
ar
X

iv
:1

30
2.

16
30

v3
  [

m
at

h.
H

O
] 

 8
 A

ug
 2

01
4

Euclidean and Hyperbolic Planes

A minimalistic introduction with metric approach

Anton Petrunin

http://arxiv.org/abs/1302.1630v3


2



Contents

Introduction 7

Prerequisite. Overview.

1 Preliminaries 11

Metric spaces. Examples. Shortcut for distance. Isome-
tries and motions. Lines. Congruent triangles. Continuous
maps. Angles. Reals modulo 2·π. Geometric construc-
tions.

Euclidean geometry

2 The Axioms 21

Models and axioms. The Axioms. Angle and angle mea-
sure. Lines and half-lines. Zero angle. Straight angle.
Vertical angles.

3 Half-planes 27

Sign of angle. Intermediate value theorem. Same sign lem-
mas. Half-planes. Triangle with the given sides.

4 Congruent triangles 33

Side-angle-side condition. Angle-side-angle condition. Isosce-
les triangles. Side-side-side condition.

5 Perpendicular lines 37

Right, acute and obtuse angles. Perpendicular bisector.
Uniqueness of perpendicular. Reflection. Angle bisectors.
Circles.

6 Parallel lines and similar triangles 45

Parallel lines. Similar triangles. Pythagorean theorem.
Angles of triangle. Parallelograms.

3



4 CONTENTS

7 Triangle geometry 53

Circumcircle and circumcenter. Altitudes and orthocenter.
Medians and centroid. Bisector of triangle. Incenter.

Inversive geometry

8 Inscribed angles 61

Angle between a tangent line and a chord. Inscribed angle.
Inscribed quadrilateral. Arcs.

9 Inversion 67

Cross-ratio. Inversive plane and clines. Ptolemy’s identity.
Perpendicular circles. Angles after inversion.

Non-Euclidean geometry

10 Absolute plane 79

Two angles of triangle. Three angles of triangle. How to
prove that something can not be proved? Curvature.

11 Hyperbolic plane 87
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Introduction

This is an introduction to Euclidean and Hyperbolic plane geometries
and their development from postulate systems.

The lectures are meant to be rigorous, conservative, elementary
and minimalistic. At the same time it includes about the maximum
what students can absorb in one semester.

Approximately half of the material used to be covered in high
school, not any more.

The lectures are oriented to sophomore and senior university stu-
dents. These students already had a calculus course. In particular
they are familiar with the real numbers and continuity. It makes pos-
sible to cover the material faster and in a more rigorous way than it
could be done in high school.

Prerequisite

The students has to be familiar with the following topics.
⋄ Elementary set theory: ∈, ∪, ∩, \, ⊂, ×.
⋄ Real numbers: intervals, inequalities, algebraic identities.
⋄ Limits, continuous functions and Intermediate value theorem.
⋄ Standard functions: absolute value, natural logarithm, expo-
nent. Occasionally, basic trigonometric functions are used, but
these parts can be ignored.

⋄ Chapter 13 use in addition elementary properties of scalar prod-
uct, also called dot product.

⋄ To read Chapter 15, it is better to have some previous experience
with complex numbers.

Overview

We use so called metric approach introduced by Birkhoff. It means
that we define Euclidean plane as a metric space which satisfies a
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list of properties. This way we minimize the tedious parts which are
unavoidable in the more classical Hilbert’s approach. At the same time
the students have chance to learn basic geometry of metric spaces.

Euclidean geometry is discussed in the the chapters 1–7. In the
Chapter 1 we give all definitions necessary to formulate the axioms;
it includes metric space, lines, angle measure, continuous maps and
congruent triangles. In the Chapter 2, we formulate the axioms and
prove immediate corollaries. In the chapters 3–6 we develop Euclidean
geometry to a dissent level. In Chapter 7 we give the most classical
theorem of triangle geometry; this chapter included mainly as an il-
lustration.

In the chapters 8–9 we discuss geometry of circles on the Euclidean
plane. These two chapters will be used in the construction of the model
of hyperbolic plane.

In the chapters 10–12 we discuss non-Euclidean geometry. In Chap-
ter 10, we introduce the axioms of absolute geometry. In Chapter 11
we describe so called Poincaré disc model (discovered by Beltrami).
This is a construction of hyperbolic plane, an example of absolute
plane which is not Euclidean. In the Chapter 12 we discuss some
geometry of hyperbolic plane.

The last few chapters contain additional topics: Spherical geome-
try, Klein model and Complex coordinates. The proofs in these chap-
ters are not completely rigorous.

When teaching the course, I used to give additional exercises in
compass-and-ruler constructions1. These exercises work perfectly as
an introduction to the proofs. I used extensively java applets created
by C.a.R. which are impossible to include in the printed version.

Disclaimer

I am not doing history. It is impossible to find the original reference
to most of the theorems discussed here, so I do not even try. (Most
of the proofs discussed in the lecture appeared already in the Euclid’s
Elements and the Elements are not the original source anyway.)

Recommended books

⋄ Kiselev’s textbook [11] — a classical book for school students.
Should help if you have trouble to follow the lectures.

⋄ Moise’s book, [8] — should be good for further study.

1 see www.math.psu.edu/petrunin/fxd/car.html

http://www.math.psu.edu/petrunin/fxd/car.html
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⋄ Greenberg’s book [4] — a historical tour through the axiomatic
systems of various geometries.

⋄ Methodologically these lecture notes are very close to Sharygin’s
textbook [10]. Which I recommend to anyone who can read
Russian.
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Chapter 1

Preliminaries

Metric spaces

1.1. Definition. Let X be a nonempty set and d be a function which
returns a real number d(A,B) for any pair A,B ∈ X . Then d is
called metric on X if for any A,B,C ∈ X , the following conditions
are satisfied.
(a) Positiveness:

d(A,B) > 0.

(b) A = B if and only if
d(A,B) = 0.

(c) Symmetry:
d(A,B) = d(B,A).

(d) Triangle inequality:

d(A,C) 6 d(A,B) + d(B,C).

A metric space is a set with a metric on it. More formally, a metric
space is a pair (X , d) where X is a set and d is a metric on X .

Elements of X are called points of the metric space. Given two
points A,B ∈ X the value d(A,B) is called distance from A to B.

Examples

⋄ Discrete metric. Let X be an arbitrary set. For any A,B ∈ X ,
set d(A,B) = 0 if A = B and d(A,B) = 1 otherwise. The metric
d is called discrete metric on X .

11



12 CHAPTER 1. PRELIMINARIES

⋄ Real line. Set of all real numbers (R) with metric defined as

d(A,B)
def
== |A−B|.

⋄ Metrics on the plane. Let us denote by R2 the set of all pairs
(x, y) of real numbers. Assume A = (xA, yA) and B = (xB , yB)
are arbitrary points in R2. One can equip R2 with the following
metrics.

◦ Euclidean metric, denoted as d2 and defined as

d2(A,B) =
√

(xA − xB)2 + (yA − yB)2.

◦ Manhattan metric, denoted as d1 and defined as

d1(A,B) = |xA − xB |+ |yA − yB|.

◦ Maximum metric, denoted as d∞ and defined as

d∞(A,B) = max{|xA − xB |, |yA − yB|}.

1.2. Exercise. Prove that d1, d2 and d∞ are metrics on R2.

Shortcut for distance

Most of the time we study only one metric on the space. For example
R will always refer to the real line. Thus we will not need to name the
metric function each time.

Given a metric space X , the distance between points A and B will
be further denoted as

AB or dX (A,B);

the later is used only if we need to emphasize that A and B are points
of the metric space X .

For example, the triangle inequality can be written as

AB +BC > AC.

For the multiplication we will always use “·”, so AB should not be
confused with A·B.
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Isometries and motions

Recall that a map f : X → Y is a bijection if it gives an exact pairing
of the elements of two sets. Equivalently, f : X → Y is a bijection if it
has an inverse; i.e., a map g : Y → X such that g(f(A)) = A for any
A ∈ X and f(g(B)) = B for any B ∈ Y.
1.3. Definition. Let X and Y be two metric spaces and dX , dY be
their metrics. A map

f : X → Y
is called distance-preserving if

dY(f(A), f(B)) = dX (A,B)

for any A,B ∈ X .
A bijective distance-preserving map is called an isometry.
Two spaces are isometric if there exists an isometry from one to

the other.
The isometry from space to itself is also called motion of the space.

1.4. Exercise. Show that any distance preserving map is injective;
i.e., if f : X → Y is a distance preserving map then f(A) 6= f(B) for
any pair of distinct points A,B ∈ X

1.5. Exercise. Show that if f : R → R is a motion of the real line
then either

f(X) = f(0) +X for any X ∈ R

or
f(X) = f(0)−X for any X ∈ R.

1.6. Exercise. Prove that (R2, d1) is isometric to (R2, d∞).

1.7. Exercise. Describe all the motions of the Manhattan plane.

Lines

If X is a metric space and Y is a subset of X , then a metric on Y
can be obtained by restricting the metric from X . In other words, the
distance between points of Y is defined to be the distance between
the same points in X . Thus any subset of a metric space can be also
considered as a metric space.
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1.8. Definition. A subset ℓ of metric space is called line if it is
isometric to the real line.

Note that a space with discrete metric has no lines. The follow-
ing picture shows examples of lines on the Manhattan plane, i.e. on
(R, d1).

Half-lines and segments. Assume there is a line ℓ passing through
two distinct points P and Q. In this case we might denote ℓ as (PQ).
There might be more than one line through P and Q, but if we write
(PQ) we assume that we made a choice of such line.

Let us denote by [PQ) the half-line which starts at P and contains
Q. Formally speaking, [PQ) is a subset of (PQ) which corresponds
to [0,∞) under an isometry f : (PQ) → R such that f(P ) = 0 and
f(Q) > 0.

The subset of line (PQ) between P andQ is called segment between
P and Q and denoted as [PQ]. Formally, segment can defined as the
intersection of two half-lines: [PQ] = [PQ) ∩ [QP ).

An ordered pair of half-lines which start at the same point is called
angle. An angle formed by two half-lines [PQ) and [PR) will be de-
noted as ∠QPR. In this case the point P is called vertex of the angle.

1.9. Exercise. Show that if X ∈ [PQ] then PQ = PX +QX.

1.10. Exercise. Consider graph y = |x| in R2. In which of the
following spaces (a) (R2, d1), (b) (R

2, d2) (c) (R
2, d∞) it forms a line?

Why?

1.11. Exercise. How many points M on the line (AB) for which we
have

1. AM = MB ?
2. AM = 2·MB ?
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Congruent triangles

An ordered triple of distinct points in a metric space, say A,B,C is
called triangle and denoted as △ABC. So the triangles △ABC and
△ACB are considered as different.

Two triangles △A′B′C′ and △ABC are called congruent (briefly
△A′B′C′ ∼= △ABC) if there is a motion f : X → X such that A′ =
f(A), B′ = f(B) and C′ = f(C).

Let X be a metric space and f, g : X → X be two motions. Note
that the inverse f−1 : X → X , as well as the composition f◦g : X → X
are also motions.

It follows that “∼=” is an equivalence relation; i.e., the following
two conditions hold.

⋄ If △A′B′C′ ∼= △ABC then △ABC ∼= △A′B′C′.
⋄ If △A′′B′′C′′ ∼= △A′B′C′ and △A′B′C′ ∼= △ABC then

△A′′B′′C′ ∼= △ABC.

Note that if △A′B′C′ ∼= △ABC then AB = A′B′, BC = B′C′

and CA = C′A′.
For discrete metric, as well some other metric spaces the converse

also holds. The following example shows that it does not hold in the
Manhattan plane.

Example. Consider three points A = (0, 1), B = (1, 0) and C =
= (−1, 0) on the Manhattan plane (R2, d1). Note that

d1(A,B) = d1(A,C) = d1(B,C) = 2.

A

BC

On one hand

△ABC ∼= △ACB.

Indeed, it is easy to see that the
map (x, y) 7→ (−x, y) is an isometry of
(R2, d1) which sends A 7→ A, B 7→ C
and C 7→ B.

On the other hand

△ABC ≇ △BCA.

Indeed, assume there is a motion f of (R2, d1) which sends A 7→ B
and B 7→ C. Note that a point M is a midpoint1 of A and B if and
only if f(M) is a midpoint of B and C. The set of midpoints for A

1M is a midpoint of A and B if d1(A,M) = d1(B,M) = 1

2
·d1(A,B).
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and B is infinite, it contains all points (t, t) for t ∈ [0, 1] (it is the dark
gray segment on the picture). On the other hand the midpoint for B
and C is unique (it is the black point on the picture). Thus the map
f can not be bijective, a contradiction.

Continuous maps

Here we define continuous maps between metric spaces. This definition
is a straightforward generalization of the standard definition for the
real-to-real functions.

Further X and Y be two metric spaces and dX , dY be their metrics.
A map f : X → Y is called continuous at point A ∈ X if for any

ε > 0 there is δ > 0 such that if dX (A,A′) < δ then

dY(f(A), f(A
′)) < ε.

The same way one may define a continuous map of several variables.
Say, assume f(A,B,C) is a function which returns a point in the space
Y for a triple of points (A,B,C) in the space X . The map f might be
defined only for some triples in X .

Assume f(A,B,C) is defined. Then we say that f continuous at
the triple (A,B,C) if for any ε > 0 there is δ > 0 such that

dY(f(A,B,C), f(A′, B′, C′)) < ε.

if dX (A,A′) < δ, dX (B,B′) < δ and dX (C,C′) < δ and f(A′, B′, C′)
is defined.

1.12. Exercise. Let X be a metric space.
(a) Let A ∈ X be a fixed point. Show that the function

f(B)
def
== dX (A,B)

is continuous at any point B.
(b) Show that dX (A,B) is a continuous at any pair A,B ∈ X .

1.13. Exercise. Let X , Y and Z be a metric spaces. Assume that
the functions f : X → Y and g : Y → Z are continuous at any point
and h = g ◦ f is its composition; i.e., h(x) = g(f(A)) for any A ∈ X .
Show that h : X → Z is continuous.
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Angles

O

B

A
α

Before formulating the axioms, we need to
develop a language which makes possible
rigorously talk about angle measure.

Intuitively, the angle measure of an
angle is how much one has to rotate the
first half-line counterclockwise so it gets the position of the second
half-line of the angle.

Note that the angle measure is defined up to full rotation which is
2·π if measure in radians; so the angles . . . , α − 2·π, α, α + 2·π,α +
4·π, . . . should be regarded to be the same.

Reals modulo 2·π

Let us introduce a new notation; we will write

α ≡ β or α ≡ β (mod 2·π)

if α = β + 2·π·n for some integer n. In this case we say

“α is equal to β modulo 2·π”.

For example

−π ≡ π ≡ 3·π and 1
2 ·π ≡ − 3

2 ·π.

The introduced relation “≡” behaves roughly as equality. We can
do addition subtraction and multiplication by integer number without
getting into trouble. For example, if

α ≡ β and α′ ≡ β′

then

α+ α′ ≡ β + β′, α− α′ ≡ β − β′ and n·α ≡ n·β

for any integer n. But “≡” does not in general respect multiplication
by non-integer numbers; for example

π ≡ −π but 1
2 ·π 6≡ − 1

2 ·π.

1.14. Exercise. Show that 2·α ≡ 0 if and only if α ≡ 0 or α ≡ π.
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Geometric constructions

In the next chapter we will define plane as a metric space which satisfies
certain properties. The geometric constructions in the plane is the
construction of points, lines, and circles using only an idealized ruler
and compass; they provide a valuable source of exercises in geometry.

The idealized ruler can be used only to draw a line through given
two points. The idealized compass can be used only to draw a circle
with given center and radius. I.e., given three points A, B and O we
can draw the set of all points on distant AB from O; the value AB is
called radius and O is called center of the circle. We may also mark
new points in the plane as well as on the constructed lines, circles and
their intersections (assuming that such points exist).

We can also look at the different set of instruments. For example,
we may only use the ruler or we may invent a new instrument, say an
instrument which produce midpoint for given two points.

The geometric constructions provide a sourse of exercises which we
will use further in the lectures.



Euclidean geometry
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Chapter 2

The Axioms

Models and axioms

The metric space (R2, d2) described on page 12, may be taken as a
definition of Euclidean plane. It can be called numerical model of
Euclidean plane; it builds the Euclidean plane from the real numbers
while the later is assumed to be known.

In the axiomatic approach, one describes Euclidean plane as any-
thing which satisfy a list of properties called axioms. Axiomatic system
for the theory is like rules for the game. Once the axiom system is
fixed, a statement considered to be true if it follows from the axioms
and nothing else is considered to be true.

The formulations of the first axioms were not rigorous at all. For
example, Euclid described a line as breadthless length and straight line
as a line which lies evenly with the points on itself. On the other hand,
these formulations were clear enough so that one mathematician could
understand the other.

The best way to understand an axiomatic system is to make one by
yourself. Look around and choose a physical model of the Euclidean
plane, say imagine an infinite and perfect surface of chalk board. Now
try to collect the key observations about this model. Let us assume
that we have intuitive understanding of such notions as line and point.

⋄ We can measure distances between points.

⋄ We can draw unique line which pass though two given points.

⋄ We can measure angles.

⋄ If we rotate or shift we will not see the difference.

⋄ If we change scale we will not see the difference.

These observations are good enough to start with. In the next section
we use the language developed in the previous chapter to formulate

21



22 CHAPTER 2. THE AXIOMS

them rigorously.
The observations above are intuitively obvious. On the other hand,

it is not intuitively obvious that Euclidean plane is isometric to (R2, d2).
This gives the first advantage of the axiomatic approach.

An other advantage lies in the fact that the axiomatic approach
is easily adjustable. For example we may remove one axiom from the
list, or exchange it to an other axiom. We will do such modifications
in Chapter 10 and further.

The Axioms

In this section we set an axiomatic system of the Euclidean plane.
This set of axioms is very close to the one given by Birkhoff in [3].

2.1. Definition. The Euclidean plane is a metric space with at least
two points which satisfies the following axioms:

I. There is one and only one line, that contains any two given
distinct points P and Q.

II. Any angle ∠AOB defines a real number in the interval (−π, π].
This number is called angle measure of ∠AOB and denoted by
∡AOB. It satisfies the following conditions:

(a) Given a half-line [OA) and α ∈ (−π, π] there is unique half-
line [OB) such that ∡AOB = α

(b) For any points A, B and C distinct from O we have

∡AOB + ∡BOC ≡ ∡AOC.

(c) The function
∡ : (A,O,B) 7→ ∡AOB

is continuous at any triple of points (A,O,B) such that
O 6= A and O 6= B and ∡AOB 6= π.

III. △ABC ∼= △A′B′C′ if and only if

A′B′ = AB, A′C′ = AC, and ∡C′A′B′ = ±∡CAB.

IV. If for two triangles △ABC, △AB′C′ and k > 0 we have

B′ ∈ [AB), C′ ∈ [AC)

AB′ = k·AB, AC′ = k·AC
then

B′C′ = k·BC, ∡ABC = ∡AB′C′ and ∡ACB = ∡AC′B′.

From now on, we can use no information about Euclidean plane
which does not follow from the Definition 2.1.
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Angle and angle measure

The notations ∠AOB and ∡AOB look similar, they also have close
but different meaning, which better not to be confused. The angle
∠AOB is a pair of half-lines [OA) and [OB) while ∡AOB is a number
in the interval (−π, π].

The equality

∠AOB = ∠A′O′B′

means that [OA) = [O′A′) and [OB) = [O′B′), in particular O = O′.
On the other hand the equality

∡AOB = ∡A′O′B′

means only equality of two real numbers; in this case O may be distinct
from O′.

Lines and half-lines

2.2. Proposition. Any two distinct lines intersect at most at one
point.

Proof. Assume two lines ℓ and m intersect at two distinct points P
and Q. Applying Axiom I, we get ℓ = m.

2.3. Exercise. Suppose A′ ∈ [OA) and A′ 6= O show that [OA) =
= [OA′).

2.4. Proposition. Given r > 0 and a half-line [OA) there is unique
A′ ∈ [OA) such that OA = r.

Proof. According to definition of half-line, there is an isometry

f : [OA) → [0,∞),

such that f(O) = 0. By the definition of isometry, OA′ = f(A′) for
any A′ ∈ [OA). Thus, OA′ = r if and only if f(A′) = r.

Since isometry has to be bijective, the statement follows.
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Zero angle

2.5. Proposition. ∡AOA = 0 for any A 6= O.

Proof. According to Axiom IIb,

∡AOA+ ∡AOA ≡ ∡AOA

Subtract ∡AOA from both sides, we get ∡AOA ≡ 0. Hence ∡AOA =
= 0.

2.6. Exercise. Assume ∡AOB = 0. Show that [OA) = [OB).

2.7. Proposition. For any A and B distinct from O, we have

∡AOB ≡ −∡BOA.

Proof. According to Axiom IIb,

∡AOB + ∡BOA ≡ ∡AOA

By Proposition 2.5 ∡AOA = 0. Hence the result follows.

Straight angle

If ∡AOB = π, we say that ∠AOB is a straight angle. Note that by
Proposition 2.7, if ∠AOB is a straight angle then so is ∠BOA.

We say that point O lies between points A and B if O 6= A, O 6= B
and O ∈ [AB].

2.8. Theorem. The angle ∠AOB is straight if and only if O lies
between A and B.

B O A

Proof. By Proposition 2.4, we may as-
sume that OA = OB = 1.

(⇐). Assume O lies between A and B.
Let α = ∡AOB.

Applying Axiom IIa, we get a half-line [OA′) such that α = ∡BOA′.
We can assume that OA′ = 1. According to Axiom III, △AOB ∼=
∼= △BOA′; denote by h the corresponding motion of the plane.

Then (A′B) = h(AB) ∋ h(O) = O. Therefore both lines (AB) and
(A′B), contain B and O. By Axiom I, (AB) = (A′B).



25

By the definition of the line, (AB) contains exactly two points A
and B on distance 1 from O. Since OA′ = 1 and A′ 6= B, we get
A = A′.

By Axiom IIb and Proposition 2.5, we get

2·α ≡ ∡AOB + ∡BOA′ ≡
≡ ∡AOB + ∡BOA ≡
≡ ∡AOA ≡
≡ 0

Since [OA) 6= [OB), Axiom IIa implies α 6= 0. Hence α = π (see
Exercise 1.14).

(⇒). Suppose that ∡AOB ≡ π. Consider line (OA) and choose point
B′ on (OA) so that O lies between A and B′.

From above, we have ∡AOB′ = π. Applying Axiom IIa, we get
[OB) = [OB′). In particular, O lies between A and B.

A triangle △ABC is called degenerate if A, B and C lie on one
line. The following corollary is just a reformulation of Theorem 2.8.

2.9. Corollary. A triangle is degenerate if and only if one of its
angles is equal to π or 0.

2.10. Exercise. Show that three distinct points A, O and B lie on
one line if and only if

2·∡AOB ≡ 0.

2.11. Exercise. Let A, B and C be three points distinct from O.
Show that B, O and C lie on one line if and only if

2·∡AOB ≡ 2·∡AOC.

Vertical angles

A

A′

O

B

B′

A pair of angles ∠AOB and ∠A′OB′ is called
vertical if O leis between A and A′ and at the
same time O lies between B and B′.

2.12. Proposition. The vertical angles have
equal measures.

Proof. Assume that the angles ∠AOB and ∠A′OB′ are vertical.
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Note that the angles ∠AOA′ and ∠BOB′ are straight. Therefore
∡AOA′ = ∡BOB′ = π. It follows that

0 = ∡AOA′ − ∡BOB′ ≡
≡ ∡AOB + ∡BOA′ − ∡BOA′ − ∡A′OB′ ≡
≡ ∡AOB − ∡A′OB′.

Hence the result follows.

2.13. Exercise. Assume O is the midpoint for both segments [AB]
and [CD]. Prove that AC = BD.



Chapter 3

Half-planes

This chapter contains long proofs of self-evident statements. It is okay
to skip it, but make sure you know definitions of positive/negative
angles and that your intuition agrees with 3.8, 3.10, 3.11 and 3.16.

Sign of angle

⋄ The angle ∠AOB is called positive if 0 < ∡AOB < π;

⋄ The angle ∠AOB is called negative if ∡AOB < 0.

Note that according to the above definitions the straight angle as
well as zero angle are neither positive nor negative.

3.1. Exercise. Show that ∠AOB is positive if and only if ∠BOA is
negative.

3.2. Exercise. Let ∠AOB is a straight angle. Show that ∠AOX is
positive if and only if ∠BOX is negative.

3.3. Exercise. Assume that the angles ∠AOB and ∠BOC are posi-
tive. Show that

∡AOB + ∡BOC + ∡COB = 2·π.

if ∠COB is positive and

∡AOB + ∡BOC + ∡COB = 0.

if ∠COB is negative.
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Intermediate value theorem

3.4. Intermediate value theorem. Let f : [a, b] → R be a contin-
uous function. Assume f(a) and f(b) have the opposite signs then
f(t0) = 0 for some t0 ∈ [a, b].

f(b)

f(a)

t0 b

a

The Intermediate value theorem should
be covered in any calculus course. We will
use the following corollary.

3.5. Corollary. Assume that for any t ∈
∈ [0, 1] we have three points in the plane Ot,
At and Bt such that

(a) Each function t 7→ Ot, t 7→ At and t 7→ Bt is continuous.
(b) For for any t ∈ [0, 1], the points Ot, At and Bt do not lie on one

line.
Then the angles ∠A0O0B0 and ∠A1O1B1 have the same sign.

Proof. Consider the function f(t) = ∡AtOtBt.
Since the points Ot, At and Bt do not lie on one line, Theorem 2.8

implies that f(t) = ∡AtOtBt 6= 0 or π for any t ∈ [0, 1].
Therefore by Axiom IIc and Exercise 1.13, f is a continuous func-

tion.
Further, by Intermediate value theorem, f(0) and f(1) have the

same sign; hence the result follows.

Same sign lemmas

3.6. Lemma. Assume Q′ ∈ [PQ) and Q′ 6= P . Then for any X /∈
/∈ (PQ) the angles ∠PQX and ∠PQ′X have the same sign.

PQ′Q

X Proof. By Proposition 2.4, for any t ∈ [0, 1]
there is unique point Qt ∈ [PQ) such that
PQt = (1−t)·PQ+t·PQ′. Note that the map
t 7→ Qt is continuous, Q0 = Q and Q1 = Q′

and for any t ∈ [0, 1], we have P 6= Qt.
Applying Corollary 3.5, for Pt = P , Qt and

Xt = X , we get that ∠PQX has the same sign
as ∠PQ′X .

3.7. Lemma. Assume [XY ] does not intersect (PQ) then the angles
∠PQX and ∠PQY have the same sign.
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PQ

X

Y

The proof is nearly identical to the one
above.

Proof. According to Proposition 2.4, for any
t ∈ [0, 1] there is a point Xt ∈ [XY ] such that
XXt = t·XY . Note that the map t 7→ Xt is
continuous, X0 = X and X1 = Y and for any
t ∈ [0, 1], we have Q 6= Yt.

Applying Corollary 3.5, for Pt = P , Qt =
= Q and Xt, we get that ∠PQX has the same sign as ∠PQY .

Half-planes

3.8. Proposition. The complement of a line (PQ) in the plane can
be presented in the unique way as a union of two disjoint subsets called
half-planes such that
(a) Two points X,Y /∈ (PQ) lie in the same half-plane if and only

if the angles ∠PQX and ∠PQY have the same sign.
(b) Two points X,Y /∈ (PQ) lie in the same half-plane if and only

if [XY ] does not intersect (PQ).

Further we say that X and Y lie on one side from (PQ) if they lie
in one of the half-planes of (PQ) and we say that P and Q lie on the
opposite sides from ℓ if they lie in the different half-planes of ℓ.

PQ

H+

H−

Proof. Let us denote by H+ (correspondingly
H−) the set of points X in the plane such
that ∠PQX is positive (correspondingly neg-
ative).

According to Theorem 2.8, X ∈ (PQ) if
and only if ∡PQX 6= 0 nor π. Therefore H+

and H− give the unique subdivision of the
complement of (PQ) which satisfies property
(a).

Now let us prove that the this subdivision depends only on the line
(PQ); i.e., if (P ′Q′) = (PQ) and X,Y /∈ (PQ) then the angles ∠PQX
and ∠PQY have the same sign if and only if the angles ∠P ′Q′X and
∠P ′Q′Y have the same sign.

Applying Exercise 3.2, we can assume that P = P ′ and Q′ ∈ [PQ).
It remains to apply Lemma 3.6.

(b). Assume [XY ] intersects (PQ). Since the subdivision depends
only on the line (PQ), we can assume that Q ∈ [XY ]. In this case, by
Exercise 3.2, the angles ∠PQX and ∠PQY have opposite signs.
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O

A

B

A′
B′

Now assume [XY ] does not intersects (PQ). In
this case, by Lemma 3.7, ∠PQX and ∠PQY have
the same sign.

3.9. Exercise. Assume that the angles ∠AOB and
∠A′OB′ are vertical. Show that the line (AB) does
not intersect the segment [A′B′].

Consider triangle △ABC. The segments [AB], [BC] and [CA] are
called sides of the triangle.

The following theorem is a corollary of Proposition 3.8.

3.10. Pasch’s theorem. Assume line ℓ does not pass through any
vertex a triangle. Then it intersects either two or zero sides of the
triangle.

3.11. Signs of angles of triangle. In any nondegenerate triangle
△ABC the angles ∠ABC, ∠BCA and ∠CAB have the same sign.

CAB

Z

Proof. Choose a point Z ∈ (AB) so that A
lies between B and Z.

According to Lemma 3.6, the angles
∠ZBC and ∠ZAC have the same sign.

Note that ∡ABC = ∡ZBC and

∡ZAC + ∡CAB ≡ π.

Therefore ∠CAB has the same sign as ∠ZAC
which in turn has the same sign as ∡ABC =

= ∡ZBC.
Repeating the same argument for ∠BCA and ∠CAB, we get the

result.

3.12. Exercise. Show that two points X,Y /∈ (PQ) lie on the same
side from (PQ) if and only if the angles ∠PXQ and ∠PY Q have the
same sign.

PQ

X

Y

BA

A′
B′

C
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3.13. Exercise. Let △ABC be a nondegenerate triangle, A′ ∈ [BC]
and B′ ∈ [AC]. Show that the segments [AA′] and [BB′] intersect.

3.14. Exercise. Assume that the points X and Y lie on the oppo-
site sides from the line (PQ). Show that the half-line [PX) does not
interests [QY ).

3.15. Advanced exercise. Note that the following quantity

∡̃ABC =

[

π if ∡ABC = π

−∡ABC if ∡ABC < π

can serve as the angle measure; i.e., the axioms hold if one changes
everywhere ∡ to ∡̃.

Show that ∡ and ∡̃ are the only possible angle measures on the
plane.

Show that without Axiom IIc, this is not longer true.

Triangle with the given sides

Consider triangle△ABC. Let a = BC, b = CA and c = AB. Without
loss of generality we may assume that a 6 b 6 c. Then all three
triangle inequalities for △ABC hold if and only if c 6 a + b. The
following theorem states that this is the only restriction on a, b and c.

3.16. Theorem. Assume that 0 < a 6 b 6 c 6 a+ b. Then there is
a triangle △ABC such that a = BC, b = CA and c = AB.

A C

B

s(β, r)

r r

β

The proof requires some preparation.
Assume r > 0 and π > β > 0. Consider triangle

△ABC such that AB = BC = r and ∡ABC = β.
The existence of such triangle follow from Axiom IIa
and Proposition 2.4.

Note that according to Axiom III, the values
β and r define the triangle up to congruence. In
particular the distance AC depends only on β and
r. Set

s(β, r)
def
== AC.

3.17. Proposition. Given r > 0 and ε > 0 there is δ > 0 such that
if 0 < β < δ then s(r, β) < ε.

Proof. Fix two point A and B such that AB = r.
Choose a point X such that ∡ABX is positive. Let Y ∈ [AX) be

the point such that AY = ε
8 ; it exists by Proposition 2.4.



32 CHAPTER 3. HALF-PLANES

AB

C

D Z

Y

X

r

r

Note that X and Y lie in the same side
from (AB); therefore ∠ABY is positive. Set
δ = ∡ABY .

Assume 0 < β < δ, ∡ABC = β and BC =
= r.

Applying Axiom IIa, we can choose a half-
line [BZ) such that ∡ABZ = 1

2 ·β. Note that
A and Y lie on the opposite sides from (BZ). Therefore (BZ) inter-
sects [AY ]; denote by D the point of intersection.

Since D ∈ (BZ), we get ∡ABD = β
2 or β

2 − π. The later is
impossible since D and Y lie on the same side from (AB). Therefore

∡ABD = ∡DBC = β
2 .

By Axiom III, △ABD ∼= △DBD. In particular

AC 6 AD +DC =

= 2·AD 6

6 2·AY =

= ε
4 .

Hence the result follows.

3.18. Corollary. Fix a real number r > 0 and two distinct points A
and B. Then for any real number β ∈ [0, π], there is unique point Cβ

such that BCβ = r and ∡ABCβ = β. Moreover, the map β 7→ Cβ is
a continuous map from [0, π] to the plane.

Proof. The existence and uniqueness of Cβ follows from Axiom IIa
and Proposition 2.4.

Note that if β1 6= β2 then

Cβ1
Cβ2

= s(r, |β1 − β2|).
Therefore Proposition 3.17 implies that the map β 7→ Cβ is con-

tinuous.

Proof of Theorem 3.16. Fix points A and B such that AB = c. Given
β ∈ [0, π], denote by Cβ the point in the plane such that BCβ = a and
∡ABC = β.

According to Corollary 3.18, the map β 7→ Cβ is a continuous.
Therefore function b(β) = ACβ is continuous (formally it follows from
Exercise 1.12 and Exercise 1.13).

Note that b(0) = c− a and b(π) = c+ a. Since c− a 6 b 6 c+ a,
by Intermediate value theorem (3.4) there is β0 ∈ [0, π] such that
b(β0) = b. Hence the result follows.
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Congruent triangles

Side-angle-side condition

Our next goal is to give conditions which guarantee congruence of
two triangles. One of such conditions is Axiom III, it is also called
side-angle-side condition or briefly SAS condition.

Angle-side-angle condition

4.1. ASA condition. Assume that AB = A′B′, ∡ABC ≡ ±∡A′B′C′,
∡CAB ≡ ±∡C′A′B′ and △A′B′C′ is nondegenerate. Then

△ABC ∼= △A′B′C′.

Note that for degenerate triangles the statement does not hold, say
consider one triangle with sides 1, 4, 5 and the other with sides 2, 3, 5.

A′

B′

C′ C′′

Proof. According to Theorem 3.11, either

➊
∡ABC ≡ ∡A′B′C′,

∡CAB ≡ ∡C′A′B′

or

➋
∡ABC ≡ −∡A′B′C′,

∡CAB ≡ −∡C′A′B′.

Further we assume that ➊ holds; the case ➋ is analogous.
Let C′′ be the point on the half-line [A′C′) such that that A′C′′ =

= AC.

33



34 CHAPTER 4. CONGRUENT TRIANGLES

By Axiom III, △A′B′C′′ ∼= △ABC. Applying Axiom III again, we
get

∡A′B′C′′ ≡ ∡ABC ≡ ∡A′B′C′.

By Axiom IIa, [B′C′) = [BC′′). Hence C′′ lies on (B′C′) as well as
on (A′C′).

Since △A′B′C′ is not degenerate, (A′C′) is distinct from (B′C′).
Applying Axiom I, we get C′′ = C′.

Therefore △A′B′C′ = △A′B′C′′ ∼= △ABC.

Isosceles triangles

A triangle with two equal sides is called isosceles ; the remaining side
is called base of isosceles triangle.

4.2. Theorem. Assume △ABC is isosceles with base [AB]. Then

∡ABC ≡ −∡BAC.

Moreover, the converse holds if △ABC is nondegenerate.

A B

C The following proof is due to Pappus of
Alexandria.

Proof. Note that

CA = CB, CB = CA, ∡ACB ≡ −∡BCA.

Therefore by Axiom III,

△CAB ∼= △CBA.

Applying the theorem on the signs of angles of triangles (3.11) and
Axiom III again, we get

∡CAB ≡ −∡CBA.

To prove the converse, we assume ∡CAB ≡ −∡CBA. By ASA
condition 4.1, △CAB ∼= △CBA. Therefore CA = CB.

Side-side-side condition

4.3. SSS condition. △ABC ∼= △A′B′C′ if

A′B′ = AB, B′C′ = BC and C′A′ = CA.

Proof. Choose C′′ so that A′C′′ = A′C′ and ∡B′A′C′′ ≡ ∡BAC.
According to Axiom III,

△A′B′C′′ ∼= △ABC.
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A′ B′

C′

C′′

It will suffice to prove that

➌ △A′B′C′ ∼= △A′B′C′′.

The condition ➌ trivially holds if C′′ =
= C′. Thus it remains to consider the
case C′′ 6= C′.

Clearly, the corresponding sides of
△A′B′C′ and △A′B′C′′ are equal.

Note that triangles △C′A′C′′ and
△C′B′C′′ are isosceles. By Theorem 4.2,
we have

∡A′C′′C′ ≡ −∡A′C′C′′,

∡C′C′′B′ ≡ −∡C′′C′B′.

Whence by addition

∡A′C′B′ ≡ −∡A′C′′B′.

Applying Axiom III again, we get ➌.

4.4. Exercise. Let M be the midpoint of side [AB] of a triangle
△ABC and M ′ be the midpoint of side [A′B′] of a triangle △A′B′C′.
Assume C′A′ = CA, C′B′ = CB and C′M ′ = CM . Prove that
△A′B′C′ ∼= △ABC.

BA

A′B′

C
4.5. Exercise. Let △ABC be isosceles with
base [AB] and the points A′ ∈ [BC] and B′ ∈
∈ [AC] be such that CA′ = CB′. Show that
(a) △AB′C ∼= △BA′C;
(b) △ABB′ ∼= △BAA′.

4.6. Exercise. Show that if AB +BC = AC
then B ∈ [AC].

4.7. Exercise. Let △ABC be a nondegenerate triangle and let ι be
a motion of the plane such that

ι(A) = A, ι(B) = B and ι(C) = C.

Show that ι is the identity; i.e. ι(X) = X for any point X on the
plane.
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Chapter 5

Perpendicular lines

Right, acute and obtuse angles

⋄ If |∡AOB| = π
2 , we say that the angle ∠AOB is right ;

⋄ If |∡AOB| < π
2 , we say that the angle ∠AOB is acute;

⋄ If |∡AOB| > π
2 , we say that the angle ∠AOB is obtuse.

On the diagrams, the right angles will be
marked with a little square.

If ∠AOB is right, we say also that [OA)
is perpendicular to [OB); it will be written as
[OA) ⊥ [OB).

From Theorem 2.8, it follows that two lines
(OA) and (OB) are appropriately called perpen-
dicular, if [OA) ⊥ [OB). In this case we also
write (OA) ⊥ (OB).

5.1. Exercise. Assume point O lies between A and B. Show that
for any point X the angle ∠XOA is acute if and only if ∠XOB is
obtuse.

Perpendicular bisector

Assume M is the midpoint of the segment [AB]; i.e., M ∈ (AB) and
AM = MB.

The line ℓ passing through M and perpendicular to (AB) passing
through M is called perpendicular bisector to the segment [AB].

5.2. Theorem. Given distinct points A and B, all points equidistant
from A and B and no others lie on the perpendicular bisector to [AB].
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A BM

P

Proof. Let M be the midpoint of [AB].
Assume PA = PB and P 6= M . Ac-

cording to SSS-condition (4.3), △AMP ∼=
∼= △BMP . Hence

∡AMP ≡ ±∡BMP.

Since A 6= B, we have “−” in the above
formula. Further,

π ≡ ∡AMB ≡
≡ ∡AMP + ∡PMB ≡
≡ 2·∡AMP.

I.e. ∡AMP ≡ ±π
2 and therefore P lies on the perpendicular bisector.

To prove converse, suppose P 6= M is any point in the perpendic-
ular bisector to [AB]. Then ∡AMP ≡ ±π

2 , ∡BMP ≡ ±π
2 and AM =

= BM . Therefore △AMP ∼= △BMP ; in particular AP = BP .

5.3. Exercise. Let ℓ be the perpendicular bisector the the segment
[AB] and X be an arbitrary point on the plane.

Show that AX < BX if and only if X and A lie on the same side
from ℓ.

5.4. Exercise. Let △ABC be nondegenerate. Show that AB > BC
if and only if |∡BCA| > |∡ABC|.

Uniqueness of perpendicular

5.5. Theorem. There is one and only one line which pass through a
given point P and perpendicular to a given line ℓ.

A B

ℓ

P

P ′

According to the above theorem, there
is unique point Q ∈ ℓ such that (QP ) ⊥ ℓ.
This point Q is called foot point of P on ℓ.

Proof. If P ∈ ℓ then both statements follows
from Axiom II.

Existence for P 6∈ ℓ. Let A, B be two dis-
tinct points of ℓ. Choose P ′ so that AP ′ =
= AP and ∡P ′AB ≡ −∡PAB. According
to Axiom III, △AP ′B ∼= △APB. Therefore

AP = AP ′ and BP = BP ′.
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Q Q′

P

P ′

ℓ
m

According to Theorem 5.2, A and B lie
on perpendicular bisector to [PP ′]. In par-
ticular (PP ′) ⊥ (AB) = ℓ.

Uniqueness for P 6∈ ℓ. We will apply the
theorem on perpendicular bisector (5.2) few
times. Assume m ⊥ ℓ and m ∋ P . Then
m a perpendicular bisector to some segment
[QQ′] of ℓ; in particular, PQ = PQ′.

Since ℓ is perpendicular bisector to [PP ′], we get PQ = P ′Q and
PQ′ = P ′Q′. Therefore

PQ = P ′Q = PQ′ = P ′Q′.

I.e. P ′ lies on the perpendicular bisector to [QQ′] which is m. By
Axiom I, m = (PP ′).

Reflection

To find the reflection P ′ through the line (AB) of a point P , one
drops a perpendicular from P onto (AB), and continues it to the
same distance on the other side.

According to Theorem 5.5, P ′ is uniquely determined by P .

Note that P = P ′ if and only if P ∈ (AB).

5.6. Proposition. Assume P ′ is a reflection of the point P in the
line (AB). Then AP ′ = AP and if A 6= P then ∡BAP ′ ≡ −∡BAP .

A B

P

P ′

Proof. Note that if P ∈ (AB) then P =
= P ′ and by Corollary 2.9 ∡BAP = 0
or π. Hence the statement follows.

If P /∈ (AB), then P ′ 6= P . By con-
struction (AB) is perpendicular bisec-
tor of [PP ′]. Therefore, according to
Theorem 5.2, AP ′ = AP and BP ′ =
= BP .

In particular, △ABP ′ ∼= △ABP .
Therefore ∡BAP ′ ≡ ±∡BAP . Since
P ′ 6= P and AP ′ = AP , we get
∡BAP ′ 6= ∡BAP . I.e., we are left with
the case

∡BAP ′ ≡ −∡BAP.
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5.7. Corollary. Reflection through the line is a motion of the plane.
More over if △P ′Q′R′ is the reflection of △PQR then

∡Q′P ′R′ ≡ −∡QPR.

Proof. From the construction it follows that the composition of two
reflections through the same line, say (AB), is the identity map. In
particular reflection is a bijection.

Assume P ′, Q′ and R′ denote the reflections of the points P , Q
and R through (AB). Let us first show that

➊ P ′Q′ = PQ and ∡AP ′Q′ ≡ −∡APQ.

Without loss of generality we may assume that the points P and
Q are distinct from A and B. By Proposition 5.6,

∡BAP ′ ≡ −∡BAP, ∡BAQ′ ≡ −∡BAQ,

AP ′ = AP, AQ′ = AQ.

It follows that ∡P ′AQ′ ≡ −∡PAQ. Therefore △P ′AQ′ ∼= △PAQ
and ➊ follows.

Repeating the same argument for P and R, we get

∡AP ′R′ ≡ −∡APR.

Subtracting the second identity in ➊, we get

∡Q′P ′R′ ≡ −∡QPR.

5.8. Exercise. Show that any motion of the plane can be presented
as a composition of at most three reflections.

Applying the exercise above and Corollary 5.7, we can divide the
motions of the plane in two types, direct and indirect motions. The
motion m is direct if

∡Q′P ′R′ = ∡QPR

for any △PQR and P ′ = m(P ), Q′ = m(Q) and R′ = m(R); if instead
we have

∡Q′P ′R′ ≡ −∡QPR

for any △PQR then the motion m is called indirect.

5.9. Lemma. Let Q be the foot point of P on line ℓ. Then

PX > PQ

for any point X on ℓ distinct from Q.
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Xℓ

P

Q

P ′

Proof. If P ∈ ℓ then the result follows since PQ = 0.
Further we assume that P /∈ ℓ.

Let P ′ be the reflection of P in ℓ. Note that Q is
the midpoint of [PP ′] and ℓ is perpendicular bisector
of [PP ′]. Therefore

PX = P ′X and PQ = P ′Q = 1
2 ·PP ′

Note that ℓmeets [PP ′] at the point Q only. There-
fore by the triangle inequality and Exercise 4.6,

PX + P ′X > PP ′.

Hence the result follows.

5.10. Exercise. Let X and Y be the reflections of P through the
lines (AB) and (BC) correspondingly. Show that

∡XBY ≡ 2·∡ABC.

Angle bisectors

If ∡ABX ≡ −∡CBX then we say that line (BX) bisects angle ∠ABC,
or line (BX) is a bisector of ∠ABC. If ∡ABX ≡ π − ∡CBX then
the line (BX) is called external bisector of ∠ABC.

Note that bisector and external bisector are uniquely defined by
the angle.

A

B

C

bisec
tor

ex
tern

al

b
isector

Note that if ∡ABA′ = π, i.e., if B lies
between A and A′, then bisector of ∠ABC
is the external bisector of ∠A′BC and the
other way around.

5.11. Exercise. Show that for any an-
gle, its bisector and external bisector are
orthogonal.

5.12. Lemma. Given angle ∠ABC and a point X, consider foot
points Y and Z of X on (AB) and (BC). Assume ∡ABC 6≡ π, 0.

Then XY = XZ if and only if X lies on the bisector or external
bisector of ∠ABC.

Proof. Let Y ′ and Z ′ be the reflections of X through (AB) and (BC)
correspondingly. By Proposition 5.6, XB = Y ′B = Z ′B.
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A

B

C

Z
X

Y

Y ′

Z ′ Note that

XY ′ = 2·XY and XZ ′ = 2·XZ.

Applying SSS and then SAS congruence condi-
tions, we get

➋

XY = XZ ⇔
⇔ XY ′ = XZ ′ ⇔

⇔ △BXY ′ ∼= △BXZ ′ ⇔
⇔ ∡XBY ′ ≡ ±∡BXZ ′.

According to Proposition 5.6,

∡XBA ≡ −Y ′BA,

∡XBC ≡ −Z ′BC.

Therefore

2·∡XBA ≡ ∡XBY ′ and 2·∡XBC ≡ −XBZ ′.

I.e., we can continue the chain of equivalence conditions ➋ the follow-
ing way

∡XBY ′ ≡ ±∡BXZ ′ ⇔ 2·∡XBA ≡ ±2·∡XBC.

Since (AB) 6= (BC), we have

2·∡XBA 6≡ 2·∡XBC

(compare to Exercise 2.11). Therefore

XY = XZ ⇔ 2·∡XBA ≡ −2·∡XBC.

The last identity means either

∡XBA+ ∡XBC ≡ 0

or

∡XBA+ ∡XBC ≡ π.

Hence the result follows.
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Circles

Given a positive real number r and a point O, the set Γ of all points
on distant r from O is called circle with radius r and center O.

We say that a point P lies inside Γ if OP < r and if OP > r, we
say that P lies outside Γ.

A segment between two points on Γ is called chord of Γ. A chord
passing through the center is called diameter.

5.13. Exercise. Assume two distinct circles Γ and Γ′ have a common
chord [AB]. Show that the line between centers of Γ and Γ′ forms a
perpendicular bisector to [AB].

5.14. Lemma. A line and a circle can have at most two points of
intersection.

A B C

ℓ

m n

Proof. Assume A, B and C are distinct points which lie on a line ℓ
and a circle Γ with center O.

Then OA = OB = OC; in particular O lies on the perpendicular
bisectors m and n to [AB] and [BC] correspondingly.

Note that the midpoints of [AB] and [BC] are distinct. There-
fore m and n are distinct. The later contradicts the uniqueness of
perpendicular (Theorem 5.5).

5.15. Exercise. Show that two distinct circles can have at most two
points of intersection.

In consequence of the above lemma, a line ℓ and a circle Γ might
have 2, 1 or 0 points of intersections. In the first case the line is called
secant line, in the second case it is tangent line; if P is the only point
of intersection of ℓ and Γ, we say that ℓ is tangent to Γ at P .

Similarly, according Exercise 5.15, two circles might have 2, 1 or 0
points of intersections. If P is the only point of intersection of circles
Γ and Γ′, we say that Γ is tangent to Γ at P .

5.16. Lemma. Let ℓ be a line and Γ be a circle with center O. As-
sume P is a common point of ℓ and Γ. Then ℓ is tangent to Γ at P if
and only if and only if (PO) ⊥ ℓ.

Proof. Let Q be the foot point of O on ℓ.
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Assume P 6= Q. Denote by P ′ the reflection of P through (OQ).
Note that P ′ ∈ ℓ and (OQ) is perpendicular bisector of [PP ′].

Therefore OP = OP ′. Hence P, P ′ ∈ Γ ∩ ℓ; i.e., ℓ is secant to Γ.
If P = Q then according to Lemma 5.9, OP < OX for any point

X ∈ ℓ distinct from P . Hence P is the only point in the intersection
Γ ∩ ℓ; i.e., ℓ is tangent to Γ at P .

5.17. Exercise. Let Γ and Γ′ be two circles with centers at O and
O′ correspondingly. Assume Γ and Γ′ intersect at point P . Show that
Γ is tangent to Γ′ if and only if O, O′ and P lie on one line.

5.18. Exercise. Let Γ and Γ′ be two distinct circles with centers at
O and O′ and radii r and r′.
(a) Show that Γ is tangent to Γ′ if and only if

OO′ = r + r′ or OO′ = |r − r′|.

(b) Show that Γ intersects Γ′ if and only if

|r − r′| 6 OO′ 6 r + r′.

5.19. Exercise. Assume three circles intersect at two points. Show
that the centers of these circles lie on one line.
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Parallel lines and similar

triangles

Parallel lines

In consequence of Axiom I, any two distinct lines ℓ and m have either
one point in common or none. In the first case they are intersecting;
in the second case, ℓ and m are said to be parallel (briefly ℓ ‖ m); in
addition, a line is always regarded as parallel to itself.

6.1. Proposition. Let ℓ, m and n be the lines in the plane. Assume
that n ⊥ m and m ⊥ ℓ. Then ℓ ‖ n.

Proof. Assume contrary; i.e., ℓ ∦ n. Then there is a point, say Z, of
intersection of ℓ and n. Then by Theorem 5.5, ℓ = n. In particular
ℓ ‖ n, a contradiction.

6.2. Theorem. Given a point P and line ℓ in the Euclidean plane
there is unique line m which pass though P and parallel to ℓ.

The above theorem has two parts, existence and uniqueness. In
the proof of uniqueness we will use Axiom IV for the first time.

Proof; existence. Apply Theorem 5.5 two times, first to construct line
m through P which is perpendicular to ℓ and second to construct line
n through P which is perpendicular to m. Then apply Proposition 6.1.

Uniqueness. If P ∈ ℓ then m = ℓ by the definition of parallel lines.
Further we assume P /∈ ℓ.

Let us construct lines n ∋ P andm ∋ P as in the proof of existence,
so m ‖ ℓ.
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Assume there is yet an other line s ∋ P which is distinct from m
and parallel to ℓ. Choose a point Q ∈ s which lies with ℓ on the same
side from m. Let R be the foot point of Q on n.

Let D be the point of intersection of n and ℓ. According to Propo-
sition 6.1 (QR) ‖ m. Therefore Q, R and ℓ lie on the same side from
m. In particular, R ∈ [PD).

P

R

D

Q

Zℓ

m

s

n

Choose Z ∈ [PQ) such that

PZ

PQ
=

PD

PR
.

Then by Axiom IV, (ZD) ⊥ (PD); i.e. Z ∈ ℓ∩ s, a contradiction.

6.3. Corollary. Assume ℓ, m and n are lines in the Euclidean plane
such that ℓ ‖ m and m ‖ n. Then ℓ ‖ n.

Proof. Assume contrary; i.e. ℓ ∦ n. Then there is a point P ∈ ℓ ∩ n.
By Theorem 6.2, n = ℓ, a contradiction.

Note that from the definition, we have ℓ ‖ m if and only if m ‖
‖ ℓ. Therefore according to the above corollary “‖” is an equivalence
relation.

6.4. Exercise. Let k, ℓ, m and n be the lines in Euclidean plane.
Assume that k ⊥ ℓ and m ⊥ n. Show that if k ‖ m then ℓ ‖ n.

Similar triangles

Two triangles △A′B′C′ and △ABC are similar (briefly △A′B′C′ ∼
∼ △ABC) if their sides are proportional, i.e.,

➊ A′B′ = k·AB, B′C′ = k·BC and C′A′ = k·CA

for some k > 0 and

➋

∡A′B′C′ = ±∡ABC,

∡B′C′A′ = ±∡BCA,

∡C′A′B′ = ±∡CAB.
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Remarks.

⋄ According to 3.11, in the above three equalities the signs can be
assumed to me the same.

⋄ If △A′B′C′ ∼ △ABC with k = 1 in ➊, then △A′B′C′ ∼=
∼= △ABC.

⋄ Note that “∼” is an equivalence relation.
I.e., if △A′B′C′ ∼ △ABC then

△ABC ∼ △A′B′C′

and if △A′′B′′C′′ ∼ △A′B′C′ and △A′B′C′ ∼ △ABC then

△A′′B′′C′′ ∼ △ABC.

Using “∼”, the Axiom IV can be formulated the following way.

6.5. Reformulation of Axiom IV. If for two triangles △ABC,
△AB′C′ and k > 0 we have B′ ∈ [AB), C′ ∈ [AC), AB′ = k·AB and
AC′ = k·AC then △ABC ∼ △AB′C′.

In other words, the Axiom IV provides a condition which guar-
antee that two triangles are similar. Let us formulate yet three such
conditions.

6.6. Similarity conditions. Two triangles △ABC and △A′B′C′

in the Euclidean plane are similar if one of the following conditions
hold.

(SAS) For some constant k > 0 we have

AB = k·A′B′, AC = k·A′C′

and ∡BAC = ±∡B′A′C′.

(AA) The triangle △A′B′C′ is nondegenerate and

∡ABC = ±∡A′B′C′, ∡BAC = ±∡B′A′C′.

(SSS) For some constant k > 0 we have

AB = k·A′B′, AC = k·A′C′, CB = k·C′B′.

Each of these conditions is proved by applying the Axiom IV with
SAS, ASA and SSS congruence conditions correspondingly (see Ax-
iom III and the conditions 4.1, 4.3).

Proof. Set k = AB
A′B′

. Choose points B′′ ∈ [A′B′) and C′′ ∈ [A′C′) so
that A′B′′ = k·A′B′ and A′C′′ = k·A′C′. By Axiom IV, △A′B′C′ ∼
∼ △A′B′′C′′.

Applying SAS, ASA or SSS congruence condition, depending on
the case, we get △A′B′′C′′ ∼= △ABC. Hence the result follows.
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A B

C

A′B′

A triangle with all acute angles is called acute.

6.7. Exercise. Let △ABC be an acute triangle
in the Euclidean plane. Denote by A′ the foot point
of A on (BC) and by B′ the foot point of B on
(AC). Prove that △A′B′C ∼ △ABC.

Pythagorean theorem

A triangle is called right if one of its angles is right. The side opposite
the right angle is called the hypotenuse. The sides adjacent to the
right angle are called legs.

6.8. Theorem. Assume △ABC be a right triangle in the Euclidean
plane with right angle at C. Then

AC2 +BC2 = AB2.

Proof. Let D be the foot point of C on (AB).

A B

C

D

According to Lemma 5.9,

AD < AC < AB

and

BD < BC < AB.

Therefore D lies between A and B; in particular,

➌ AD +BD = AB.

Note that by AA similarity condition, we have

△ADC ∼ △ACB ∼ △CDB.

In particular

➍
AD

AC
=

AC

AB
and

BD

BC
=

BC

BA
.

Let us rewrite identities ➍ on an other way:

AC2 = AB ·AD and BC2 = AB ·BD.

summing up above two identities and applying ➌, we get

AC2 +BC2 = AB ·(AD +BD) = AB2.
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Angles of triangle

6.9. Theorem. In any triangle △ABC in the Euclidean plane, we
have

∡ABC + ∡BCA+ ∡CAB ≡ π.

Proof. First note that if △ABC is degenerate then the equality follows
from Lemma 2.8. Further we assume that △ABC is nondegenerate.

A B

C

α α β

γ

β

±γ

M

KL

Set

α = ∡CAB,

β = ∡ABC,

γ = ∡BCA.

We need to prove that

➎ α+ β + γ ≡ π.

Let K, L, M be the midpoints of
the sides [BC], [CA], [AB] respectively. Observe that according to
Axiom IV,

△AML ∼ △ABC,

△MBK ∼ △ABC,

△LKC ∼ △ABC

and

LM = 1
2 ·BC, MK = 1

2 ·CA, KL = 1
2 ·AB.

According to SSS-condition (6.6), △KLM ∼ △ABC. Thus,

➏ ∡MKL = ±α, ∡KLM = ±β, ∡BCA = ±γ.

According to 3.11, the “+” or “−” sign is to be the same throughout
➏.

If in ➏ we have “+” then ➎ follows since

β + γ + α ≡ ∡AML+ ∡LMK + ∡KMB ≡ ∡AMB ≡ π

It remains to show that we can not have “−” in ➏. In this case the
same argument as above gives

α+ β − γ ≡ π.
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The same way we get
α− β + γ ≡ π

Adding last two identities we get

2·α ≡ 0.

Equivalently α ≡ π or 0; i.e. △ABC is degenerate, a contradiction.

A

B CD

6.10. Exercise. Let △ABC be a non-
degenerate triangle. Assume there is a
point D ∈ [BC] such that (AD) bisects
∠BAC and BA = AD = DC. Find the
angles of △ABC.

6.11. Exercise. Show that

|∡ABC| + |∡BCA|+ |∡CAB| = π.

for any △ABC in the Euclidean plane.

6.12. Corollary. In the Euclidean plane,
(AB) ‖ (CD) if and only if

➐ 2·(∡ABC + ∡BCD) ≡ 0.

Equivalently

∡ABC + ∡BCD ≡ 0 or ∡ABC + ∡BCD ≡ π;

in the first case A and D lie on the opposite sides of (BC), in the
second case A and D lie on the same sides of (BC).

A
B

C
D

Proof. If (AB) ∦ (CD) then there is
Z ∈ (AB) ∩ (CD) and △BCZ is non-
degenerate.

According to Theorem 6.9,

∡ZBC+∡BCZ ≡ π−∡CZB 6≡ 0 or π.

Note that 2·∡ZBC ≡ 2·∡ABC and
2·∡BCZ ≡ 2·∡BCD. Therefore

2·(∡ABC + ∡BCD) ≡ 2·∡ZBC + 2·∡BCZ 6≡ 0;

i.e., ➐ does not hold.
It remains to note that the identity ➐ uniquely defines line (CD).

Therefore by Theorem 6.2, if (AB) ‖ (CD) then equality ➐ holds.
Applying Proposition 3.8, we get the last part of the corollary.
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Parallelograms

A quadrilateral is an ordered quadruple of pairwise distinct points in
the plane. A quadrilateral formed by quadruple (A,B,C,D) will be
called quadrilateral ABCD.

Given a quadrilateral ABCD, the four segments [AB], [BC], [CD]
and [DA] are called sides of ABCD; the remaining two segments [AC]
and [BD] are called diagonals of ABCD.

6.13. Exercise. Show for any quadrilateral ABCD in the Euclidean
plane we have

∡ABC + ∡BCD + ∡CDA+ ∡DAB ≡ 0

A quadrilateral ABCD in the Euclidean plane is called nondegen-
erate if any three points from A,B,C,D do not lie on one line.

The nondegenerate quadrilateral ABCD is called parallelogram if
(AB) ‖ (CD) and (BC) ‖ (DA).

6.14. Lemma. If ABCD is a parallelogram then

(a) ∡DAB = ∡BCD;
(b) AB = CD. AB

C D

Proof. Since (AB) ‖ (CD), the points C andD
lie on the same side from (AB). Hence ∠ABD
and ∠ABC have the same sign. Analogously,
∠CBD and ∠CBA have the same sign. Since
∠ABC ≡ −∠CBA, we get that the angles
∠DBA and ∠DBC have opposite signs; i.e.,
A and C lie on the opposite sides of (BD).

According to Corollary 6.12,

∡BDC ≡ −∡DBA and ∡DBC ≡ −∡BDA.

By angle-side-angle condition △ABD ∼= △CDB. Which implies both
statements in the lemma.

P

Q

Pℓ Qℓ

Pm

Qm

ℓ

m

6.15. Exercise. Let ℓ and m be perpendic-
ular lines in the Euclidean plane. Given a
points P denote by Pℓ and Pm the foot points
of P on ℓ and m correspondingly.

(a) Show that for any X ∈ ℓ and Y ∈ m
there is unique point P such that Pℓ = X
and Pm = Y .
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(b) Show that PQ2 = PℓQ
2
ℓ + PmQ2

m for any pair of points P and
Q.

(c) Conclude that Euclidean plane is isometric to (R2, d2) defined
on page 12.

6.16. Exercise. Use the Exercise 6.15, to give an alternative proof
of Theorem 3.16 in the Euclidean plane.

I.e., prove that given real numbers a, b and c such that

0 < a 6 b 6 c 6 a+ c,

there is a triangle △ABC such that a = BC, b = CA and c = AB.
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Triangle geometry

Circumcircle and circumcenter

7.1. Theorem. Perpendicular bisectors to the sides of any nonde-
generate triangle in the Euclidean plane intersect at one point.

The point of the intersection of the perpendicular bisectors is called
circumcenter. It is the center of the circumcircle of the triangle; i.e.,
the circle which pass through all three vertices of the triangle. The
circumcenter of the triangle is usually denoted by O.

B

A

C

O

ℓ
m

Proof. Let △ABC be nondegenerate. Let ℓ and m
be perpendicular bisectors to sides [AB] and [AC]
correspondingly.

Assume ℓ and m intersect, let O = ℓ ∩ n. Since
O ∈ ℓ, we have OA = OB and since O ∈ m, we
have OA = OC. It follows that OB = OC; i.e. O
lies on the perpendicular bisector to [BC].

It remains to show that ℓ ∦ m; assume contrary.
Since ℓ ⊥ (AB) and m ⊥ (AC), we get (AC) ‖
‖ (AB) (see Exercise 6.4). Therefore by Theorem 5.5, (AC) = (AB);
i.e., △ABC is degenerate, a contradiction.

7.2. Corollary. There is unique circle which pass through vertices of
a given nondegenerate triangle in the Euclidean plane.

Altitudes and orthocenter

An altitude of a triangle is a line through a vertex and perpendicular
to the line containing the opposite side. The term altitude maybe
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also used for the distance from the vertex to its foot point on the line
containing opposite side.

7.3. Theorem. The three altitudes of any nondegenerate triangle in
the Euclidean plane intersect in a single point.

The point of intersection of altitudes is called orthocenter ; it is
usually denoted as H .

B′

A

A′

B

C

C′

Proof. Let △ABC be nondegenerate.
Consider three lines ℓ ‖ (BC) through A, m ‖

‖ (CA) through B and n ‖ (AB) through C.
Since △ABC is nondegenerate, the lines ℓ, m and
n are not parallel. Set A′ = m ∩ n, B′ = n ∩ ℓ
and C′ = ℓ ∩m.

Note that ABA′C, BCB′A and CBC′A are
parallelograms. Applying Lemma 6.14 we get

that △ABC is the median triangle of △A′B′C′; i.e., A, B and C
are the midpoints of [B′C′], [C′A′] and [A′B′] correspondingly. By
Exercise 6.4, (B′C′) ‖ (BC), the altitudes from A is perpendicular to
[B′C′] and from above it bisects [B′C′].

Thus altitudes of △ABC are also perpendicular bisectors of the
triangle △A′B′C′. Applying Theorem 7.1, we get that altitudes of
△ABC intersect at one point.

7.4. Exercise. Assume H is the orthocenter of an acute triangle
△ABC in the Euclidean plane. Show that A is orthocenter of △HBC.

Medians and centroid

A median of a triangle is a segment joining a vertex to the midpoint
of the opposing side.

7.5. Theorem. The three medians of any nondegenerate triangle in
the Euclidean plane intersect in a single point. Moreover the point of
intersection divides each median in ratio 2:1.

The point of intersection of medians is called centroid ; it is usually
denoted by M .

Proof. Consider a nondegenerate triangle△ABC. Let [AA′] and [BB′]
be its medians.

According to Exercise 3.13, [AA′] and [BB′] are intersecting. Let
us denote by M the point of intersection.
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By side-angle-side condition,△B′A′C ∼ △ABC andA′B′ = 1
2 ·AB.

In particular ∡ABC ≡ ∡B′A′C.
Since A′ lies between B and C, we get ∡BA′B′ + ∡B′A′C = π.

Therefore
∡B′A′B + ∡A′BC = π.

By Corollary 6.12 (AB) ‖ (A′B′).

A

A′

B

B′

C

M

Note that A′ and A lie on the opposite sides
from (BB′). Therefore by Corollary 6.12 we get

∡B′A′M = ∡BAM.

The same way we get,

∡A′B′M = ∡ABM.

By AA condition, △ABM ∼ △A′B′M .
Since A′B′ = 1

2 ·AB, we have

A′M

AM
=

B′M

BM
=

1

2
.

In particular M divides medians [AA′] and [BB′] in ratio 2:1.
Note that M is unique point on [BB′] such that

B′M

BM
=

1

2
.

Repeating the same argument for vertices B and C we get that all
medians [CC′] and [BB′] intersect in M .

Bisector of triangle

7.6. Lemma. Let △ABC be a nondegenerate triangle in the Eu-
clidean plane. Assume that the bisector of ∠BAC intersects [BC] at
the point D. Then

➊
AB

AC
=

DB

DC
.

A

BC D

E
ℓ

Proof. Let ℓ be the line through C parallel to
(AB). Note that ℓ ∦ (AD); set E = ℓ ∩ (AD).

Note that B and C lie on the opposite sides
of (AD). Therefore by Corollary 6.12,

➋ ∡BAD = ∡CED.
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Further, note that ∠ADB and ∠EDC are vertical; in particular,
by 2.12

∡ADB = ∡EDC.

By AA-similarity condition, △ABD ∼ △ECD. In particular,

➌
AB

EC
=

DB

DC
.

Since (AD) bisects ∠BAC, we get ∡BAD = ∡DAC. Together
with ➋, it implies that ∡CEA = ∡EAC. By Theorem 4.2, △ACE is
isosceles; i.e.

EC = AC.

The later together with ➌ implies ➊.

7.7. Exercise. Prove an analog of Lemma 7.6 for the external bisec-
tor.

Incenter

7.8. Theorem. The angle bisectors of any nondegenerate triangle
intersect at one point.

A B

C

I

Z

A′

X
Y

B′

The point of intersection of bisectors
is called incenter ; it is usually denoted
as I. The point I lies on the same dis-
tance from each side, it is the center of
a circle tangent to each side of triangle.
This circle is called incircle and its ra-
dius is called inradius of the triangle.

Proof. Let △ABC be a nondegenerate
triangle.

Note that points B and C lie on
the opposite sides from the bisector of
∠BAC. Hence this bisector intersects
[BC] at a point, say A′.

Analogously, there is B′ ∈ [AC] such
the (BB′) bisects ∠ABC.

Applying Pasch’s theorem (3.10), twice for the triangles △AA′C
and △BB′C, we get that [AA′] and [BB′] intersect. Let us denote by
I the point of intersection.
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Let X , Y and Z be the foot points of I on (BC), (CA) and (AB)
correspondingly. Applying Lemma 5.12, we get

IY = IZ = IX.

From the same lemma we get that I lies on a bisector or exterior
bisector of ∠BCA.

The line (CI) intersects [BB′], the points B and B′ lie on opposite
sides of (CI). Therefore the angles ∠ICA = ∠ICB′ and ∠ICB have
opposite signs. I.e., (CI) can not be exterior bisector of ∠BCA. Hence
the result follows.

More exercises

7.9. Exercise. Assume that bisector at one vertex of a nondegenerate
triangle bisects the opposite side. Show that the triangle is isosceles.

7.10. Exercise. Assume that at one vertex of a nondegenerate tri-
angle bisector coincides with the altitude. Show that the triangle is
isosceles.

A B

C

X
Y

Z

7.11. Exercise. Assume sides [BC], [CA] and
[AB] of △ABC are tangent to incircle at X, Y
and Z correspondingly. Show that

AY = AZ = 1
2 ·(AB +AC −BC).

By the definition, the orthic triangle is formed by the base points
of its altitudes of the given triangle.

7.12. Exercise. Prove that orthocenter of an acute triangle coincides
with incenter of its orthic triangle.

What should be an analog of this statement for an obtuse triangle?
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Inversive geometry
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Chapter 8

Inscribed angles

Angle between a tangent line and a chord

8.1. Theorem. Let Γ be a circle with center O in the Euclidean
plane. Assume line (XQ) is tangent to Γ at X and [XY ] is a chord
of Γ. Then

➊ 2·∡QXY ≡ ∡XOY.

Equivalently,

∡QXY ≡ 1
2 ·∡XOY or ∡QXY ≡ 1

2 ·∡XOY + π.

Q

X

Y

O

Proof. Note that △XOY is isosce-
les. Therefore ∡Y XO = ∡OY X .

Applying Theorem 6.9 to△XOY ,
we get

π ≡ ∡Y XO + ∡OY X + ∡XOY ≡
≡ 2·∡Y XO + ∡XOY.

By Lemma 5.16, (OX) ⊥ (XQ).
Therefore

∡QXY + ∡Y XO ≡ ±π
2 .

Therefore

2·∡QXY ≡ π − 2·∡Y XO ≡ ∡XOY.
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Inscribed angle

P

X

Y

O

We say that triangle is inscribed in the
circle Γ if all its vertices lie on Γ.

8.2. Theorem. Let Γ be a circle with
center O in the Euclidean plane, and
X,Y be two distinct points on Γ. Then
△XPY is inscribed in Γ if and only if

➋ 2·∡XPY ≡ ∡XOY.

Equivalently, if and only if

∡XPY ≡ 1
2 ·∡XOY or ∡XPY ≡ 1

2 ·∡XOY + π.

Proof. Choose a point Q such that (PQ) ⊥ (OP ). By Lemma 5.16,
(PQ) is tangent to Γ.

According to Theorem 8.1,

2·∡QPX ≡ ∡POX,

2·∡QPY ≡ ∡POY.

Subtracting one identity from the other we get ➋.
To prove the converse, let us argue by contradiction. Assume that

➋ holds for some P /∈ Γ. Note that ∡XOY 6= 0 and therefore ∡XPY
is distinct from 0 and π; i.e., △PXY is nondegenerate.

P ′

P

X

Y

O

P

X

Y

O

If the line (PY ) is secant to Γ, denote by P ′ the point of intersection
of Γ and (PY ) which is distinct from Y . From above we get

2·∡XP ′Y ≡ ∡XOY.
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In particular,
2·∡XP ′Y ≡ 2·∡XPY.

By Corollary 6.12, (P ′X) ‖ (PX). Since △PXY is nondegenerate,
the later implies P = P ′, which contradicts P /∈ Γ.

In the remaining case, if (PX) is tangent to Γ, the proof goes along
the same lines. Namely, by Theorem 8.1,

2·∡PY X ≡ ∡XOY.

In particular,
2·∡PY X ≡ 2·∡XPY.

Y ′

Y

P

X

X ′

O

By Corollary 6.12, (PY ) ‖ (XY );
therefore (PY ) = (XY ). I.e., △PXY
is degenerate, a contradiction.

8.3. Exercise. Let [XX ′] and [Y Y ′]
be two chords of circle Γ with center
O and radius r in the Euclidean plane.
Assume (XX ′) and (Y Y ′) intersect at
point P . Show that
(a) 2·∡XPY = ∡XOY + ∡X ′OY ′;
(b) △PXY ∼ △PY ′X ′;
(c) PX ·PX ′ = |OP 2 − r2|.

8.4. Exercise. Assume that the chords [XX ′], [Y Y ′] and [ZZ ′] of
the circle Γ in the Euclidean plane intersect at one point. Show that

XY ′ ·ZX ′ ·Y Z ′ = X ′Y ·Z ′X ·Y ′Z.

Inscribed quadrilateral

A

B
C

D

A quadrilateral ABCD is called in-
scribed if all the points A, B, C and
D lie on a circle or a line.

8.5. Theorem. A quadrilateral
ABCD in the Euclidean plane is in-
scribed if and only if

➌ 2·∡ABC + 2·∡CDA ≡ 0.

Equivalently, if and only if

∡ABC + ∡CDA ≡ π or ∡ABC ≡ −∡CDA.
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Proof. Assume △ABC is degenerate. By Corollary 2.9,

2·∡ABC ≡ 0;

From the same corollary, we get

2·∡CDA ≡ 0

if and only if D ∈ (AB); hence the result follows.
It remains to consider the case if △ABC is nondegenerate.
Denote by Γ the circumcircle of △ABC and let O be the center of

Γ. According to Theorem 8.2,

➍ 2·∡ABC ≡ ∡AOB.

From the same theorem, D ∈ Γ if and only if

A

B

X

Y

X ′

Y ′

Γ

Γ′
➎ 2·∡CDA ≡ ∡BOA.

Adding ➍ and ➎, we get the result.

8.6. Exercise. Let Γ and Γ′ be
two circles which intersect at two
distinct points A and B. Assume
[XY ] and [X ′Y ′] be the chords of
Γ and Γ′ correspondingly such that

A lies between X and X ′ and B lies between Y and Y ′. Show that
(XY ) ‖ (X ′Y ′).

8.7. Exercise. Let △ABC be a nondegenerate triangle in the Eu-
clidean plane, A′ and B′ be foot points of altitudes from A and B.
Show that A, B, A′ and B′ lie on one circle.

What is the center of this circle?

Arcs

A subset of a circle bounded by two points is called a circle arc.
More precisely, let Γ be a circle and A,B,C ∈ Γ be three distinct

points. The subset which includes the points A, C as well as all the
points on Γ which lie with B on the same side from (AC) is called
circle arc ABC.
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A

B

C

X

Γ

For the circle arc ABC, the points A
and C are called endpoints. Note that
given two distinct points A and C there
are two circle arcs of Γ with the endpoints
at A and C.

A half-line [AX) is called tangent to
arc ABC at A if the line (AX) is tangent
to Γ and the points X and B lie on the same side from the line (AC).

If B lies on the line (AC), the arc ABC degenerates to one of two
following a subsets of line (AC).

⋄ If B lies between A and C then we define the arc ABC as the
segment [AC]. In this case the half-line [AC) is tangent to the
arc ABC at A.

⋄ If B ∈ (AC)\[AC] then we define the arc ABC as the line (AC)
without all the points between A and C. If we choose points X
and Y ∈ (AC) such that the points X , A, C and Y appear in
the same order on the line then the arc ABC is formed by two
half-lines in [AX) and [CY ). The half-line [AX) is tangent to
the arc ABC at A.

⋄ In addition, any half-line [AB) will be regarded as an arc. This
degenerate arc has only one end point A and it assumed to be
tangent to itself at A.

The circle arcs together with the degenerate arcs will be called
arcs.

8.8. Proposition. In the Euclidean plane, a point D lies on the arc
ABC if and only if

∡ADC = ∡ABC

or D coincides with A or C.

A

B

C D

Proof. Note that if A, B and C lie on one line then
the statement is evident.

Assume Γ be the circle passing through A, B and
C.

Assume D is distinct from A and C. According
to Theorem 8.5, D ∈ Γ if and only if

∡ADC = ∡ABC or ∡ADC ≡ ∡ABC + π.

By Exercise 3.12, the first identity holds then B and D lie on one
side of (AC); i.e., D belongs to the arc ABC. If the second identity
holds then the points B and D lie on the opposite sides from (AC), in
this case D does not belong to the arc ABC.
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8.9. Proposition. In the Euclidean plane, a half-lines [AX) is tan-
gent to the arc ABC if and only if

∡ABC + ∡CAX ≡ π.

Proof. Note that for a degenerate arc ABC the statement is evident.
Further we assume the arc ABC is nondegenerate.

Applying theorems 8.1 and 8.2, we get

2·∡ABC + 2·∡CAX ≡ 0.

Therefore either

∡ABC + ∡CAX ≡ π or ∡ABC + ∡CAX ≡ 0.

A

B

C

X Since [AX) is the tangent half-line to the
arc ABC, X and B lie on the same side from
(AC). Therefore the angles ∠CAX , ∠CAB and
∠ABC have the same sign. In particular ∡ABC+
∡CAX 6≡ 0; i.e., we are left with the case

∡ABC + ∡CAX ≡ π.

8.10. Exercise. Assume that in the Euclidean plane, the half-lines
[AX) and [AY ) are tangent to the arcs ABC and ACB correspond-
ingly. Show that ∠XAY is straight.

8.11. Exercise. Show that in the Euclidean plane, there is unique
arc with endpoints at the given points A and C which is tangent at A
to the given half line [AX).

A

B1

B2

C

X1

X2

Y1

Y2

8.12. Exercise. Consider two
arcs AB1C and AB2C in the Eu-
clidean plane. Let [AX1) and
[AX2) be the half-lines tangent to
arcs AB1C and AB2C at A and
[CY1) and [CY2) be the half-lines
tangent to arcs AB1C and AB2C
at C. Show that

∡X1AX2 ≡ −∡Y1CY2.



Chapter 9

Inversion

Let Ω be the circle with center O and radius r. The inversion of a
point P with respect to Ω is the point P ′ ∈ [OP ) such that

OP ·OP ′ = r2.

In this case the circle will be called the circle of inversion and its
center is called center of inversion.

Ω

O P

P ′

T
The inversion of O is undefined. If P is

inside Ω then P ′ is outside and the other way
around. Further, P = P ′ if and only if P ∈
Ω.

Note that the inversion takes P ′ back to
P .

9.1. Exercise. Let P be a point inside of a
circle Ω centered at O in the Euclidean plane.
Let T be a point where the perpendicular to
(OP ) from P intersects Ω. Let P ′ be the
point where the tangent to Ω at T intersects
(OP ). Show that P ′ is the inversion of P in the circle Ω.

9.2. Lemma. Let A′ and B′ be inversions of A and B with respect
to a circle of center O in the Euclidean plane. Then

△OAB ∼ △OB′A′.

Moreover,

➊

∡AOB ≡ −∡B′OA′,

∡OBA ≡ −∡OA′B′,

∡BAO ≡ −∡A′B′O.

67
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AA′

B

B′

O

Proof. Let r be the radius of the circle of the
inversion.

From the definition of inversion, we get

OA·OA′ = OB ·OB′ = r2.

Therefore
OA

OB′ =
OB

OA′ .

Clearly

➋ ∡AOB = ∡A′OB′ ≡ −∡B′OA′.

From SAS, we get
△OAB ∼ △OB′A′.

Applying Theorem 3.11 and ➋, we get ➊.

9.3. Exercise. Let P ′ be the inversion of P in the circle Γ. Assume
that P 6= P ′. Show that the value PX

P ′X
is the same for all X ∈ Γ.

The converse to the above exercise also holds. Namely, given pos-
itive real number k 6= 1 and two distinct points P and P ′ in the
Euclidean plane the locus of points X such that PX

P ′X
= k forms a

circle which is called circle of Apollonius. In this case P ′ is inverse of
P in the circle of Apollonius.

9.4. Exercise. Let A′, B′, C′ be the images of A, B, C under inver-
sion in the incircle of △ABC in the Euclidean plane. Show that the
incenter of △ABC is the orthocenter of △A′B′C′.

Cross-ratio

Although inversion changes the distances and angles, some quantities
expressed in distances or angles do not change after inversion. The
following theorem gives the simplest examples of such quantities.

9.5. Theorem. Let ABCD and A′B′C′D′ be two quadrilaterals in
the Euclidean plane such that the points A′, B′, C′ and D′ are inver-
sions of A, B, C, and D correspondingly.

Then
(a)

AB ·CD

BC ·DA
=

A′B′ ·C′D′

B′C′ ·D′A′ .

(b)
∡ABC + ∡CDA ≡ −(∡A′B′C′ + ∡C′D′A′).
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(c) If quadrilateral ABCD is inscribed then so is A′B′C′D′.

Proof; (a). Let O be the center of inversion. According to Lemma 9.2,
△AOB ∼ △B′OA′. Therefore

AB

A′B′ =
OA

OB′ .

Analogously,

BC

B′C′ =
OC

OB′ ,
CD

C′D′ =
OC

OD′ ,
DA

D′A′ =
OA

OD′ .

Therefore

AB

A′B′ ·
B′C′

BC
· CD

C′D′ ·
D′A′

DA
=

OA

OB′ ·
OB′

OC
· OC

OD′ ·
OD′

OA
= 1.

Hence (a) follows.

(b). According to Lemma 9.2,

∡ABO ≡ −∡B′A′O, ∡OBC ≡ −∡OA′B′,

∡CDO ≡ −∡D′C′O, ∡ODA ≡ −∡OA′D′.

Summing these four identities we get

∡ABC + ∡CDA ≡ −(∡D′C′B′ + ∡B′A′D′).

Applying Axiom IIb and Exercise 6.13, we get

∡A′B′C′ + ∡C′D′A′ ≡ −(∡B′C′D′ + ∡D′A′B′) ≡
≡ ∡D′C′B′ + ∡B′A′D′.

Hence (b) follows.

(c). Follows from (b) and Theorem 8.5.

Inversive plane and clines

Let Ω be a circle with center O and radius r. Consider the inversion
in Ω.

Recall that inversion of O is not defined. To deal with this problem
it is useful to add to the plane an extra point; it will be called the
point at infinity and we will denote it as ∞. W e can assume that ∞
is inversion of O and the other way around.
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The Euclidean plane with added a point at infinity is called inver-
sive plane.

We will always assume that any line and half-line contains ∞.
It will be convenient to use notion of cline, which means circle or

line; for example we may say if cline contains ∞ then it is a line or
cline which does not contain ∞ is a circle.

Note that according to Theorem 7.1, for any△ABC there is unique
cline which pass through A, B and C.

9.6. Theorem. In the inversive plane, inversion of a cline is a cline.

Proof. Denote by O the center of inverse.
Let Γ be a cline. Choose three distinct points A, B and C on Γ.

(If △ABC is nondegenerate then Γ is the circumcircle of △ABC; if
△ABC is degenerate then Γ is the line passing through A, B and C.)

Denote by A′, B′ and C′ the inversions of A, B and C correspond-
ingly. Let Γ′ be the cline which pass though A′, B′ and C′. According
to 7.1, Γ′ is well defined.

Assume D is a point of inversive plane which is distinct from A,
C, O and ∞. According to Theorem 8.5, D ∈ Γ if and only if

2·∡CDA+ 2·∡ABC ≡ 0.

According to Theorem 9.5b, the later is equivalent to

2·∡C′D′A′ + 2·∡A′B′C′ ≡ 0.

Applying Theorem 8.5 again, we get that the later is equivalent to
D′ ∈ Γ′. Hence the result follows.

It remains to prove that O ∈ Γ ⇔ ∞ ∈ Γ′ and ∞ ∈ Γ ⇔ O ∈ Γ′.
Since Γ is inversion of Γ′ it is sufficient to prove only

∞ ∈ Γ ⇔ O ∈ Γ′.

Γ

Ω

Γ′

Q′
Q

Since ∞ ∈ Γ we get that Γ is a
line. Therefore for any ε > 0, the
line Γ contains point P with OP >
r2/ε. For the inversion P ′ ∈ Γ′ of
P , we have OP ′ = r2/OP < ε. I.e.,
the cline Γ′ contains points arbitrary
close to O. It follows that O ∈ Γ′.

9.7. Exercise. Assume that if cir-
cle Γ′ is the inversion of circle Γ in
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the Euclidean plane. Denote by Q
the center of Γ and by Q′ the inversion of Q.

Show that Q′ is not the center of Γ′.

9.8. Exercise. Show that for any pair of tangent circles in the inver-
sive plane there is an inversion which sends them to a pair of parallel
lines.

9.9. Theorem. Consider inversion with respect to circle Ω with cen-
ter O in the inversive plane. Then
(a) Line passing through O is inverted into itself.
(b) Line not passing through O is inverted into a circle which pass

through O, and the other way around.
(c) A circle not passing through O is inverted into a circle not pass-

ing through O.

Proof. In the proof we use Theorem 9.6 without mentioning.

(a). Note that if line passing through O it contains both ∞ and O.
Therefore its inversion also contains ∞ and O. In particular image is
a line passing through O.

(b). Since any line ℓ pass through ∞, its image ℓ′ has to contain O. If
the line did not contain O then ℓ′ 6∋ ∞. Therefore ℓ′ is a circle which
pass through O.

(c). If circle Γ does not contain O then its image Γ′ does not contain
∞. Therefore Γ′ is a circle. Since Γ 6∋ ∞ we get Γ′ 6∋ O. Hence the
result follows.

Ptolemy’s identity

Here is one application of inversion, which we include as an illustration
only.

9.10. Theorem. Let ABCD be an inscribed quadrilateral in the
Euclidean plane. Assume that the points A, B, C and D appear on
the cline in the same order. Then

AB ·CD +BC ·DA = AC ·BD

Proof. Assume the points A,B,C,D lie on one line in this order.
Set x = AB, y = BC, z = CD. Note that

x·z + y ·(x+ y + z) = (x+ y)·(y + z).

Since AC = x + y, BD = y + z and DA = x + y + z, it proves the
identity.
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A

B C
D

A′ B′ C′ D′

x y z It remains to consider the case when
quadrilateral ABCD is inscribed in a circle,
say Γ.

The identity can be rewritten as

AB ·DC

BD·CA
+

BC ·AD
CA·DB

= 1.

On the left hand side we have two cross-
ratios. According to Theorem 9.5(a), the

left hand side does not change if we apply an inversion to each point.
Consider an inversion in a circle centered at a point O which lie on

Γ between A and D. By Theorem 9.9, this inversion maps Γ to a line.
This reduces the problem to the case when A, B, C and D lie on one
line, which was already considered.

Perpendicular circles

Assume two circles Γ and ∆ intersect at two points sayX andX ′. Let ℓ
and m be tangent lines at X to Γ and ∆ correspondingly. Analogously,
ℓ′ and m′ be tangent lines at X ′ to Γ and ∆.

From Exercise 8.12, we get that ℓ ⊥ m if and only if ℓ′ ⊥ m′.
We say that circle Γ is perpendicular to circle ∆ (briefly Γ ⊥ ∆)

if they intersect and the lines tangent to the circle at one point (and
therefore both points) of intersection are perpendicular.

Similarly, we say that circle Γ is perpendicular to a line ℓ (briefly
Γ ⊥ ℓ) if Γ ∩ ℓ 6= ∅ and ℓ perpendicular to the tangent lines to Γ at
one point (and therefore both points) of intersection. According to
Lemma 5.16, it happens only if the line ℓ pass through the center of
Γ.

Now we can talk about perpendicular clines.

9.11. Theorem. Assume Γ and Ω are distinct circles in the Eu-
clidean plane. Then Ω ⊥ Γ if and only if the circle Γ coincides with
its inversion in Ω.

Proof. Denote by Γ′ the inversion of Γ.

(⇒) Let O be the center of Ω and Q be the center of Γ. Denote
by A and B the points of intersections of Γ and Ω. According to
Lemma 5.16, Γ ⊥ Ω if and only if (OA) and (OB) are tangent to Γ.

Note that Γ′ also tangent to (OA) and (OB) at A and B corre-
spondingly. It follows that A and B are the foot points of the center
of Γ′ on (OA) and (OB). Therefore both Γ′ and Γ have the center Q.
Finally, Γ′ = Γ, since both circles pass through A.
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A

B
Q

O

(⇐) Assume Γ = Γ′.
Since Γ 6= Ω, there is a point

P which lies on Γ, but not on
Ω. Let P ′ be the inversion of
P in Ω. Since Γ = Γ′, we have
P ′ ∈ Γ, in particular the half-
line [OP ) intersects Γ at two
points; i.e., O lies outside of Γ.

As Γ has points inside and
outside Ω, the circles Γ and
Ω intersect. The later follows
from Exercise 5.18(b). Let A be
a point of their intersection; we
need to show that A is the only intersection point of (OA) and Γ.
Assume X is an other point of intersection. Since O is outside of Γ,
the point X lies on the half-line [OA).

Denote by X ′ the inversion of X in Ω. Clearly the three points
X,X ′, A lie on Γ and (OA). The later contradicts Lemma 5.14.

9.12. Corollary. A cline in the inversive plane which is distinct from
the circle of inversion inverts to itself if and only if it is perpendicular
to the circle of inversion.

Proof. By Theorem 9.11, it is sufficient to consider the case when the
cline is a line. The later follows from Theorem 9.9.

9.13. Corollary. Let P and P ′ be two distinct points in the Euclidean
plane such that P ′ is the inversion of P in the circle Ω. Assume that
a cline Γ pass through P and P ′. Then Γ ⊥ Ω.

Proof. Without loss of generality we may assume that P is inside and
P ′ is outside Ω. It follows that Γ intersects Ω; denote by A a point of
intersection.0

Denote by Γ′ the inversion of Γ. Since A is inversion of itself, the
points A, P and P ′ lie on Γ; therefore Γ′ = Γ. By Theorem 9.11,
Γ ⊥ Ω.

9.14. Corollary. Let P and Q be two distinct points inside the circle
Ω in the Euclidean plane. Then there is unique cline Γ perpendicular
to Ω which pass through P and Q.

Proof. Let P ′ be the inversion of point P in a circle Ω. According to
Corollary 9.13, the cline passing through P and Q is perpendicular to
Ω if and only if it pass though P ′.
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Note that P ′ lies outside of Ω. Therefore the points P , P ′ and Q
are distinct.

According to Corollary 7.2, there is unique cline passing through
P , Q and P ′. Hence the result follows.

9.15. Exercise. Let Ω1 and Ω2 be two distinct circles in the Eu-
clidean plane. Assume that the point P does not lie on Ω1 nor on Ω2.
Show that there is unique cline passing through P which is perpendic-
ular Ω1 and Ω2.

9.16. Exercise. Let P , Q, P ′ and Q′ be points in the Euclidean
plane. Assume P ′ and Q′ are inversions of P and Q correspondingly.
Show that the quadrilateral PQP ′Q′ is inscribed.

9.17. Exercise. Let Ω1 and Ω2 be two perpendicular circles with
centers at O1 and O2 correspondingly. Show that the inversion of O1

in Ω2 coincides with the inversion of O2 in Ω1

Angles after inversion

9.18. Proposition. In the inversive plane, the inversion of an arc
is an arc.

Proof. Consider four distinct points A, B, C and D; let A′, B′, C′ and
D′ be their inverses. We need to show that D lies on the arc ABC if
and only if D′ lies on the arc A′B′C′. According to Proposition 8.8,
the later is equivalent to the following

∡ADC = ∡ABC ⇔ ∡A′D′C′ = ∡A′B′C′.

Which follows from Theorem 9.5(b).

The following theorem roughly says that the angle between arcs
changes sign after the inversion. A deeper understanding of this the-
orem comes from complex analysis.
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A

A′

B1

B′
1

C1

C′
1

X1

Y1

B2C2

B′
2

C′
2 X2

Y2

9.19. Theorem. Let AB1C1, AB2C2 be two arcs in the inversive
plane and A′B′

1C
′
1, A

′B′
2C

′
2 be their inversions. Let [AX1) and [AX2)

be the half-lines tangent to AB1C1 and AB2C2 at A and [A′Y1) and
[A′Y2) be the half-lines tangent to A′B′

1C
′
1 and A′B′

2C
′
2 at A′. Then

∡X1AX2 ≡ −∡Y1A
′Y2.

Proof. Applying to Proposition 8.9,

∡X1AX2 ≡ ∡X1AC1 + ∡C1AC2 + ∡C2AX2 ≡
≡ (π − ∡C1B1A) + ∡C1AC2 + (π − ∡AB2C2) ≡
≡ −(∡C1B1A+ ∡AB2C2 + ∡C2AC1) ≡
≡ −(∡C1B1A+ ∡AB2C1)− (∡C1B2C2 + ∡C2AC1).

The same way we get

∡Y1A
′Y2 ≡ −(∡C′

1B
′
1A

′ + ∡A′B′
2C

′
1)− (∡C′

1B
′
2C

′
2 + ∡C′

2A
′C′

1).

By Theorem 9.5(b),

∡C1B1A+ ∡AB2C1 ≡ −(∡C′
1B

′
1A

′ + ∡A′B′
2C

′
1),

∡C1B2C2 + ∡C2AC1 ≡ −(∡C′
1B

′
2C

′
2 + ∡C′

2A
′C′

1).

Hence the result follows.

9.20. Corollary. Let P ′, Q′ and Γ′ be the inversions of points P ,
Q and circle Γ in a circle Ω of the Euclidean plane. Assume P is
inversion of Q in Γ then P ′ is inversion of Q′ in Γ′.

Proof. If P = Q then P ′ = Q′ ∈ Γ′ therefore P ′ is inversion of Q′ in
Γ′.
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It remains to consider the case P 6= Q. Let ∆1 and ∆2 be two dis-
tinct circles which intersect at P and Q. According to Corollary 9.13,
∆1 ⊥ Γ and ∆2 ⊥ Γ.

Denote by ∆′
1 and ∆′

2 the inversions of ∆1 and ∆2 in Ω. Clearly
∆′

1 and ∆′
2 intersect at P ′ and Q′.

From Theorem 9.19, the later is equivalent to ∆′
1 ⊥ Γ′ and ∆′

2 ⊥
⊥ Γ′. By Corollary 9.12 the later implies P ′ is inversion of Q′ in
Γ′.
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Chapter 10

Absolute plane

Let us remove Axiom IV from the Definition 2.1. This way we define
a new object called absolute plane or neutral plane. (In the absolute
plane, the Axiom IV may or may not hold.)

Clearly any theorem in absolute geometry holds in Euclidean ge-
ometry. In other words, Euclidean plane is an example of absolute
plane. In the next chapter we will show that there are other examples
of absolute plane distinct from the Euclidean plane.

Many theorems in Euclidean geometry which we discussed, still
hold in absolute geometry.

In these lectures, the Axiom IV was used for the first time in the
proof of uniqueness of parallel line in Theorem 6.2. Therefore all the
statements before Theorem 6.2 also hold in absolute plane.

It makes all the discussed results about half-planes, signs of angles,
congruence conditions, perpendicular lines and reflections true in ab-
solute plane. If in the formulation of a statement above you do not
see words “Euclidean plane” or “inversive plane”, it means that the
statement holds in absolute plane and the same proof works.

Let us give an example of theorem in absolute geometry, which
admits a shorter proof in Euclidean geometry.

10.1. Theorem. Assume that triangles △ABC and △A′B′C′ have
right angles at C and C′ correspondingly, AB = A′B′ and AC = A′C′.
Then △ABC ∼= △A′B′C′.

Euclidean proof. By Pythagorean theorem BC = B′C′. Then the
statement follows from SSS congruence condition.

Note that the proof of Pythagorean theorem used properties of
similar triangles, which in turn used Axiom IV. Hence the above proof
is not working in absolute plane.
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A

B

C
D

Absolute proof. Denote by D the reflection of
A through (BC) and by D′ the reflection of A′

through (B′C′). Note that

AD = 2·AC = 2·A′C′ = A′D′,

BD = BA = B′A′ = B′D′.

By SSS, we get △ABD ∼= △A′B′D′.
The theorem follows since C is the midpoint of [AD] and C′ is the

midpoint of [A′D′].

10.2. Exercise. Give a proof of Exercise 7.9 which works in the
absolute plane.

Two angles of triangle

In this section we will prove a weaker form of Theorem 6.9 which holds
in absolute plane.

10.3. Proposition. Let △ABC be nondegenerate triangle in the ab-
solute plane. Then

|∡CAB| + |∡ABC| < π.

Note that in Euclidean plane the theorem follows immediately from
Theorem 6.9 and 3.11. In absolute geometry we need to work more.

Proof. Without loss of generality we may assume that ∠CAB and
∠ABC are positive.

Let M be the midpoint of [AB]. Chose C′ ∈ (CM) distinct from
C so that C′M = CM .

B

A

C

C′

M

Note that the angles ∠AMC and
∠BMC′ are vertical; in particular

∡AMC = ∡BMC′.

By construction AM = BM and CM =
= C′M . Therefore△AMC ∼= △BMC′ and
according to 3.11, we get

∠CAB = ∠C′BA.

In particular,

∡C′BC ≡ ∡C′BA+ ∡ABC ≡
≡ ∡CAB + ∡ABC.
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Finally note that C′ and A lie on the same side from (CB). There-
fore the angles ∡CAB, ∠ABC and ∠C′BC are positive. By Exer-
cise 3.3, the result follows.

10.4. Exercise. Assume A, B, C and D be points in absolute plane
such that

2·∡ABC + 2·∡BCD ≡ 0.

Show that (AB) ‖ (CD).

Note that one can not extract the solution of the above exercise
from the proof of Corollary 6.12

10.5. Exercise. Prove side-angle-angle congruence condition in ab-
solute plane.

In other words, let △ABC and △A′B′C′ be two triangles in abso-
lute plane. Show that △ABC ∼= △A′B′C′ if

AB = A′B′, ∡ABC = ±∡A′B′C′ and ∡BCA = ±∡B′C′A′.

Note that in the Euclidean plane, the above exercise follows from
ASA and Theorem on sum of angles of triangle (6.9). However, The-
orem 6.9 can not be used here since its proof use Axiom IV. Later, in
theorem Theorem 12.6, we will show that Theorem 6.9 does not hold
in absolute plane.

10.6. Exercise. Assume that point D lies between the vertices A and
B of triangle △ABC in the absolute plane. Show that

CD < CA or CD < CB.

Three angles of triangle

10.7. Proposition. Let △ABC and △A′B′C be two triangles in the
absolute plane such that AC = A′C′ and BC = B′C′. Then

AB < A′B′ if and only if |∡ACB| < |∡A′C′B′|.

AC

B
B′ X

Proof. Without loss of generality, we
may assume that A = A′ and C = C′

and ∡ACB,∡ACB′ > 0. In this case we
need to show that

AB < AB′ ⇔ ∡ACB < ∡ACB′.
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Choose point X so that

∡ACX = 1
2 ·(∡ACB + ∡ACB′).

Note that
⋄ (CX) bisects ∠BCB′

⋄ (CX) is the perpendicular bisector of [BB′].
⋄ A and B lie on the same side from (CX) if and only if

∡ACB < ∡ACB′.

From Exercise 5.3, A and B lie on the same side from (CX) if and
only if AB < AB′. Hence the result follows.

10.8. Theorem. Let △ABC be a triangle in the absolute plane.
Then

|∡ABC| + |∡BCA|+ |∡CAB| 6 π.

The following proof is due to Legendre [6], earlier proofs were due
to Saccheri [9] and Lambert [5].

Proof. Let △ABC be the given triangle. Set

a = BC, b = CA, c = AB,

α = ∡CAB β = ∡ABC γ = ∡BCA.

Without loss of generality, we may assume that α, β, γ > 0.
Fix a positive integer n. Consider points A0, A1, . . . , An on the

half-line [BA) so that BAi = i·c for each i. (In particular, A0 = B
and A1 = A.) Let us construct the points C1, C2, . . . , Cn, so that
∡AiAi−1Ci = β and Ai−1Ci = a for each i.

A0 A1 A2
. . . An

C1 C2 . . . Cn

c c c c

a b

d

a b

d

a b

d

a b

αβ

γ

δ
αβ

γ

This way we construct n congruent triangles

△ABC = △A1A0C1
∼=

∼= △A2A1C2
∼=

. . .
∼= △AnAn−1Cn.
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Set d = C1C2 and δ = ∡C2A1C1. Note that

➊ α+ β + δ = π.

By Proposition 10.3, δ > 0.
By construction

△A1C1C2
∼= △A2C2C3

∼= . . . ∼= △An−1Cn−1Cn.

In particular, CiCi+1 = d for each i.
By repeated application of the triangle inequality, we get that

n·c = A0An 6

6 A0C1 + C1C2 + · · ·+ Cn−1Cn + CnAn =

= a+ (n− 1)·d+ b.

In particular,
c 6 d+ 1

n
·(a+ b− d).

Since n is arbitrary positive integer, the later implies

c 6 d.

From Proposition 10.7 and SAS, the later is equivalent to

γ 6 δ.

From ➊, the theorem follows.

The defect of triangle △ABC is defined as

defect(△ABC)
def
== π − |∡ABC| + |∡BCA|+ |∡CAB|.

A

C

BD

Note that Theorem 10.8 sates that, defect of
any triangle in absolute plane has to be nonneg-
ative. According to Theorem 6.9, any triangle
in Euclidean plane has zero defect.

10.9. Exercise. Let △ABC be nondegenerate
triangle in the absolute plane. Assume D lies
between A and B. Show that

defect(△ABC) = defect(△ADC) + defect(△DBC).

10.10. Exercise. Let ABCD be an inscribed quadrilateral in the
absolute plane. Show that

∡ABC + ∡CDA ≡ ∡BCD + ∡DAB.

Note that the Theorem 8.5 can not be applied in the above exercise;
it use Theorems 8.1 and 8.2; which in turns use Theorem 6.9.
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How to prove that something

can not be proved?

Many attempts were made to prove that any theorem in Euclidean
geometry holds in absolute geometry. The later is equivalent to the
statement that Axiom IV is a theorem in absolute geometry.

Many these attempts being accepted as proofs for long periods of
time until the mistake was found.

There is a number of statements in the geometry of absolute plane
which are equivalent to the Axiom IV. It means that if we exchange
the Axiom IV in the Definition 2.1 to any of these statements then we
will obtain an equivalent axiomatic system.

Here we give a short list of such statements. (We are not going to
prove the equivalence in the lectures.)

10.11. Theorem. An absolute plane is Euclidean if and only if one
of the following equivalent conditions hold.
(a) There is a line ℓ and a point P not on the line such that there

is only one line passing through P and parallel to ℓ.
(b) Every nondegenerate triangle can be circumscribed.
(c) There exists a pair of distinct lines which lie on a bounded dis-

tance from each other.
(d) There is a triangle with arbitrary large inradius.
(e) There is a nondegenerate triangle with zero defect.

It is hard to imagine an absolute plane, which does not satisfy some
of the properties above. That is partly the reason why for the large
number of false proofs; each used one of such statements by accident.

Let us formulate the negation of the statement (a) above.

IVh. For any line ℓ and any point P /∈ ℓ there are at least two lines
which pass through P and have no points of intersection with ℓ.

According to the theorem above, any non-Euclidean absolute plane
Axiom IVh holds.

It opens a way to look for a proof by contradiction. Simply ex-
change Axiom IV to Axiom IVh in the Definition 2.1 and start to
prove theorems in the obtained axiomatic system. In the case if we
arrive to a contradiction, we prove the Axiom IV in absolute plane.

These attempts were unsuccessful as well; instead, this approach
led to a new type of geometry.

This idea was growing since 5th century; the most notable result
were obtained by Saccheri in [9]. The more this new geometry was
developed, it became more and more believable that there will be no
contradiction.
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The statement that there is no contradiction appears first in private
letters of Bolyai, Gauss, Schweikart and Taurinus1. They all seem to
be afraid to state it in public. Say, in 1818 Gauss writes to Gerling

. . . I am happy that you have the courage to express
yourself as if you recognized the possibility that our paral-
lels theory along with our entire geometry could be false.
But the wasps whose nest you disturb will fly around your
head.. . .

Lobachevsky came to the same conclusion independently, unlike
the others he had courage to state it in public and in print (see [7]).
That cost him serious troubles.

Later Beltrami gave a clean proof that if hyperbolic geometry has
a contradiction then so is Euclidean geometry. This was done by
modeling points, lines, distances and angle measures of hyperbolic
geometry using some other objects in Euclidean geometry; this is the
subject of the next chapter.

Arguably, the discovery of non-Euclidean geometry was the second
main discoveries of 19th century, trailing only the Mendel’s laws.

Curvature

In a letter from 1824 Gauss writes:

The assumption that the sum of the three angles is less
than π leads to a curious geometry, quite different from
ours but thoroughly consistent, which I have developed to
my entire satisfaction, so that I can solve every problem
in it with the exception of a determination of a constant,
which cannot be designated a priori. The greater one takes
this constant, the nearer one comes to Euclidean geometry,
and when it is chosen indefinitely large the two coincide.
The theorems of this geometry appear to be paradoxical and,
to the uninitiated, absurd; but calm, steady reflection re-
veals that they contain nothing at all impossible. For ex-
ample, the three angles of a triangle become as small as
one wishes, if only the sides are taken large enough; yet
the area of the triangle can never exceed a definite limit,
regardless how great the sides are taken, nor indeed can it
ever reach it.

In the modern terminology the constant which Gauss mentions,
can be expressed as 1/

√
−k, where k denotes so called curvature of

1The oldest surviving letters were the Gauss letter to Gerling 1816 and yet more
convincing letter dated by 1818 of Schweikart sent to Gauss via Gerling.
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the absolute plane which we are about to introduce.
The identity in the Exercise 10.9 suggests that defect of triangle

should be proportional to its area.2

In fact for any absolute plane there is a nonpositive real number k
such that

k· area(△ABC) + defect(△ABC) = 0

for any triangle △ABC. This number k is called curvature of the
plane.

For example, by Theorem 6.9, the Euclidean plane has zero curva-
ture. By Theorem 10.8, curvature of any absolute plane is nonpositive.

It turns out that up to isometry, the absolute plane is characterized
by its curvature; i.e., two absolute planes are isometric if and only if
they have the same curvature.

In the next chapter we will construct hyperbolic plane, this is an
example of absolute plane with curvature k = −1.

Any absolute planes, distinct from Euclidean, can be obtained by
rescaling metric on the hyperbolic plane. Indeed, if we rescale the
metric by factor c, the area changes by positive factor c2, while defect
stays the same. Therefore taking c =

√
−k, we can get the absolute

plane given curvature k < 0. In other words, all the non-Euclidean
absolute planes become identical if we use r = 1/

√
−k as the unit of

length.

In the Chapter 13, we briefly discuss the geometry of the unit
sphere. Although spheres are not absolute planes, the spherical geom-
etry is a close relative of Euclidean and hyperbolic geometries.

The nondegenerate spherical triangles have negative defect. More-
over if R is the radius of the sphere then

1
R2 · area(△ABC) + defect(△ABC) = 0

for any spherical triangle △ABC. In other words, the sphere of radius
R has positive curvature k = 1

R2 .

2We did not define area; instead we refer to intuitive understanding of area
which reader might have. The formal definition of area is quite long and tedious.



Chapter 11

Hyperbolic plane

In this chapter we use inversive geometry to construct the model
of hyperbolic plane — an example of absolute plane which is not Eu-
clidean.

87
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Poincaré disk model

Further we will discuss the Poincaré disk model of hyperbolic plane;
an example of absolute plane in which Axiom IV does not hold, in
particular this plane is not Euclidean. This model was discovered by
Beltrami in [2] and popularized later by Poincaré.

On the figure above you see the Poincaré disk model of hyperbolic
plane which is cut into congruent triangles with angles π

3 ,
π
3 and π

4 .

Description of the model

In this section we describe the model; i.e., we give new names for some
objects in Euclidean plane which will represent lines, angle measures,
distances in the hyperbolic plane.

Hyperbolic plane. Let us fix a circle on the Euclidean plane and
call it absolute. The set of points inside the absolute will be called
hyperbolic plane (or h-plane). (The absolute itself does not lie in the
h-plane.)

We will often assume that the absolute is a unit circle.

Hyperbolic lines. The intersections of h-plane with clines perpen-
dicular to the absolute are called hyperbolic lines (or h-lines).

P

Q

A

B

Γ
h-plane

Note that according to
Corollary 9.14, there is unique
h-line which pass through
given two distinct points P
and Q. This h-line will be
denoted as (PQ)h.

The arcs of hyperbolic
lines will be called hyperbolic
segments or h-segments. An
h-segment with endpoints P
and Q will be denoted as
[PQ]h.

The subset of h-line on one side from a point will be called hyper-
bolic half-line (or h-half-line). An h-half-line from P passing through
Q will be denoted as [PQ)h.

If Γ is the circle containing the h-line (PQ)h then the points of
intersection of Γ with absolute are called ideal points of (PQ)h. (Note
that the ideal points of h-line do not belong to the h-line.)

So far (PQ)h is just a subset of h-plane; below we will introduce
h-distance an later we will show that (PQ)h is a line for the h-distance
in the sense of the Definition 1.8.
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Hyperbolic distance. Let P and Q be distinct points in h-plane.
Denote by A and B be the ideal points of (PQ)h. Without loss of
generality, we may assume that on the Euclidean circle containing the
h-line (PQ)h, the points A,P,Q,B appear in the same order.

Consider function

δ(P,Q)
def
==

AQ·BP

QB ·PA
.

Note that right hand side is the cross-ratio, which appeared in Theo-
rem 9.5. Set δ(P, P ) = 1 for any point P in h-plane. Set

PQh
def
== ln δ(P,Q).

The proof that PQh is a metric on h-plane will be given below, for
now it is just a function which returns a real value PQh for any pair
of points P and Q in the h-plane.

Hyperbolic angles. Consider three points P , Q and R in the h-plane
such that P 6= Q and R 6= Q. The hyperbolic angle ∠hPQR is ordered
pair of h-half-lines [QP )h and [QR)h.

Let [QX) and [QY ) be (Euclidean) half-lines which are tangent to
[QP ]h and [QR]h at Q. Then the hyperbolic angle measure (or h-angle
measure) ∡hPQR is defined as ∡XQY .

What has to be proved?

In the previous section we defined all the notions in the formulation
of the axioms. It remains to check that each axiom holds.

Namely we need to show the following statements.

11.1. Statement. The defined h-distance is a metric on h-plane.
I.e., for any three points P , Q and R in the h-plane we have
(a) PQh > 0;
(b) P = Q if and only if PQh = 0;
(c) PQh = QPh.
(d) QRh 6 QPh + PRh.

11.2. Statement. A subset ℓ of h-plane is an h-line if and only if it
is a line for h-distance; i.e., if there is a bijection ι : ℓ → R such that

XYh = |ι(X)− ι(Y )|

for any X and Y ∈ ℓ.

11.3. Statement. Each Axiom of absolute plane holds. Namely we
have to check the following:
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I. There is one and only one h-line, that contains any two given
distinct points P and Q of h-plane.

II. The h-angle measure satisfies the following conditions:

(a) Given a h-half-line [QA)h and α ∈ (−π, π] there is unique
h-half-line [QB)h such that ∡hAQB = α

(b) For any points A, B and C distinct from Q, we have

∡hAQB + ∡hBQC ≡ ∡hAQC.

(c) The function

∡h : (A,Q,B) 7→ ∡AQB

is continuous at any triple of points (A,Q,B) in the h-plane
such that Q 6= A and Q 6= B and ∡hAQB 6= π.

III. △hABC ∼= △hA
′B′C′ if and only if A′B′

h = ABh, A
′C′

h = ACh

and ∡hC
′A′B′ ≡ ±∡hCAB.

Finally we need to prove the following statement in order to show
that h-plane is distinct from Euclidean plane.

11.4. Statement. The Axiom IVh on page 84 holds.

The proofs of these statements rely on the observation described
in the next section.

Auxiliary statements

11.5. Lemma. Consider h-plane with unit circle as absolute. Let
O be the center of absolute and P 6= O be an other point of h-plane.
Denote by P ′ the inversion of P in the absolute.

Then the circle Γ with center P ′ and radius 1/
√
1−OP 2 is orthog-

onal to the absolute. Moreover O is the inversion of P in Γ.

Γ

O P P ′

T Proof. Follows from Exercise 9.17.

Assume Γ is a cline which is perpen-
dicular to the absolute. Consider the
inversion X 7→ X ′ in Γ, or if Γ is a line,
setX 7→ X ′ to be the reflection through
Γ.

The following proposition roughly
says that the map X 7→ X ′ respects all

the notions introduced in the previous section. Together with the
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lemma above, it implies that in any problem which formulated en-
tirely in h-terms we can assume that a given point lies in the center
of absolute.

11.6. Main observation. The map X 7→ X ′ described above is a
bijection of h-plane to itself. Moreover for any points P , Q, R in the
h-plane such that P 6= Q and Q 6= R the following conditions hold
(a) The sets (PQ)h, [PQ)h and [PQ]h are mapped to (P ′Q′)h, [P ′Q′)h

and [P ′Q′]h correspondingly.
(b) δ(P ′, Q′) = δ(P,Q) and

P ′Q′
h = PQh.

(c)
∡hP

′Q′R′ ≡ −∡hPQR.

Proof. According to Theorem 9.11 the map sends the absolute to itself.
Note that the points on Γ do not move, it follows that points inside of
absolute remain inside after the mapping and the other way around.

Part (a) follows from 9.6 and 9.19.
Part (b) follows from Theorem 9.5.
Part (c) follows from Theorem 9.19.

11.7. Lemma. Assume that the absolute is a unit circle centered at
O. Given a point P in the h-plane, set x = OP and y = OPh. Then

y = ln
1 + x

1− x
and x =

ey − 1

ey + 1
.

A O P B

Proof. Note that h-line (OP )h lies in
a diameter of absolute. Therefore if A
and B are points in the definition of h-
distance then

OA = OB = 1,

PA = 1 + x,

PB = 1− x.

Therefore

y = ln
AP ·BO

PB ·OA
=

= ln
1 + x

1− x
.
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Taking exponent of left and right hand side and applying obvious
algebra manipulations we get

x =
ey − 1

ey + 1
.

11.8. Lemma. Assume points P , Q and R appear on one h-line in
the same order. Then

PQh +QRh = PRh

Proof. Note that
PQh +QRh = PRh

is equivalent to

➊ δ(P,Q)·δ(Q,R) = δ(P,R).

Let A and B be the ideal points of (PQ)h. Without loss of gener-
ality we can assume that the points A,P,Q,R,B appear in the same
order on the cline containing (PQ)h. Then

δ(P,Q)·δ(Q,R) =
AQ·BP

QB ·PA
·AR·BQ

RB ·QA
=

=
AR·BP

RB ·PA
=

= δ(P,R)

Hence ➊ follows.

Let P be a point in h-plane and ρ > 0. The set of all points Q in
the h-plane such that PQh = ρ is called h-circle with center P and
h-radius ρ.

11.9. Lemma. Any h-circle is formed by a Euclidean circle which
lies completely in h-plane.

More precisely for any point P in the h-plane and ρ > 0 there is a
ρ̂ > 0 and a point P̂ such that

PQh = ρ ⇔ P̂Q = ρ̂.

Moreover, if O is the center of absolute then
1. Ô = O for any ρ and
2. P̂ ∈ (OP ) for any P 6= O.
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O

Q

P

P̂

∆′
ρ

Proof. According to Lemma 11.7,
OQh = ρ if and only if

OQ = ρ̂ =
eρ − 1

eρ + 1
.

Therefore the locus of points Q such
that OQh = ρ is formed by the Eu-
clidean circle, denote it by ∆ρ.

If P 6= O, applying Lemma 11.5
and the Main observation (11.6) we get
a circle Γ perpendicular to the absolute
such that P is the inversion of O in Γ.

Let ∆′
ρ be the inversion of ∆ρ in Γ. Since the inversion in Γ pre-

serves the h-distance, PQh = ρ if and only if Q ∈ ∆′
ρ.

According to Theorem 9.6, ∆′
ρ is a circle. Denote by P̂ the center

and by ρ̂ the radius of ∆′
ρ.

Finally note that ∆′
ρ reflects to itself in (OP ); i.e., the center P̂

lies on (OP ).

The sketches of proofs

In this section we sketch the proofs of the statement 11.1–11.4. listed
in the section one before last.

We will always assume that absolute is a unit circle centered at the
point O.

Proof of 11.1; (a) and (b). Denote by O the center of absolute. With-
out loss of generality, we may assume that Q = O. If not apply
Lemma 11.5, together with Main Observation (11.6).

P

Q

A

B

Note that

δ(O,P ) =
1 +OP

1−OP
> 1

and the equality holds only if P = O.
Therefore

OPh = ln δ(O,P ) > 0.

and the equality holds if and only if P = O.

(c). Let A and B be ideal points of (PQ)h and
A,P,Q,B appear on the cline containing (PQ)h in
the same order.
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Then

PQh = ln
AQ·BP

QB ·PA
=

= ln
BP ·AQ
PA·QB

=

= QPh.

O P

P̂

∆

S T

Q

(d). Without loss of generality, we may
assume that RPh > PQh. Applying
the main observation we may assume
that R = O.

Denote by ∆ the h-circle with cen-
ter P and h-radius PQh. Let S and
T be the points of intersection of (OP )
and ∆.

Since PQh 6 OPh, by Lemma 11.8 we can assume that the points
O, S P and T appear on the h-line in the same order.

Let P̂ be as in Lemma 11.9 for P and ρ = PQh. Note that P̂ is
the (Euclidean) midpoint of [ST ].

By the Euclidean triangle inequality

OT = OP̂ + P̂Q > OQ.

Since the function f(x) = ln 1+x
1−x

is increasing for x ∈ [0, 1), the
Lemma 11.7 implies that OTh > OQh.

Finally applying Lemma 11.8 again, we get

OTh = OPh + PQh.

Therefore

➋ OQh 6 OPh + PQh.

Proof of 11.2. Let ℓ be an h-line. Applying the main observation we
can assume that ℓ contains the center of absolute. In this case ℓ is
formed by intersection of diameter of absolute and the h-plane. Let A
and B be the endpoints of the diameter.

Consider map ι : ℓ → R defined as

ι(X) = ln
AX

XB
.

Note that ι : ℓ → R is a bijection.
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Further, if X,Y ∈ ℓ and the points A, X , Y and B appear on [AB]
in the same order then

|ι(Y )− ι(X)| =
∣

∣

∣

∣

ln
AY

Y B
− ln

AX

XB

∣

∣

∣

∣

=

∣

∣

∣

∣

ln
AY ·BX

Y B ·XB

∣

∣

∣

∣

= XYh;

i.e., any h-line is a line for h-metric.
Note that the equality in ➋ holds only if Q = T . In particular if

Q lies on (OP )h. Hence any line for h-distance is an h-line.

Proof of 11.3. Axiom I follows from Corollary 9.14.
Let us prove Axiom II. Applying the main observation, we may as-

sume that Q = O. In this case, for any point X 6= O in h-plane, [OX)h
is the intersection of [OX) with h-plane. Hence all the statements in
Axiom IIa and IIb follow.

In the proof of Axiom IIc, we can assume that Q is distinct from
O. Denote by Z the inversion of Q in the absolute and by Γ the circle
perpendicular to the absolute which is centered at Q′. According to
Lemma 11.5, the point O is the inversion of Q in Γ; denote by A′ and
B′ the inversions in Γ of the points A and B correspondingly. Note
that the point A′ is completely determined by the points Q and A,
moreover the map (Q,A) 7→ A′ is continuous at any pair of points
(Q,A) such that Q 6= O. The same is true for the map (Q,B) 7→ B′

According to the Main Observation

∡hAQB ≡ −∡hA
′OB′.

Since ∡hA
′OB′ = ∡A′OB′ and the maps (Q,A) 7→ A′, (Q,B) 7→ B′

are continuous, the Axiom IIc follows from the corresponding axiom
of Euclidean plane.

Now let us show that Axiom III holds. Applying the main observa-
tion, we can assume that A and A′ coincide with the center of absolute
O. In this case

∡C′OB′ = ∡hC
′OB′ = ±∡hCOB = ±∡COB.

Since
OBh = OB′

h and OCh = OC′
h,

Lemma 11.7 implies that the same holds for the Euclidean distances;
i.e.,

OB = OB′ and OC = OC′.

By SAS, there is a motion of Euclidean plane which sends O to itself,
B to B′ and C to C′

Note that the center of absolute is fixed by the corresponding mo-
tion. It follows that this motion gives also a motion of h-plane; in
particular the h-triangles △hOBC and △hOB′C′ are h-congruent.
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A

B

O

m

n

ℓ

Proof of 11.4. Finally we need to check
that the Axiom IVh holds.

Applying the main observation we
can assume that P = O.

The remaining part of proof is left
to the reader; it can be guessed from
the picture



Chapter 12

Geometry of h-plane

In this chapter we study the geometry of the plane described by
Poincaré disc model. For briefness, this plane will be called h-plane.
Note that we can work with this model directly from inside of Eu-
clidean plane but we may also use the axioms of absolute geometry
since according to the previous chapter they all hold in the h-plane.

Angle of parallelism

Let P be a point off an h-line ℓ. Drop a perpendicular (PQ)h from P
to ℓ with foot point Q. Let ϕ be the least angle such that the h-line
(PZ)h with |∡hQPZ| = ϕ does not intersect ℓ.

The angle ϕ is called angle of parallelism of P to ℓ. Clearly ϕ
depends only on the distance h = PQh. Further ϕ(h) → π/2 as
h → 0, and ϕ(h) → 0 as h → ∞. (In Euclidean geometry the angle of
parallelism is identically equal to π/2.)

P ℓ

If ℓ, P and Z as above then the
h-line m = (PZ)h is called asymptot-
ically parallel to ℓ.1 In other words,
two h-lines are asymptotically parallel
if they share one ideal point.

Given P 6∈ ℓ there are exactly two
asymptotically parallel lines through P
to ℓ; the remaining parallel lines t ℓ
through P are called ultra parallel.

On the diagram, the two solid h-
lines passing through P are asymptotically parallel to ℓ; the dotted

1In hyperbolic geometry the term parallel lines is often used for asymptotically

parallel lines; we do not follow this convention.
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h-line is ultra parallel to ℓ.

12.1. Proposition. Let Q be the foot point of P on h-line ℓ. Denote
by ϕ the angle of parallelism of P to ℓ and let h = PQh. Then

h = 1
2 · ln

1+cosϕ
1−cosϕ .

A

B

P X ZQ

ϕ

Proof. Applying a mo-
tion of h-plane if neces-
sary, we may assume P
is the center of absolute.
Then the h-lines through
P are formed by the inter-
sections of Euclidean lines
with the h-plane.

Let us denote by A and
B the ideal points of ℓ.
Without loss of generality

we may assume that ∠APB is positive. In this case

ϕ = ∡QPB = ∡APQ = 1
2 ·∡APB.

Let Z be the center of the circle Γ containing the h-line ℓ. Set X to
be the point of intersection of the Euclidean segment [AB] and (PQ).

Note that, OX = cosϕ therefore by Lemma 11.7,

OXh = ln 1+cosϕ
1−cosϕ .

Note that both angles ∠PBZ and ∠BXZ are right. Therefore
△ZBX ∼ △ZPB, sine the ∠PZB is shared. In particular

ZX ·XP = ZB2;

i.e., X is the inversion of P in Γ.
The inversion in Γ is the reflection of h-plane through ℓ. Therefore

h = PQh = QXh =

= 1
2 ·OXh =

= 1
2 · ln

1+cosϕ
1−cosϕ .

Inradius of h-triangle

12.2. Theorem. Inradius of any h-triangle is less than 1
2 · ln 3.
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X
Y

Z

A

B

C

Proof. First note that any triangle in h-
plane lies in an ideal triangle; i.e., a re-
gion bounded by three pairwise asymp-
totically parallel lines.

A proof can be seen in the picture.
Consider arbitrary h-triangle △hXY Z.
Denote by A, B and C the ideal points
of the h-half-lines [XY )h, [Y Z)h and
[ZX)h.

It should be clear that inradius of
the ideal triangle ABC is bigger than
inradius of △hXY Z.

Applying an inverse if necessary, we can assume that h-incenter
(O) of the ideal triangle is the center of absolute. Therefore, without
loss of generality, we may assume

∡AOB = ∡BOC = ∡COA = 2
3 ·π.

A

B

C O Q

It remains to find the inradius. De-
note by Q the foot point of O on
(AB)h. Then OQh is the inradius.
Note that the angle of parallelism of
(AB)h at O is equal to π

3 .
By Proposition 12.1,

OQh = 1
2 · ln

1 + cos π
3

1− cos π
3

=

= 1
2 · ln

1 + 1
2

1− 1
2

=

= 1
2 · ln 3.

12.3. Exercise. Let ABCD be a quadrilateral in h-plane such that
the h-angles at A, B and C are right and ABh = BCh. Find the
optimal upper bound for ABh.

Circles, horocycles and equidistants

Note that according to Lemma 11.9, any h-circle is formed by a Eu-
clidean circle which lies completely in the h-plane. Further any h-line
is an intersection of the h-plane with the circle perpendicular to the
absolute.

In this section we will describe the h-geometric meaning of the
intersections of the other circles with the h-plane.
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You will see that all these intersections formed by a perfectly round
shape in the h-plane; i.e., h-geometrically all the points on an equidis-
tant look the same.

One may think of these curves as about trajectories of a car which
drives in the plane with fixed position of the wheel. In the Euclidean
plane, this way you either run along a circles or along a line.

m

g

A

B

In hyperbolic plane the picture is
different. If you turn wheel far right,
you will run along a circle. If you turn
it less, at certain position of wheel, you
will never come back, the path will be
different from the line. If you turn the
wheel further a bit, you start to run
along a path which stays on the same
distant from an h-line.

Equidistants of h-lines. Consider h-
plane with absolute Ω. Assume a circle

Γ intersects Ω in two distinct points A and B. Denote by g the in-
tersection of Γ with h-plane. Let us draw an h-line m with the ideal
points A and B.

12.4. Exercise. Show that the h-line m is uniquely determined by
its ideal points A and B.

Consider any h-line ℓ perpendicular to m; let ∆ be the circle con-
taining ℓ.

Note that ∆ ⊥ Γ. Indeed, according to Corollary 9.12, m and Ω
inverted to themselves in ∆. It follows that A is the inversion of B in
∆. Finally, by Corollary 9.13, we get that ∆ ⊥ Γ.

Therefore inversion in ∆ sends both m and g to themselves. So if
P ′, P ∈ g are inversions of each other in ∆ then they lie on the same
distance from m. Clearly we have plenty of choice for ℓ, which can be
used to move points along g arbitrary keeping the distance to m.

Γ

A

It follows that g is formed by the set
of points which lie on fixed h-distance
and the same h-side from m.

Such curve g is called equidistant to
h-line m. In Euclidean geometry the
equidistant from a line is a line; appar-
ently in hyperbolic geometry the pic-
ture is different.

Horocycles. If the circle Γ touches the
absolute from inside at one point A then
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h = Γ\{A} lie in h-plane. This set is called horocycle. It also has
perfectly round shape in the sense described above.

Horocycles are the boarder case between circles and equidistants
to h-lines. An horocycle might be considered as a limit of circles which
pass through fixed point which the centers running to infinity along a
line. The same horocycle is a limit of equidistants which pass through
fixed point to the h-lines running to infinity.

12.5. Exercise. Find the leg of be a right h-triangle inscribed in a
horocycle.

Hyperbolic triangles

12.6. Theorem. Any nondegenerate hyperbolic triangle has positive
defect.

A
C

B

Proof. Consider h-trinagle △hABC. Ac-
cording to Theorem 10.8,

➊ defect(△hABC) > 0.

It remains to show that in the case of equality
the triangle △hABC degenerates.

Without loss of generality, we may as-
sume that A is the center of absolute; in this case ∡hCAB = ∡CAB.
Yet we may assume that

∡hCAB, ∡hABC, ∡hBCA, ∡ABC, ∡BCA > 0.

Let D be an arbitrary point in [CB]h distinct from B and C. From
Proposition 8.9

∡ABC − ∡hABC ≡ π − ∡CDB ≡ ∡BCA− ∡hBCA.

From Exercise 6.11, we get

defect(△hABC) = 2·(π − ∡CDB).

Therefore if we have equality in ➊ then ∡CDB = π. In particular the
h-segment [BC]h coincides with Euclidean segment [BC]. The later
can happen only if the h-line passes through the center of absolute;
i.e., if △hABC degenerates.

The following theorem states in particular that hyperbolic triangles
are congruent if their corresponding angles are equal; in particular in
hyperbolic geometry similar triangles have to be congruent.
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12.7. AAA congruence condition. Two nondegenerate triangles
△hABC and △hA

′B′C′ in the h-plane are congruent if ∡hABC =
= ±∡hA

′B′C′, ∡hBCA = ±∡hB
′C′A′ and ∡hCAB = ±∡hC

′A′B′.

Proof. Note hat if ABh = A′B′
h then the theorem follows from ASA.

A′

B′

C′

B′′

C′′

Assume contrary. Without loss of general-
ity we may assume that ABh < A′B′

h. There-
fore we can choose the point B′′ ∈ [A′B′]h such
that A′B′′

h = ABh.
Choose a point X so that ∡hA

′B′′X =
∡hA

′B′C′. According to Exercise 10.4,
(B′′X)h ‖ (B′C′)h.

By Pasch’s theorem (3.10), (B′′X)h inter-
sects [A′C′]h. Denote by C′′ the point of inter-
section.

According to ASA, △hABC ∼= △hA
′B′′C′′; in particular

➋ defect(△hABC) = defect(△hA
′B′′C′′).

Applying Exercise 10.9 twice, we get

➌
defect(△hA

′B′C′) = defect(△hA
′B′′C′′)+

+ defect(△hB
′′C′′C′) + defect(△hB

′′C′B′).

By Theorem 12.6, the defects has to be positive. Therefore

defect(△hA
′B′C′) > defect(△hABC).

On the other hand,

defect(△hA
′B′C′) = |∡hA

′B′C′|+ |∡hB
′C′A′|+ |∡hC

′A′B′| =
= |∡hABC|+ |∡hBCA|+ |∡hCAB| =
= defect(△hABC),

a contradiction.

Conformal interpretation

Let us give an other interpretation of the h-distance.

12.8. Lemma. Consider h-plane with absolute formed by the unit
circle centered at O. Fix a point P and let Q be an other point in the
h-plane. Set x = PQ and y = PQh then

lim
x→0

y

x
=

2

1−OP 2
.
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The above formula tells that the h-distance from P to a near by
point Q is nearly proportional to the Euclidean distance with the co-
efficient 2

1−OP 2 . The value λ(P ) = 2
1−OP 2 is called conformal factor

of h-metric.
One may think of conformal factor λ(P ) as the speed limit at the

given point. In this case the h-distance is the the minimal time needed
to travel from one point of h-plane to the other point.

Γ

O P

Q
Q′

Z

Proof. If P = O, then according to
Lemma 11.7

➍
y

x
=

ln 1+x
1−x

x
→ 2

as x → 0.
If P 6= O, denote by Z the inversion

of P in the absolute. Denote by Γ the
circle with center Z orthogonal to the
absolute.

According to Main Observation 11.6
and Lemma 11.5 the inversion in Γ is a motion of h-plane which sends
P to O. In particular, if we denote by Q′ the inversion of Q in Γ then
OQ′

h = PQh.
Set x′ = OQ′ According to Lemma 9.2,

x′

x
=

OZ

ZQ
.

Therefore
x′

x
→ OZ

ZP
=

1

1−OP 2

as x → 0.
Together with ➍, it implies

y

x
=

y

x′ ·
x′

x
→ 2

1−OP 2

as x → 0.

Here is an application of the lemma above.

12.9. Proposition. The circumference of an h-circle of h-radius r
is

2·π· sh r,
where sh r denotes hyperbolic sine of r; i.e.,

sh r
def
==

er − e−r

2
.
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Before we proceed with the proof let us discuss the same problem
in the Euclidean plane.

The circumference of the circle in the Euclidean plane can be de-
fined as limit of perimeters of regular n-gons inscribed in the circle as
n → ∞.

Namely, let us fix r > 0. Given a positive integer n consider
△AOB such that ∡AOB = 2·π

n
and OA = OB = r. Set xn = AB.

Note that xn is the side of regular n-gon inscribed in the circle of
radius r. Therefore the perimeter of the n-gon is equal to n·xn.

A

B

O

2
n
·π
r

r

The circumference of the circle with
radius r might be defined as the limit
of

➎ lim
n→∞

n·xn = 2·π·r.

(This limit can be taken as the defini-
tion of π.)

In the following proof we repeat the
same construction in the h-plane.

Proof. Without loss of generality we
can assume that the center O of the circle is the center of absolute.

By Lemma 11.7, the h-circle with h-radius r is formed by the Eu-
clidean circle with center O and radius

a =
er − 1

er + 1
.

Denote by xn and yn the Euclidean and hyperbolic side lengths of
the regular n-gon inscribed in the circle.

Note that xn → 0 as n → ∞. By Lemma 12.8,

lim
n→∞

yn
xn

=
2

1− a2
.

Applying ➎, we get that the circumference of the h-circle can be
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found the following way

lim
n→∞

n·yn =
2

1− a2
· lim
n→∞

n·xn =

=
4·π·a
1− a2

=

=
4·π·

(

er−1
er+1

)

1−
(

er−1
er+1

)2 =

= 2·π· e
r − e−r

2
=

= 2·π· sh r.

12.10. Exercise. Denote by circumh(r) the circumference of the h-
circle of radius r. Show that

circumh(r + 1) > 2· circumh(r)

for all r > 0.
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Chapter 13

Spherical geometry

Spherical geometry is the geometry of the surface of the unit sphere.
This type of geometry has practical applications in cartography, nav-
igation and astronomy.

The spherical geometry is a close relative of Euclidean and hy-
perbolic geometries. Most of theorems of hyperbolic geometry have
spherical analogs, but spherical geometry is easier to visualize.

We discuss few theorems in spherical geometry; the proofs are not
completely rigorous.

Space and spheres

Let us repeat the construction of metric d2 (page 12) in the space.
We will denote by R3 the set of all triples (x, y, z) of real numbers.

Assume A = (xA, yA, zA) and B = (xB , yB, zB) are arbitrary points.
Let us define the metric on R3 the following way

AB
def
==
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2.

The obtained metric space is called Euclidean space.
Assume at least one of the real numbers a, b or c is distinct from

zero. Then the subset of points (x, y, z) ∈ R3 described by equation

a·x+ b·y + c·z + d = 0

is called plane.
It is straightforward to show that any plane in Euclidean space is

isometric to Euclidean plane. Further any three points on the space
lie on one plane.

109
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It makes possible to generalize many notions and results from Eu-
clidean plane geometry to Euclidean space by applying plane geometry
in the planes of the space.

Sphere in the space is an analog of circle in the plane. Formally,
sphere with center O and radius r is the set of points in the space
which lie on the distance r from O.

Let A and B be two points on the unit sphere centered at O. The
spherical distance from A to B (briefly ABs) is defined as |∡AOB|.

In the spherical geometry, the role of lines play the great circles ;
i.e., the intersection of the sphere with a plane passing through O.

Note that the great circles do not form lines in the sense of Defini-
tion 1.8. Also any two distinct great circles intersect at two antipodal
points. In particular, the sphere does not satisfy the axioms of absolute
plane.

Pythagorean theorem

Here is an analog of Pythagorean Theorems (6.8 and 14.5) in spherical
geometry.

13.1. Theorem. Let △sABC be a spherical triangle with right angle
at C. Set a = BCs, b = CAs and c = ABs. Then

cos c = cos a· cos b.

In the proof we will use the notion of scalar product which we are
about to discuss.

Let A and B be two points in Euclidean space. Denote by vA =
= (xA, yA, zA) and vB = (xB , yB, zB) the position vectors of A and B
correspondingly. The scalar product of two vectors vA and vB in R3

is defined as

➊ 〈vA, vB〉 def
== xA ·xB + yA ·yB + zA ·zB.

Assume both vectors vA and vB are nonzero and ϕ is the angle
measure between these two vectors. In this case the scalar product
can be expressed the following way:

〈vA, vB〉 = |vA|·|vB |· cosϕ,

where

|vA| =
√

x2
A + y2A + z2A, |vB| =

√

x2
B + y2B + z2B.
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Now, assume the points A and B lie on the unit sphere in R3

centered at the origin. In this case |vA| = |vB| = 1. By ➊ we get

➋ cosABs = 〈vA, vB〉.

This is the key formula on which the following proof is build.

O

C

B A

x

y

zProof. Since the angle at C is right, we can
choose coordinates in R3 so that vC = (0, 0, 1),
vA lies in xz-plane, so vA = (xA, 0, zA) and vB
lies in yz-plane, so vB = (0, yB, zB).

Applying, ➋, we get

zA = 〈vC , vA〉 = cos b,

zB = 〈vC , vB〉 = cos a.

Applying, ➋ again, we get

cos c = 〈vA, vB〉 =
= xA ·0 + 0·yB + zA ·zB =

= cos b· cos a.

13.2. Exercise. Show that if △sABC be a spherical triangle with
right angle at C and ACs = BCs =

π
4 then ABs =

π
3 .

Try to find two solutions, with and without using the spherical
Pythagorean theorem.

Inversion of the space

Stereographic projection is special type of maps between sphere and
the inversive plane. Poincare model of hyperbolic geometry is a direct
analog of stereographic projection for spherical geometry.

One can also define inversion in the sphere the same way as we
define inversion in the circle.

Formally, let Σ be the the sphere with center O and radius r. The
inversion in Σ of a point P is the point P ′ ∈ [OP ) such that

OP ·OP ′ = r2.

In this case, the sphere Σ will be called the sphere of inversion and
its center is called center of inversion.

We also add ∞ to the space and assume that the center of inversion
is mapped to ∞ and the other way around. The space R3 with the
point ∞ will be called inversive space.
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The inversion of the space has many properties of the inversion of
the plane. Most important for us is the analogs of theorems 9.5, 9.6,
9.19 which can be summarized as follows.

13.3. Theorem. The inversion in the sphere has the following prop-
erties:
(a) Inversion maps sphere or plane into sphere or plane.
(b) Inversion maps circle or line into circle or line.
(c) Inversion preserves cross-ratio; i.e., if A′, B′, C′ and D′ be the

inversions of the points A, B, C and D correspondingly then

AB ·CD

BC ·DA
=

A′B′ ·C′D′

B′C′ ·D′A′ .

(d) Inversion maps arcs into arcs.
(e) Inversion preserves the absolute value of the angle measure be-

tween tangent half-lines to the arcs.

Instead of proof. We do not present the proofs here, but they are very
similar to the corresponding proofs in plane geometry. If you want
to do it yourself, prove the following lemma and use it together with
the observation that any circle in the space can be presented as an
intersection of two spheres.

13.4. Lemma. Let Σ be a subset of Euclidean space which contains
at least two points. Fix a point O in the space.

Then Σ is a sphere if and only if for any plane Π passing through
O, the intersection Π∩Σ is either empty set, one point set or a circle.

Stereographic projection

Consider the unit sphere Σ in Euclidean space centered at the origin
(0, 0, 0). This sphere can be described by equation x2 + y2 + z2 = 1.

Denote by Π be the xy-plane; it is defined by the equation z = 0.
Clearly Π runs through the center of Σ.

Denote by N = (0, 0, 1) the “North Pole” and by S = (0, 0,−1) be
the “South Pole” of Σ; these are the points on the sphere which have
extremal distances to Π. Denote by Ω the “equator” of Σ; it is the
intersection Σ ∩ Π.

For any point P 6= S on Σ, consider the line (SP ) in the space.
This line intersects Π in exactly one point, say P ′. We set in addition
that S′ = ∞.

The map P 7→ P ′ is the stereographic projection from Σ to Π from
the South Pole. The inverse of this map P ′ 7→ P is called stereographic
projection from Π to Σ from the South Pole.
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O

P

S

N

P ′

The plane through
P , O and S.

The same way one can define
stereographic projection from the
North Pole.

Note that P = P ′ if and only if
P ∈ Ω.

Note that if Σ and Π as above.
Then the stereographic projections
Σ → Π and Π → Σ from S are the
restrictions of the inversion in the
sphere with center S and radius

√
2

to Σ and Π correspondingly.
From above and Theorem 13.3,

it follows that the stereographic pro-
jection preserves the angles between
arcs; more precisely the absolute
value of the angle measure between
arcs on the sphere.

This makes it particularly useful in cartography. A map of a big
region of earth can not be done in the same scale, but using stereo-
graphic projection, one can keep the angles between roads the same
as on earth.

In the following exercises, we assume that Σ, Π, Ω, O, S and N
are as above.

13.5. Exercise. Show that the composition of stereographic projec-
tions from Π to Σ from S and from Σ to Π from N is the inversion
of the plane Π in Ω.

13.6. Exercise. Show that image of great circle is a cline on the
plane which intersects Ω at two opposite points.

13.7. Exercise. Let Fix a point P ∈ Π and let Q be yet an other
point in Π. Denote by P ′ and Q′ their stereographic projections in Σ.
Set x = PQ and y = P ′Q′

s. Show that

lim
x→0

y

x
=

2

1 +OP 2
.

Compare with Lemma 12.8.

Central projection

Let Σ be the unit sphere centered at the origin which will be denoted
as O. Denote by Π+ the plane described by equation z = 1. This plane
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is parallel to xy-plane and it pass through the North Pole N = (0, 0, 1)
of Σ.

Recall that north hemisphere of Σ, is the subset of points (x, y, z) ∈
∈ Σ such that z > 0. The north hemisphere will be denoted as Σ+.

Given a point P ∈ Σ+, consider half-line [OP ) and denote by P ′

the intersection of [OP ) and Π+. Note that if P = (x, y, z) then
P ′ = (x

z
, y
z
, 1). It follows that P 7→ P ′ is a bijection between Σ+ and

Π+.
The described map Σ+ → Π+ is called central projection of hemi-

sphere Σ+.
In spherical geometry, central projection is analogous to the Klein

model of hyperbolic plane.
Note that the central projection sends intersections of great circles

with Σ+ to the lines in Π+. The later follows since great circles are
formed by intersection of Σ with planes passing through the origin and
the lines in Π+ are formed by intersection of Π+ with these planes.

13.8. Exercise. Assume that △sNBC has right angle at C and N
is the North Pole which lies completely in the north hemisphere. Let
△NB′C′ be the image of △sNBC under central projection.

Observe that △NB′C′ has right angle at C′.
Use this observation and the standard Pythagorean for △NB′C′ to

prove spherical Pythagorean theorem for △sNBC.

13.9. Exercise. Consider a nondegenerate spherical triangle △sABC.
Assume that Π+ is parallel to the plane passing through A, B and C.
Denote by A′, B′ and C′ the central projections of A, B and C.
(a) Show that the midpoints of [AB], [BC] and [CA] are central

projections of the midpoints of [AB]s, [BC]s correspondingly.
(b) Use part (a) to show that medians of spherical triangle intersect

at one point.
(c) Compare to Exercise 14.4.
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Klein model

Klein model is an other model of hyperbolic plane discovered by Bel-
trami. The Klein and Poincaré models are saying exactly the same
thing but in two different languages. Some problems in hyperbolic ge-
ometry admit simpler proof using Klein model and others have simpler
proof in Poincaré model. Therefore it worth to know both.

Special bijection of h-plane to itself

Consider the Poincaré disc model with absolute at the unit circle Ω
centered at O. Choose a coordinate system (x, y) on the plane with
origin at O, so the circle Ω is described by the equation x2 + y2 = 1.

O P

N

S

P ′

P̂

The plane through P , O and S.

Let us think of our plane Π as it
lies in the Euclidean space as the xy-
plane. Denote by Σ the unit sphere
centered at O; it is described by the
equation

x2 + y2 + z2 = 1.

Set S = (0, 0,−1) and N = (0, 0, 1);
these are the South and North Poles
of Σ.

Consider stereographic projec-
tion Π → Σ from S; given point
P ∈ Π denote its image as P ′. Note
that the h-plane is mapped to the
North Hemisphere; i.e., to the set of points (x, y, z) in Σ described by
inequality z > 0.
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For a point P ′ ∈ Σ consider its foot point P̂ on Π; this is the closest
point on Π from P ′.

The composition P 7→ P̂ of these two maps is a bijection of h-plane
to itself.

Note that P = P̂ if and only if P ∈ Ω or P = O or P = ∞.

14.1. Exercise. Show that the map P 7→ P̂ described above can be
described the following way: set Ô = O and for any other point point
P take P̂ ∈ [OP ) such that

OP̂ =
2·x

1− x2
,

where x = OP .

14.2. Lemma. Let (PQ)h be an h-line with the ideal points A and
B. Then P̂ , Q̂ ∈ [AB].

Moreover

➊
AQ̂·BP̂

Q̂B ·P̂A
=

(

AQ·BP

QB ·PA

)2

.

In particular

PQh = 1
2 ·
∣

∣

∣

∣

∣

ln
AQ̂·BP̂

Q̂B ·P̂A

∣

∣

∣

∣

∣

.

Proof. Consider the stereographic projection Π → Σ from the South
Pole. Denote by P ′ and Q′ the images of P and Q. According to
Theorem 13.3(c),

➋
AQ·BP

QB ·PA
=

AQ′ ·BP ′

Q′B ·P ′A
.

A B
P̂

P ′

The plane Λ.

By Theorem 13.3(e), each cline in Π
which is perpendicular to Ω is mapped to
a circle in Σ which is still perpendicular to
Ω. It follows that the stereographic projec-
tion sends (PQ)h to the intersection of the
north hemisphere of Σ with a plane, say Λ,
perpendicular to Π.

Consider the plane Λ. It contains points
A, B, P ′, P̂ and the circle Γ = Σ ∩ Λ. (It
also contains Q′ and Q̂ but we will not use

these points for a while.)
Note that
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⋄ A,B, P ′ ∈ Γ,
⋄ [AB] is a diameter of Γ,
⋄ (AB) = Π ∩ Σ,
⋄ P̂ ∈ [AB]
⋄ (P ′P̂ ) ⊥ (AB).
Since [AB] is the diameter, the angle ∠APB is right. Hence

△AP̂P ′ ∼ △AP ′B ∼ △P ′P̂B. In particular

AP ′

BP ′ =
AP̂

P ′P̂
=

P ′P̂

BP̂
.

Therefore

➌
AP̂

BP̂
=

(

AP ′

BP ′

)2

.

The same way we get

➍
AQ̂

BQ̂
=

(

AQ′

BQ′

)2

.

Finally note that ➋+➌+➍ imply ➊.
The last statement follows from ➊ and the definition of h-distance.

Indeed,

PQh
def
==

∣

∣

∣

∣

ln
AQ·BP

QB ·PA

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

ln

(

AQ̂·BP̂

Q̂B ·P̂A

)
1

2

∣

∣

∣

∣

∣

∣

=

= 1
2 ·
∣

∣

∣

∣

∣

ln
AQ̂·BP̂

Q̂B ·P̂A

∣

∣

∣

∣

∣

.

A1

B1

Γ1

Ω

14.3. Exercise. Let Γ1, Γ2 and
Γ3 be three circles perpendicular
to the circle Ω. Let us denote
by [A1B1], [A2B2] and [A3B3] the
common chords of Ω and Γ1, Γ2,
Γ3 correspondingly. Show that the
chords [A1B1], [A2B2] and [A3B3]
intersect at one point inside Ω if
and only if Γ1, Γ2 and Γ3 inter-
sect at two points.
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Klein model

The following picture illustrates the map P 7→ P̂ described in the
previous section. If you take the picture on the left and apply the
map P 7→ P̂ , you get the picture on the right. The picture on the
right gives a new way to look at the hyperbolic plane, which is called
Klein model. One may think of the map P 7→ P̂ as about translation
from one model to the other.

Poincaré model Klein model

In the Klein model things look different; some become simpler,
other things become more complicated.

⋄ The h-lines in the Klein model are formed by chords. More
precisely, they are formed by the intersections of chords of the
absolute wit the h-plane.

⋄ The h-circles and equidistants in the Klein model are formed by
ellipses and their intersections with the h-plane. It follows since
the stereographic projection sends circles one the plane to the
circles on the unit sphere and the orthogonal projection of circle
back to plane is formed by ellipse1.

A B

P Q

⋄ To find the h-distance between the
points P and Q in the Klein model,
you have to find the points of intersec-
tion, say A and B, of the Euclidean
line (PQ) with the absolute; then, by
Lemma 14.2,

PQh = 1
2 ·
∣

∣

∣

∣

ln
AQ·BP

QB ·PA

∣

∣

∣

∣

.

1One may define ellipse as the projection of a circle which lies in the space to
the plane.
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⋄ The angle measures in Klein model are very different from the
Euclidean angles and it is hard to figure out by looking on the
picture. For example all the intersecting h-lines on the picture
above are perpendicular. There are two useful exceptions

◦ If O is the center of absolute then

∡hAOB = ∡AOB.

◦ If O is the center of absolute and ∡OAB = ±π
2 then

∡hOAB = ∡OAB = ±π
2 .

To find the angle measure in Klein model, you may apply a
motion of h-plane which moves the vertex of the angle to the
center of absolute; once it is done the hyperbolic and Euclidean
angles have the same measure.

The following exercise is hyperbolic analog of Exercise 13.9. This
is the first example of a statement which admits an easier proof using
Klein model.

14.4. Exercise. Let P and Q be the point in h-plane which lie on
the same distance from the center of absolute. Observe that in Klein
model, h-midpoint of [PQ]h coincides with the Euclidean midpoint of
[PQ]h.

Conclude that if an h-triangle is inscribed in an h-circle then its
medians intersect at one point.

Think how to prove the same for a general h-triangle.

Hyperbolic Pythagorean theorem

14.5. Theorem. Assume that △hACB is a triangle in h-plane with
right angle at C. Set a = BCh, b = CBh and c = ABh. Then

➎ ch c = ch a· ch b.

where ch denotes hyperbolic cosine; i.e., the function defined the fol-
lowing way

chx
def
== ex+e−x

2 .
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A

B

C

s

t

u

X

Y

Proof. We will use Klein model of h-plane with a
unit circle as the absolute.

We can assume that A is the center of absolute.
Therefore both ∠hACB and ∠ACB are right.

Set s = BC, t = CA, u = AB. According to
Euclidean Pythagorean theorem (6.8),

u2 = s2 + t2.

Note that

b = 1
2 · ln

1 + t

1− t
;

therefore

ch b =

(

1+t
1−t

)
1

2

+
(

1−t
1+t

)
1

2

2
=

=
1√

1− t2
.

The same way we get

c = 1
2 · ln

1 + u

1− u

and

ch c =

(

1+u
1−u

)
1

2

+
(

1−u
1+u

)
1

2

2
=

=
1√

1− u2
.

LetX and Y are the ideal points of (BC)h. Applying the Pythagorean
theorem (6.8) again, we get

CX2 = CY 2 = 1− t2.

Therefore

a = 1
2 · ln

√
1− t2 + s√
1− t2 − s



121

and

ch a =

(√
1−t2+s√
1−t2−s

)
1

2

+
(√

1−t2−s√
1−t2+s

)
1

2

2
=

=

√
1− t2√

1− t2 − s2

=

√
1− t2√
1− u2

Hence ➎ follows.

14.6. Exercise. Give a proof of Proposition 12.1 using Klein model.

Bolyai’s construction

Assume we need to construct a line asymptotically parallel to the given
line through the given point. The initial configuration is given by three
points, say P , A and B and we need to construct a line through P
which is asymptotically parallel to ℓ = (AB).

Note that ideal points do not lie in the h-plane, so there is no way
to use them in the construction.

The following construction was given by Bolyai. Unlike the other
construction given earlier in the lectures, this construction works in
absolute plane; i.e., it works in Euclidean and in hyperbolic plane as
well. We assume that you know a compass-and-ruler construction of
perpendicular line through the given point.

14.7. Bolyai’s construction.

1. Construct the line m through P which perpendicular to ℓ. Denote
by Q the foot point of P on ℓ.

2. Construct the line n through P which perpendicular to m.
3. Draw the circle Γ1 with center Q through P and mark by R a

point of intersection of Γ1 with ℓ.
4. Construct the line k through R which perpendicular to n.
5. Draw the circle Γ2 with center P through Q and mark by T a

point of intersection of Γ2 with k.
6. The line PT is asymptotically parallel to ℓ.

You can use this link to a java applet to perform the construction.

Note that in Euclidean plane Γ2 is tangent to k, so the point T is
uniquely defined. In hyperbolic plane the Γ2 intersects k in two points,
both of the corresponding lines are asymptotically parallel to ℓ, one
from left and one from right.
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To prove that Bolyai’s construction gives the asymptotically par-
allel line in h-plane, it is sufficient to show the following.

P

QR

S

T

AB

C

14.8. Proposition. Assume P , Q, R,
S, T be points in h-plane such that

⋄ S ∈ (RT )h,
⋄ (PQ)h ⊥ (QR)h,
⋄ (PS)h ⊥ (PQ)h,
⋄ (RT )h ⊥ (PS)h and
⋄ (PT )h and (QR)h are asymptoti-
cally parallel.

Then QRh = PTh.

Proof. We will use the Klein’s model. Without loss of generality,
we may assume that P is the center of absolute. As it was noted
on page 119, in this case the corresponding Euclidean lines are also
perpendicular; i.e., (PQ) ⊥ (QR), (PS) ⊥ (PQ) and (RT ) ⊥ (PS).

Denote by A be the ideal point of (QR)h and (PT )h. Denote by B
and C the remaining ideal points of (QR)h and (PT )h correspondingly.

Note that the Euclidean lines (PQ), (TR) and (CB) are parallel.
Therefore △AQP ∼ △ART ∼ △ABC. In particular,

AC

AB
=

AT

AR
=

AP

AQ
.

It follows that

AT

AR
=

AP

AQ
=

BR

CT
=

BQ

CP
.

In particular
AT ·CP

TC ·PA
=

AR·BQ

RB ·QA
;

hence QRh = PTh.



Chapter 15

Complex coordinates

In this chapter we give an interpretation of inversive geometry using
complex coordinates. The results of this chapter will not be used
further in the lectures.

Complex numbers

Informally, a complex number is a number that can be put in the form

➊ z = x+ i·y,

where x and y are real numbers and i2 = −1.
The set of complex numbers will be further denoted by C. If x,

y and z as in ➊, then x is called the real part and y the imaginary
part of the complex number z. Briefly it is written as x = Re z and
y = Im z.

On the more formal level, a complex number is a pair of real num-
bers (x, y) with addition and multiplication described below. The
formula x+ i·y is only convenient way to write the pair (x, y).

(x1 + i·y1) + (x2 + i·y2) def
== (x1 + x2) + i·(y1 + y2);

(x1 + i·y1)·(x2 + i·y2) def
== (x1 ·x2 − y1 ·y2) + i·(x1 ·y2 + y1 ·x2).

Complex coordinates

Recall that one can think of Euclidean plane as the set of all pairs of
real numbers (x, y) equipped with the metric

AB =
√

(xA − xB)2 + (yA − yB)2

123
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where A = (xA, yA) and B = (xB , yB).

One can pack coordinates (x, y) of a point in the Euclidean plane,
in one complex number z = x + i·y. This way we get one-to-one
correspondence between points of Euclidean plane and C. Given a
point Z = (x, y), the complex number z = x + i·y is called complex
coordinate of Z.

Note that if O, E and I are the points in the plane with complex
coordinates 0, 1 and i then ∡EOI = ±π

2 . Further we assume that
∡EOI = π

2 ; if not, one has to change the direction of the y-coordinate.

Conjugation and absolute value

Let z = x + i·y and both x and y are real. Denote by Z the point in
the plane with complex coordinate z.

If y = 0, we say that z is a real and if x = 0 we say that z is an
imaginary complex number. The set of points with real and imaginary
complex coordinates form lines in the plane, which are called real and
imaginary lines which will be denoted as R and i·R.

The complex number z̄ = x− iy is called complex conjugate of z.

Note that the point Z̄ with complex coordinate z̄ is the reflection
of Z in the real line.

It is straightforward to check that

➋ x = Re z =
z + z̄

2
, y = Im z =

z − z̄

i·2 , x2 + y2 = z ·z̄.

The last formula in ➋ makes possible to express the quotient w
z
of

two complex numbers w and z = x+ i·y:
w

z
= 1

z ·z̄ ·w· z̄ = 1
x2+y2 ·w·z̄.

Note that

z + w = z̄ + w̄, z − w = z̄ − w̄, z ·w = z̄ ·w̄, z/w = z̄/w̄;

i.e., all the algebraic operations respect conjugation.

The value
√

x2 + y2 =
√
z ·z̄ is called absolute value of z and de-

noted by |z|.
Note that if Z and W are points in the Euclidean plane and z and

w their complex coordinates then

ZW = |z − w|.
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Euler’s formula

Let α be a real number. The following identity is called Euler’s for-
mula.

➌ ei·α = cosα+ i· sinα.

In particular, ei·π = −1 and ei·
π

2 = i.
Geometrically Euler’s formula means the following. Assume that O

and E are the point with complex coordinates 0 and 1 correspondingly.
Assume OZ = 1 and ∡EOZ ≡ α then ei·α is the complex coordinate of
Z. In particular, the complex coordinate of any point on the unit circle
centered at O can be uniquely expressed as ei·α for some α ∈ (−π, π].

A complex number z is called unit if |z| = 1. According to Euler’s
identity, in this case

z = ei·α = cosα+ i· sinα

for some value α ∈ (−π, π].

Why should you think that ➌ is true? The proof of Euler’s
identity depends on the way you define exponent. If you never had to
take exponent of imaginary number, you may take the right hand side
in ➌ as the definition of the ei·α.

In this case formally nothing has to be proved, but it is better to
check that ei·α the satisfies familiar identities. For example

ei·α ·ei·β = ei·(α+β).

Which can be proved using the following trigonometric formulas, which
we assume to be known:

cos(α + β) = cosα· cosβ − sinα· sinβ
sin(α + β) = sinα· cosβ + cosα· sinβ

If you know power series for sine, cosine and exponent, the following
might convince that ➌ is the right definition.

ei·x = 1 + i·x+
(i·x)2
2!

+
(i·x)3
3!

+
(i·x)4
4!

+
(i·x)5
5!

+ · · · =

= 1 + i·x− x2

2!
− i·x

3

3!
+

x4

4!
+ i·x

5

5!
− · · · =

=

(

1− x2

2!
+

x4

4!
− · · ·

)

+ i·
(

x− x3

3!
+

x5

5!
− · · ·

)

=

= cosx+ i· sinx.
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Argument and polar coordinates

As above, assume that O and E denote the points with complex co-
ordinates 0 and 1 correspondingly.

Let Z be the point distinct form O. Set ρ = OZ and ϑ = ∡EOZ.
The pair (ρ, ϑ) is called polar coordinates of Z.

If z is the complex coordinate of Z then then ρ = |z|. The value ϑ
is called argument of z (briefly, ϑ = arg z). In this case

z = ρ·ei·ϑ = ρ·(cosϑ+ i· sinϑ).
Note that

arg(z ·w) ≡ arg z + argw and arg z
w
≡ arg z − argw

if z, w 6= 0. In particular, if Z, V , W be points with complex coordi-
nates z, v and w correspondingly then

➍ ∡V ZW = arg

(

w − z

v − z

)

≡ arg(w − z)− arg(v − z)

once the left hand side is defined.

15.1. Exercise. Use the formula ➍ to show that in any triangle
△ZVW

∡ZVW + ∡VWZ + ∡WZV ≡ π.

15.2. Exercise. Assume that points V , W and Z have complex coor-
dinates v, w and v·w correspondingly and the point O and E as above.
Sow that

△OEV ∼ △OWZ.

The following Theorem is a reformulation of Theorem 8.5 which
use complex coordinates.

15.3. Theorem. Let UVWZ be a quadrilateral and u, v, w and z
be the complex coordinates of its vertices. Then UVWZ is inscribed
if and only if the number

(v − u)·(w − z)

(v − w)·(z − u)

is real.

The value (v−u)·(w−z)
(v−w)·(z−u) will be called complex cross-ratio, it will be

discussed in more details below.

15.4. Exercise. Observe that the complex number z 6= 0 is real if
and only if arg z = 0 or π; in other words, 2· arg z ≡ 0.

Use this observation to show that Theorem 15.3 is indeed a refor-
mulation of Theorem 8.5.
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Möbius transformations

15.5. Exercise. Watch video “Möbius Transformations Revealed”
by Douglas Arnold and Jonathan Rogness. (It is 3 minutes long and
available on YouTube.)

The complex plane C extended by one ideal number ∞ is called
extended complex plane. It is denoted by Ĉ, so Ĉ = C ∪ {∞}

Möbius transformation of Ĉ is a function of one complex variable
z which can be written as

f(z) =
a·z + b

c·z + d
,

where the coefficients a, b, c, d are complex numbers satisfying a·d−
b·c 6= 0. (If a·d− b·c = 0 the function defined above is a constant and
is not considered to be a Möbius transformation.)

In case c 6= 0, we assume that

f(−d/c) = ∞ and f(∞) = a/c;

and if c = 0 we assume

f(∞) = ∞.

Elementary transformations

The following three types of Möbius transformations are called ele-
mentary.

1. z 7→ z + w,

2. z 7→ w·z for w 6= 0,
3. z 7→ 1

z
.

The geometric interpretations. As before we will denote by O the
point with complex coordinate 0.

The first map z 7→ z +w, corresponds to so called parallel transla-
tion of Euclidean plane, its geometric meaning should be evident.

The second map is called rotational homothety with center at O.
I.e., the point O maps to itself and any other point Z maps to a point
Z ′ such that OZ ′ = |w|·OZ and ∡ZOZ ′ = argw.

The third map can be described as a composition of inversion in the
unit circle centered at O and the reflection in R (any order). Indeed,
arg z ≡ − arg 1

z
therefore

arg z = arg(1/z̄);

http://youtu.be/0z1fIsUNhO4
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i.e., if the points Z and Z ′ have complex coordinates z and 1/z̄ then
Z ′ ∈ [OZ). Clearly OZ = |z| and OZ ′ = |1/z̄| = 1

|z| . Therefore Z ′ is

inversion of Z in the unit circle centered at O. Finally the reflection
of Z ′ in R, has complex coordinate 1

z
= (1/z̄).

15.6. Proposition. A map f : Ĉ → Ĉ is a Möbius transformation if
and only if it can be expressed as a composition of elementary Möbius
transformation.

Proof; (⇒). Consider, the Möbius transformation

f(z) =
a·z + b

c·z + d
.

It is straightforward to check that

➎ f(z) = f4 ◦ f3 ◦ f2 ◦ f1(z),

where
⋄ f1(z) = z + d

c
,

⋄ f2(z) =
1
z
,

⋄ f3(z) = −a·d−b·c
c2

·z,
⋄ f4(z) = z + a

c

if c 6= 0 and
⋄ f1(z) =

a
d
·z,

⋄ f2(z) = z + b
d
,

⋄ f3(z) = f4(z) = z
if c = 0.

(⇐). We need to show that composing elementary transformations,
we can only get Möbius transformations. Note that it is sufficient to
check that composition of a Möbius transformations

f(z) =
a·z + b

c·z + d
.

with any elementary transformation is a Möbius transformations.
The later is done by means of direct calculations.

a·(z + w) + b

c·(z + w) + d
=

a·z + (b+ a·w)
c·z + (d+ c·w)

a·(w·z) + b

c·(w·z) + d
=

(a·w)·z + b

(c·w)·z + d

a· 1
z
+ b

c· 1
z
+ d

=
b·z + a

d·z + c
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15.7. Corollary. The image of cline under Möbius transformation
is a cline.

Proof. By Proposition 15.6, it is sufficient to check that each elemen-
tary transformation sends cline to cline.

For the first and second elementary transformation the later is
evident.

As it was noted above, the map z 7→ 1
z
is a composition of inversion

and reflection. By Theorem 9.9, inversion sends cline to cline. Hence
the result follows.

15.8. Exercise. Show that inverse of Möbius transformation is a
Möbius transformation.

15.9. Exercise. Given distinct values z0, z1, z∞ ∈ Ĉ, construct a
Möbius transformation f such that f(z0) = 0, f(z1) = 1 and f(z∞) =
= ∞. Show that such transformation is unique.

Complex cross-ratio

Given four distinct complex numbers u, v, w, z, the complex number

(u− w)·(v − z)

(v − w)·(u− z)

is called complex cross-ratio; it will be denoted as (u, v;w, z).
If one of the numbers u, v, w, z, is ∞, then the complex cross-ratio

has to be defined by taking the appropriate limit; in other words, we
assume that ∞

∞ = 1. For example,

(u, v;w,∞) =
(u− w)

(v − w)
.

Assume that U , V , W and Z be the points with complex coordi-
nates u, v, w and z correspondingly. Note that

UW ·V Z

VW ·UZ
= |(u, v;w, z)|,

∡WUZ + ∡ZVW = arg
u− w

u− z
+ arg

v − z

v − w
≡

≡ arg(u, v;w, z).

It makes possible to reformulate Theorem 9.5 using the complex
coordinates the following way.
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15.10. Theorem. Let UWV Z and U ′W ′V ′Z ′ be two quadrilaterals
such that the points U ′, W ′, V ′ and Z ′ are inversions of U , W , V , and
Z correspondingly. Assume u, w, v, z, u′, w′, v′ and z′ be the complex
coordinates of U , W , V , Z, U ′, W ′, V ′ and Z ′ correspondingly.

Then
(u′, v′;w′, z′) = (u, v;w, z).

The following Exercise is a generalization of the Theorem above.
It admits a short and simple solution which use Proposition 15.6.

15.11. Exercise. Show that complex cross-ratios are invariant un-
der Möbius transformations. That is, if a Möbius transformation maps
four distinct complex numbers u, v, w, z to complex numbers u′, v′, w′, z′

respectively, then

(u′, v′;w′, z′) = (u, v;w, z).
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(u, v;w, z), 129
∼=, 15
∞, 69
‖, 45
⊥, 37
∼, 46
d1, 12
d2, 12
d∞, 12

absolute, 88
absolute plane, 79
absolute value, 124
acute

acute angle, 37
acute triangle, 48

altitude, 53
angle, 14

acute angle, 37
angle of parallelism, 97
negative angle, 27
obtuse angle, 37
positive angle, 27
right angle, 37
straight angle, 24
vertical angles, 25

angle measure, 22
hyperbolic angle measure, 89

angle-side-angle congruence condi-
tion, 33

arc, 65
area, 86
ASA congruence condition, 33

asymptotically parallel lines, 97

base of isosceles triangle, 34
between, 24
bijection, 13
bisector, 41

external bisector, 41

center, 18, 43
centroid, 54
chord, 43
circle, 18, 43
circle arc, 64
cline, 70
complex conjugate, 124
conformal factor, 103
congruent triangles, 15
cross-ratio, 68

complex cross-ratio, 126, 129
curvature, 86

defect of triangle, 83
diagonal

diagonals of quadrilateral, 51
diameter, 43
direct motio, 40
discrete metric, 11
distance, 11
distance-preserving map, 13

elementary transformation, 127
endpoint, 65
equidistant, 100
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equivalence relation, 47
Euclidean metric, 12
Euclidean plane, 22
Euclidean space, 109
Euler’s formula, 125

foot point, 38

geometric construction, 18
great circle, 110

h-angle measure, 89
h-circle, 92
h-half-line, 88
h-line, 88
h-plane, 88
h-radius, 92
h-segment, 88
half-plane, 29
horocycle, 101
hyperbolic angle measure, 89
hyperbolic cosine, 119
hyperbolic plane, 88
hypotenuse, 48

ideal point, 88
imaginary complex number, 124
imaginary line, 124
incenter, 56
incircle, 56
indirect motion, 40
inradius, 56
inscribed triangle, 62
intersecting lines, 45
inverse, 13
inversion, 67

center of inversion, 67, 111
circle of inversion, 67
inversion in a sphere, 111
sphere of inversion, 111

inversive plane, 70
inversive space, 111
isometry, 13
isosceles triangle, 34

Klein model, 118

leg, 48
line, 14

Möbius transformation, 127
elementary transformation, 127

Manhattan metric, 12
maximum metric, 12
metric, 11
metric space, 11
motion, 13

neutral plane, 79

obtuse
obtuse angle, 37

orthic triangle, 57
orthocenter, 54

parallel lines, 45
ultra parallel lines, 97

parallel translation, 127
parallelogram, 51
perpendicular, 37
perpendicular bisector, 37
perpendicular circles, 72
pint at infinity, 69
plan

hyperbolic plane, 88
plane

absolute plane, 79
Euclidean plane, 22
h-plane, 88
inversive plane, 70
neutral plane, 79
plane in the space, 109

Poincaré disk model, 88
point, 11

ideal point, 88
polar coordinates, 126

quadrilateral, 51
inscribed quadrilateral, 63
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nondegenerate quadrilateral,
51

radius, 18, 43
real complex number, 124
real line, 12, 124
reflection, 39
rotational homothety, 127

SAA condition, 81
SAS condition, 33
secant line, 43
side

side of quadrilateral, 51
side of the triangle, 30

side-angle-angle congruence condi-
tion, 81

side-angle-side condition, 33
side-side-side congruence condition,

34
similar triangles, 46
sphere, 110
spherical distance, 110
stereographic projection, 112

tangent circles, 43
tangent half-line, 65
tangent line, 43
triangle, 15

congruent triangles, 15
degenerate triangle, 25
ideal triangle, 99
orthic triangle, 57
right triangle, 48
similar triangles, 46

unit complex number, 125

vertex of the angle, 14
vertical angles, 25
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