
1. Bewegungen der hyperbolischen Ebene

Sei nun H eine hyperbolische Ebene. Dann erhält man dieselben
Klassen von Bewegungen wie im Euklidischen Fall und eine weitere
Klasse. Wir haben oben nur ein einziges Mal das (IV) Parallelenaxiom
benutzt, nämlich im fixpunktfreien eigentlichen Fall, um eine Gerade
m zu finden, die zu beiden parallelen Geraden l1, l2 senkrecht steht. So
ein m gibt es in H, wenn l1 und l2 ultraparallel sind, aber nicht, wenn
sie asymptotisch sind. Sind l1 und l2 asymptotisch und verschieden, so
heißt g = Sl2 ◦ Sl1 eine parabolische Isometrie von H. Dies ist in der
Tat eine neue Klasse, die wir gleich geometrisch beschreiben werden.

SATZ 1.1. Eine Bewegung g ∈ Iso(H) ist parabolisch genau dann,
wenn die Funktion dg : H → R gegeben durch dg(A) = Ag(A) kein
Minimum besitzt.

Beweis. Hat h ∈ G einen Fixpunkt, so ist das Minimum von dh gleich
0. Hat ein fixpunktfreies h ∈ G eine invariante Gerade, so ist das
Infimum von dh gleich der Translationslänge von h entlang der Achse.

Ist g = Sl2 ◦ Sl1 parabolisch, so wird l1 und damit jede zu l1 asymp-
totische Gerade von g auf eine zu l1 asymptotische Gerade geschickt.
Deswegen kann g keine Drehung sein, also keinen Fixpunkt haben. An-
dererseits, haben Punkte auf l1 beliebig kleinen Abstand zu l2. Deswe-
gen ist das Infimum von dg gleich 0. �

Zusammenfassend haben wir bewiesen, dass jede Bewegung von H
entweder Drehung, Verschiebung entlang einer Achse, Spiegelung, Gleit-
spiegelung oder eine parabolische Isometrie ist.

2. Ähnlichkeitsabbildungen

Sei E eine Euklidische Ebene. Eine Bijektion f : E → E heißt eine
Ähnlichkeit, wenn f jedes Dreieck auf ein zu ihm ähnliches Dreieck
abbildet. Die Ähnlichkeiten bilden eine Gruppe A.

Aus den Sätzen über ähnliche Dreiecke folgern wir, dass f : E → E
genau dann eine Ähnlichkeit ist, wenn es ein r > 0 gibt, so dass f alle
Abstände um den Faktor r streckt.

Das wichtigste Beispiel ist die Streckung Lr,O um den Faktor r mit
Zentrum O, die O festhält und jeden Punkt A 6= O auf den Punkt
Ā ∈ [OA) mit OĀ = r · OA abbildet. Diese zentrische Streckung
schickt jede Gerade auf eine zu ihr parallele Gerade.

Man kann noch so eine Streckung mit einer O-erhaltenden Isometrie
multiplizieren, um eine Dreh/Spiegel-Streckung zu erhalten. Das sind
auch schon alle möglichen Ähnlichkeiten.
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SATZ 2.1. Ist f : E → E eine Ähnlichkeit, so ist f eine Bewegung,
oder f hat einen Fixpunkt O. Im letzten Fall ist f die Komposition der
Streckung Lr,O mit Zentrum in O und einer O fixierende Bewegung.

Beweis. Sei r der Faktor um den f alle Abstände streckt. Ist r < 1 so
hat f : R2 → R2 einen Fixpunkt nach dem Fixpunktsatz von Banach.
Ist r > 1, so wendet man das Argument auf f−1 an. Gilt f(O) = O,
so ist f ◦ L−1

r,O eine O fixierende Bewegung. �

Wir zeigen eine weitere geometrische Charakterisierung der Ähnlichkeiten.

SATZ 2.2. Sei f : E → E eine bijektive Abbildung. Die Abbbildung
f ist eine Ähnlichkeit genau dann, wenn f Geraden auf Geraden und
Kreise auf Kreise abbildet.

Beweis. Jede Ähnlichkeitsabbidlung f schickt nach Definition Kreise
mit Zentrum in O auf Kreise mit Zentrum in f(O). Dass Gerade auf
Geraden abgebildet werden, folgert man mit dem obigen Satz oder
direkt aus der Definition.

Sei nun f : E → E bijektiv und bilde f Kreise auf Kreise und
Geraden auf Geraden ab. Dann schickt f Tangenten auf Tangenten
und Sekanten auf Sekanten. Aus der letzten Aussage folgt, dass das
Innere jedes Kreises auf das Innere des Bildkreises geschickt wird, denn
das Innere eines Kreises Γ besteht aus allen Punkten, für die jede sie
enthaltende Gerade eine Sekante von Γ ist.

Ferner schickt f parallele Geraden auf parallele Geraden. Zwei Kreise
haben genau dann den gleichen Radius, wenn sie zwei verschiedene
gemeinsame Tangenten besitzen, die parallel sind. Also werden Kreise
mit dem gleichen Radius r auf Kreise mit dem gleichen Radius h(r)
abgebildet, wobei h : (0,∞)→ (0,∞) eine Funktion ist.

Zwei Punkte auf einem Kreis Γ sind antipodal (d.h. die Verbindungsstrecke
ist ein Durchmesser) genau dann, wenn die Tangenten an den Kreis
durch diese Punkte parallel sind. Damit werden antipodale Paare auf
Γ auf antipodale Paare auf f(Γ) geschickt. Da sich Geraden durch ver-
schiedene antipodalen Paare genau im Zentrum des Kreises schneiden,
wird das Zentrum O von Γ auf das Zentrum von f(Γ) abgebildet.

Also werden Paare von Punkten die Abstand r haben, auf Punkte
abgebildet die Abstand h(r) haben. Da das Innere von Kreisen auf das
Innere von Bildkreisen abgebildet wird, ist h strikt monoton wachsend.
Schränkt man h auf einen Strahl ein, so sehen wir

h(r + s) = h(r) + h(s)

für alle r, s > 0.
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Es ist eine Aufgabe in Analysis I, zu zeigen, dass eine monotone
Funktion h : (0,∞)→ (0,∞), die die obige Bedingung erfüllt die Form
h(r) = k · r haben muss, für ein festes k. Also streckt f alle Abstände
um den Faktor k und ist damit eine Ähnlichkeit. �

Wir merken letztlich an, dass jede zentrische Streckung alle Winkel
erhält. Also erhält jede Ähnlichkeit alle Winkelmaße oder dreht bei
allen Winkeln die Vorzeichen um. Die ersteren nennen wir wieder
eigentliche Ähnlichkeiten.

3. Möbius-Geometrie

Sei Ê die Möbius-Ebene Ê = E ∪ {∞}. Wir betrachten die Gruppe

M ′ aller bijektiven Abbildungen f : Ê → Ê, die Zykel auf Zykel ab-
bildet. Wir wissen, dass Inversionen an Kreisen (und Spiegelungen) in
M ′ liegen. Jede Ähnlichkeit f : E → E kann man mit f(∞) = ∞
als ein Element von M ′ betrachten. Damit wird die Gruppe A der
Ähnlichkeiten eine Untergruppe von M ′.

SATZ 3.1. Jedes Element g ∈M ′ ist eine Ähnlichkeit oder die Kom-
position einer Bewegung von E und einer Inversion.

Beweis. Sei zuerst g(∞) = ∞. Dann schickt g : E → E Kreise auf
Kreise und Geraden auf Geraden. Folglich ist g eine Ähnlichkeit.

Sei nun g(∞) = O ∈ E. Sei Γ der Kreis mit Radius r um O. Dann ist
g1 = IΓ ◦ g ein Element aus M ′ mit g1(∞) =∞, also eine Ähnlichkeit.
Seien P 6= Q in E mit P ′ = g(P ), Q′ = g(Q) 6= ∞. Setze P̄ = IΓ(P ′),
Q̄ = IΓ(Q′). Dann gilt

P̄ Q̄ = P ′Q′ ·OP̄/OQ′ = P ′Q′ · r2

OP ′ ·OQ′

Wir sehen, dass bei der richtigen Wahl des Radius r, die Gleichheit
P̄ Q̄ = PQ gilt. Damit ist g1 eine Ähnlichkeit, die den Abstand zwis-
chen P und Q erhält. Dann muss g1 eine Bewegung sein, und es gilt
g = IΓ ◦ g1. �

SATZ 3.2. Jede Abbildung g ∈M ′ ist eine Komposition von höchstens
4 Inversionen/Spiegelungen.

Beweis. Gilt g(∞) 6= ∞, so ist g eine Komposition von einer Inver-
sion und einer Bewegung. Letztere ist Komposition von höchstens drei
Spiegelungen.

Sei nun g(∞) = ∞. Dann ist g eine Ähnlichkeit. Ist g eine Bewe-
gung, so kennen wir die Aussage bereits. Sonst ist g die Komposition
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der zentrischen Streckung Lr,O mit Zentrum in O und einer O fixieren-
den Bewegung (Satz 2.1). Die Bewegung ist Komposition von einer
oder zwei Spiegelungen. Die zentrische Streckung Lr,O ist die Kompo-
sition IΓ2 ◦IΓ1 , wobei Γ1 der Kreis um O mit Radius 1 und Γ2 der Kreis
um O mit Radius

√
r ist. �

Wir folgern, dass jedes Element g ∈ M ′ alle Doppelverhältnisse
erhält (wobei wir den unendlichen Punkt nicht betrachten), da es alle
Ähnlichkeiten und alle Inversionen tun.

Wir sehen ferner, dass jedes Element g ∈ M ′ entweder alle Winkel
zwischen Bögen erhält oder bei allen das Vorzeichen umkehrt. Ein
Element g ∈ M ′ erhält alle Winkel genau dann, wenn es ein Produkt
einer gerader Anzahl von Spiegelungen/Inversionen ist. Die Menge
aller solchen Elemente g ∈M ′ ist eine Untergruppe M von M ′, die die
Möbiusgruppe heißt.

SATZ 3.3. (1) Seien P 6= Q in E. Für P̄ 6= Q̄ ∈ E gibt es genau
eine eigentliche Ähnlichkeit f : E → E mit f(P ) = P̄ und
f(Q) = Q̄.

(2) Seien P,Q,R paarweise verschiedene Punkte in der Möbius-

Ebene Ê. Für paarweise verschiedene Punkte P̄ , Q̄, R̄ in Ê gibt
es genau eine Möbius-Transformation f ∈ M mit f(P ) = P̄ ,
f(Q) = Q̄ und f(R) = R̄.

Beweis. Zu (1). Betrachte die zentrische Streckung f1 = LP,r wobei
r = P̄ Q̄/PQ gilt. Für P1 = f1(P ) = P und Q1 = f1(Q) gilt P1Q1 =
P̄ Q̄. Also gibt es eine Bewegung f2 mit f2(P1) = P̄ und f2(Q1) = Q̄.
Ist f2 nicht eigentlich, so ersetze f2 durch die Komposition von f2 und
der Spiegelung an (P̄ Q̄). Die Komposition f = f2 ◦ f1 ist dann die
gesuchte Ähnlichkeit.

Gibt es eine andere eigentliche Ähnlichkeit f̄ mit f̄(P ) = P̄ und
f̄(Q) = Q̄, so ist g = f̄−1 ◦f eine eigentliche Ähnlichkeit mit g(P ) = P
und g(Q) = Q. Dann ist g eine eignetliche Bewegung, die die Gerade
(PQ) punktweise festläßt, also die Identität. Folglich ist f = f̄ .

Zu (2). Hat man die Aussage für ein beliebiges Tripel (P,Q,R)
und ein fetsgewähltes Tripel (P̄ , Q̄, R̄) gezeigt, so gilt sie für beliebige
P,Q,R und P̄ , Q̄, R̄.

Wir dürfen also R̄ = ∞ annehmen. Wir finden ein f1 ∈ M mit
f1(R) = R̄ = ∞. Denn ist R = ∞, können wir die Identität als f1

wählen. Ist R 6=∞, so wähle f1 als die Komposition einer Spiegelung
an einer Geraden durch R und einer Inversion mit Zentrum in R. Dann
liegen P1 = f1(P̄ ) und Q1 = f1(Q̄) in E und nach Teil (1) gibt es eine
eigentliche Ähnlichkeit f2 mit f2(P1) = P̄ und f2(Q1) = Q̄. Beachte,

4



dass f2(∞) =∞, also erfüllt f = f2 ◦ f1 die geforderten Bedingungen.
Die Eindeutigkeit folgt wie in (1) mit Hilfe von (1). �

Ferner können wir jetzt sehen:

SATZ 3.4. Sei Γ ⊂ E ein Kreis und H, das Innere des Kreises,
versehen mit der hyperbolischen Metrik des Scheibenmodells. Die Ein-
schränkungen der Möbiustransformationen g ∈ M mit g(H) = H sind
genau die eigentlichen Bewegungen der hyperbolischen Ebene H.

Beweis. Gilt g(H) = H so gilt g(Γ) = Γ und g schickt alle zu Γ
senkrechten Zykel auf ebensolche. Da g das Doppelverhältnis erhält,
erhält es die h-Abstände in H. Winkel werden nach Definition erhalten.

Andererseits ist jede eigentliche Bewegung von H die Komposition
von zwei Spiegelungen in H. Eine Spiegelung in H ist die Einschränkung
einer Inversion an einem zu Γ senkrechten Zykel. Solche Inversionen
erhalten Γ und H und die Komposition von zwei solchen Inversionen
ist ein Element aus M . �
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