahl ¢ € (—m, ] schreiben. Diese Zahl ¢ wird das Argument von
z genannt und als arg(z) bezeichnet.

Die Abbildung z — arg(z) ist stetig auf dem Komplement des Strahls

(=00,0] € R C C. Ferner gilt arg(2) = arg(v) — arg(w) fiir alle
v,we C\ {0}.

Fiir die komplexe Konjugation z — Z gilt arg(z) = —arg(z) und
2z =z~

Bezeichnet man mit < v,w > das Standard-Skalarprodukt auf C,
(das man durch 2 < v,w >=v-wW+ v -w = |v +w[* — |[v]* — |w]?

definieren kann), so gilt
<v,w > v

= cos(arg(—))
o] - |w] w
<v,w > v
arccos(————) = |arg(—)|
o] - |w w

Wir erinnern uns ferner wie alle orthogonale Matrizen in O(2) ausse-

hen:
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Lemma 2.1. Eine R-lineare Abbildung f : R?> = C — R? = C st
genau dann eine orthogonale Abbildung, wenn f(z) = z-x oder f(z) =
zZ-T fir ein z € C mit |z| = 1 gilt. Im ersten Fall gilt det(f) =1, im
zweiten Fall gilt det(f) = —1.

3. EXISTENZ DER EUKLIDISCHEN EBENE. KOMPLEXE
KOORDINATEN

Wir definieren nun auf dem metrischen Raum E = C = R? mit der
Metrik dy das Winkelmaf3 durch

C—B)
A-B

LABC := arg(C — B) — arg(A — B) = arg(

Wir mochten zeigen, dass R? versehen mit diesem Winkelmaf} alle
Axiome der Euklidischen Ebene erfiillt.

Axiom I war Teil der Aufgabe 1. Die Stetigkeit und Additivitat in
Axiom IT folgen aus der Stetigkeit von arg und der Definition. Um
weitere Axiome zu verifizieren, erinnern wir uns, dass jede Bewegung
von E die Form f(z) = t, 0T hat, wobei T": R?> — R? eine orthogonale
lineare Abbildung ist, und die Translation ¢, : E — E durch t,(z) :=
x + v definiert ist.

Lemma 3.1. Jede Bewegung von E erhdlt ||, d.h |{ABC| = |{A'B'C"|,
wenn A', B',C" = f(A, B,C) fir eine Bewegung f : E — E gilt.

Proof. Fr jede Translation t, gilt arg(t,(P) —t,(Q)) = arg(P — Q) fiir
alle P,() € E. Damit erhalt jede Translation £. Jede orthogonale
lineare Abbildung erhélt nach Definition Skalarprodukte und Normen

und deswegen auch |arg($=2)|. O

Die Verifizierung der restlichen Axiome ergibt sich leicht durch mehrfache
Anwendung dieses Lemmas. So kann man in Axiom II (a) annehmen,
dass der Punkt O der Ursprung 0 von C ist (nach Anwendung einer
Translation). Nach Anwendung eine Drehung kann man annehmen,
dass [OA) der Strahl der positiven reellen Zahlen ist. Dann ist die
Existenz und Eindeutigkeit des Strahls [OB) mit LAOB = ¢ die
Wohldefiniertheit des Arguments und der Zahl €®.

Eine Richtung des Axioms III folgt direkt aus dem obigen Lemma.
Um die 7if’-Richtung zu zeigen, benutzt man das Lemma, und bewegt
die Dreiecke so, dass B = B’ = 0 gilt und dass A = A’ eine positive
reelle Zahl in R € C ist. Dann gilt |C| = BC = B'C" = |C'] und
|arg(C)| = |arg(C")|. Also ist entweder bereits C' = C" der C' = f(C"),
wobei f die Konjugation ist. Es gilt dann auch f(A) = A = A/,
f(B)=B=D"H.
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Ebenso fithrt man das Axiom IV auf den Fall A = 0 zuriick. In
diesem Fall folgt die Behauptung aus der Beobachtung, dass die lineare
Abbildung z — k - z alle Langen um den Faktor k streckt und alle
Argumente und damit alle Winkelmafle erhalt.

4. WEITERE ANMERKUNGEN 7ZU WINKELN, LINEAREN UND
NICHT-LINEAREN ABBILDUNGEN

SATZ 4.1. Sei L : C = R? — C = R? eine bijektive R-lineare Abbil-
dung. Die Abbildung erhdlt das Winkelmafl £ genau dann, wenn die
Abbildung L die Form L(x) = z - x mit einem z € C gilt, also wenn L
eine C-lineare Abbildung ist.

Beweis. Jede C-lineare Abbildung z — z - x erhalt nach Definition
das Winkelmaf. Erhalt andererseits L das Winkelmaf}, so kann man
nach einer Komposition mit einer C-linearen Abbildung annehmen,
dass L(1) = 1 gilt. Dann muss L(i) = ¢ - ¢ mit reellem ¢ > 0 gelten.
Ist t # 1, so wird von L das Winkelmafl des Winkels zwischen 1, 0 und
1 + ¢ nicht erhalten. O

Korollar 4.2. Sei L : C — C eine bijektive R-lineare Abbildung, die
das WinkelmafS £ auf —4 schickt. Dann hat L die Form L(x) = z- &
fiir ein z € C.

Beweis. Wende den obigen Satz auf die Komposition von L mit der
Konjugation. O

Zieht man Differentialrechnung im R? hinzu, so kann man die Aus-
sage von Theorem 9.19 aus dem Skript wie folgt interpretieren (und be-
weisen): Jede Inversion ist eine differenzierbare Abbildung (in den kom-
plexen Koordinaten) und jedes Differential ist eine komplex-antilineare
Abbildung wie im obigen Korollar.

5. BEMERKUNG UBER WINKEL IN DER ABSOLUTEN EBENE

Lemma 5.1. Sei E eine absolute Ebene. Seil eine Gerade in E, die
das Bild einer abstandserhaltenden Abbildung q : R — E ist. Schreibe
Qi = q(t). Sei M €l und P ¢ . Dann ist die Abbildung g : R —
(—m, 7| gegeben durch g(t) = LM PQ, stetig und strikt monoton. Das
Bild g(R) ist ein offenes Intervall.

Beweis. Nach Eigenschaften des Winkelmafes ist die Funktion g stetig
und injektiv. Aus dem Zwischenwertsatz folgt, dass jede stetige und
injektive auf einem offenen Inervall definierte Abbildung strikt monoton

ist, und dass ihr Bild ein offenes Intervall ist. O
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Wir werde die Grofle dieses Bildintervalls spater untersuchen. Jetzt
ziehen wir daraus den folgenden Schluf}, den wir auch direkt und viel
frither aus Eigenschaften der Halbebenen hatten herleiten konnen:

Corollary 5.2. Sei AABC' ein nicht-ausgeartetes Dreieck und sei ZABC
positiv. Ein Strahl [BX) schneidet die Seite [AC] genau dann, wenn
0 < LABX < LABC ygilt.

Beweis. Das Bild der Abbildung D € [AC] — £ABD ist das Intervall
0, £ABC]. O



