1. BEWEGUNGEN DER HYPERBOLISCHEN EBENE

Sei nun H eine hyperbolische Ebene. Dann erhalt man dieselben
Klassen von Bewegungen wie im Euklidischen Fall und eine weitere
Klasse. Wir haben oben nur ein einziges Mal das (IV) Parallelenaxiom
benutzt, ndmlich im fixpunktfreien eigentlichen Fall, um eine Gerade
m zu finden, die zu beiden parallelen Geraden [y, 5 senkrecht steht. So
ein m gibt es in H, wenn [; und [, ultraparallel sind, aber nicht, wenn
sie asymptotisch sind. Sind /; und l; asymptotisch und verschieden, so
heift g = S, 0 S}, eine parabolische Isometrie von H. Dies ist in der
Tat eine neue Klasse, die wir gleich geometrisch beschreiben werden.

SATZ 1.1. Eine Bewegung g € Iso(H) ist parabolisch genau dann,
wenn die Funktion d, : H — R gegeben durch d,(A) = Ag(A) kein
Minimum besitzt.

Beweis. Hat h € G einen Fixpunkt, so ist das Minimum von d; gleich
0. Hat ein fixpunktfreies h € G eine invariante Gerade, so ist das
Infimum von dj, gleich der Translationsldnge von h entlang der Achse.

Ist g = S}, 0 S, parabolisch, so wird /; und damit jede zu [; asymp-
totische Gerade von ¢ auf eine zu [; asymptotische Gerade geschickt.
Deswegen kann g keine Drehung sein, also keinen Fixpunkt haben. An-
dererseits, haben Punkte auf [; beliebig kleinen Abstand zu l,. Deswe-
gen ist das Infimum von d, gleich 0. O

Zusammenfassend haben wir bewiesen, dass jede Bewegung von H
entweder Drehung, Verschiebung entlang einer Achse, Spiegelung, Gleit-
spiegelung oder eine parabolische Isometrie ist.

2. AHNLICHKEITSABBILDUNGEN

Sei E eine Euklidische Ebene. Eine Bijektion f : £ — E heifit eine
Ahnlichkeit, wenn f jedes Dreieck auf ein zu ihm &hnliches Dreieck
abbildet. Die Ahnlichkeiten bilden eine Gruppe A.

Aus den Satzen tiber ahnliche Dreiecke folgern wir, dass f : £ — E
genau dann eine Ahnlichkeit ist, wenn es ein r > 0 gibt, so dass f alle
Absténde um den Faktor r streckt.

Das wichtigste Beispiel ist die Streckung L, o um den Faktor r mit
Zentrum O, die O festhéilt und jeden Punkt A # O auf den Punkt
A € [OA) mit OA = r - OA abbildet. Diese zentrische Streckung
schickt jede Gerade auf eine zu ihr parallele Gerade.

Man kann noch so eine Streckung mit einer O-erhaltenden Isometrie
multiplizieren, um eine Dreh/Spiegel-Streckung zu erhalten. Das sind

auch schon alle moglichen Ahnlichkeiten.
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SATZ 2.1. Ist f : E — FE eine Ahnlichkez’t, so ist f eine Bewegunyg,
oder f hat einen Fizpunkt O. Im letzten Fall ist f die Komposition der
Streckung L, o mit Zentrum in O und einer O fizierende Bewegung.

Beweis. Sei r der Faktor um den f alle Abstande streckt. Ist » < 1 so
hat f : R? — R? einen Fixpunkt nach dem Fixpunktsatz von Banach.
Ist 7 > 1, so wendet man das Argument auf f~! an. Gilt f(O) = O,
so ist f o qu’}) eine O fixierende Bewegung. O

Wir zeigen eine weitere geometrische Charakterisierung der Ahnlichkeiten.

SATZ 2.2. Sei f : E — E eine bijektive Abbildung. Die Abbbildung
f st eine Ahnlichkeit genau dann, wenn f Geraden auf Geraden und
Kreise auf Kreise abbildet.

Beweis. Jede Ahnlichkeitsabbidlung f schickt nach Definition Kreise
mit Zentrum in O auf Kreise mit Zentrum in f(O). Dass Gerade auf
Geraden abgebildet werden, folgert man mit dem obigen Satz oder
direkt aus der Definition.

Sei nun f : EF — FE bijektiv und bilde f Kreise auf Kreise und
Geraden auf Geraden ab. Dann schickt f Tangenten auf Tangenten
und Sekanten auf Sekanten. Aus der letzten Aussage folgt, dass das
Innere jedes Kreises auf das Innere des Bildkreises geschickt wird, denn
das Innere eines Kreises I' besteht aus allen Punkten, fiir die jede sie
enthaltende Gerade eine Sekante von I ist.

Ferner schickt f parallele Geraden auf parallele Geraden. Zwei Kreise
haben genau dann den gleichen Radius, wenn sie zwei verschiedene
gemeinsame Tangenten besitzen, die parallel sind. Also werden Kreise
mit dem gleichen Radius r auf Kreise mit dem gleichen Radius h(r)
abgebildet, wobei h : (0,00) — (0,00) eine Funktion ist.

Zwei Punkte auf einem Kreis I sind antipodal (d.h. die Verbindungsstrecke
ist ein Durchmesser) genau dann, wenn die Tangenten an den Kreis
durch diese Punkte parallel sind. Damit werden antipodale Paare auf
I" auf antipodale Paare auf f(I") geschickt. Da sich Geraden durch ver-
schiedene antipodalen Paare genau im Zentrum des Kreises schneiden,
wird das Zentrum O von I' auf das Zentrum von f(I') abgebildet.

Also werden Paare von Punkten die Abstand r haben, auf Punkte
abgebildet die Abstand h(r) haben. Da das Innere von Kreisen auf das
Innere von Bildkreisen abgebildet wird, ist i strikt monoton wachsend.
Schrankt man h auf einen Strahl ein, so sehen wir

h(r +s) = h(r) + h(s)

fiir alle r,s > 0.



Es ist eine Aufgabe in Analysis I, zu zeigen, dass eine monotone
Funktion A : (0, 00) — (0, 00), die die obige Bedingung erfiillt die Form
h(r) = k - r haben muss, fiir ein festes k. Also streckt f alle Absténde
um den Faktor & und ist damit eine Ahnlichkeit. O

Wir merken letztlich an, dass jede zentrische Streckung alle Winkel
erhélt. Also erhilt jede Ahnlichkeit alle WinkelmaBie oder dreht bei
allen Winkeln die Vorzeichen um. Die ersteren nennen wir wieder
eigentliche Ahnlichkeiten.

3. MOBIUS-GEOMETRIE

Sei £ die Mébius-Ebene £ = E U {oco}. Wir betrachten die Gruppe
M’ aller bijektiven Abbildungen f : E - E, die Zykel auf Zykel ab-
bildet. Wir wissen, dass Inversionen an Kreisen (und Spiegelungen) in
M’ liegen. Jede Ahnlichkeit f : £ — E kann man mit f(co) = oo
als ein Element von M’ betrachten. Damit wird die Gruppe A der
Ahnlichkeiten eine Untergruppe von M.

SATZ 3.1. Jedes Element g € M' ist eine Ahnlichkeit oder die Kom-
position einer Bewegung von E und einer Inversion.

Beweis. Sei zuerst g(co) = oo. Dann schickt g : B — E Kreise auf
Kreise und Geraden auf Geraden. Folglich ist g eine Ahnlichkeit.
Sei nun g(0o) = O € E. SeiI' der Kreis mit Radius 7 um O. Dann ist

g1 = Ir o g ein Element aus M’ mit g;(0c0) = oo, also eine Ahnlichkeit.
Seien P # @ in E mit P' = g(P), Q" = g(Q) # oo. Setze P = Ip(P’),

Q = Ir(Q’'). Dann gilt

PQ=PQ -OP/OQ = PQ -

7’2

OP' - 0Q)
~ Wir sehen, dass bei der richtigen Wahl des Radius r, die Gleichheit
PQ = PQ gilt. Damit ist ¢g; eine Ahnlichkeit, die den Abstand zwis-

chen P und @ erhalt. Dann muss ¢g; eine Bewegung sein, und es gilt
g=Irog. O

SATZ 3.2. Jede Abbildung g € M’ ist eine Komposition von hochstens
4 Inversionen/Spiegelungen.

Beweis. Gilt g(oo) # o0, so ist g eine Komposition von einer Inver-
sion und einer Bewegung. Letztere ist Komposition von hochstens drei
Spiegelungen.

Sei nun g(0co) = oo. Dann ist g eine Ahnlichkeit. Ist ¢ eine Bewe-

gung, so kennen wir die Aussage bereits. Sonst ist g die Komposition
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der zentrischen Streckung L, o mit Zentrum in O und einer O fixieren-
den Bewegung (Satz 2.1). Die Bewegung ist Komposition von einer
oder zwei Spiegelungen. Die zentrische Streckung L, o ist die Kompo-
sition I, o It,, wobei I'; der Kreis um O mit Radius 1 und I'y der Kreis
um O mit Radius /r ist. O

Wir folgern, dass jedes Element g € M’ alle Doppelverhéltnisse
erhélt (wobei wir den unendlichen Punkt nicht betrachten), da es alle
Ahnlichkeiten und alle Inversionen tun.

Wir sehen ferner, dass jedes Element g € M’ entweder alle Winkel
zwischen Bogen erhalt oder bei allen das Vorzeichen umkehrt. Ein
Element g € M’ erhélt alle Winkel genau dann, wenn es ein Produkt
einer gerader Anzahl von Spiegelungen/Inversionen ist. Die Menge
aller solchen Elemente g € M’ ist eine Untergruppe M von M’, die die
Mébiusgruppe heifit.

SATZ 3.3. (1) Seien P # Q in E. Fir P # Q € E gibt es genau
eine eigentliche Ahnlichkeit f : E — E mit f(P) = P und
7(Q) = Q.

(2) Seien P,Q, R paarweise verschiedene Punkte in der Mdébius-

Ebene E. Fir paarweise verschiedene Punkte P,Q, R in E qibt
es genau eine Mdobius-Transformation f € M mit f(P) = P,
f(Q)=Q und f(R) = R.

Beweis. Zu (1). Betrachte die zentrische Streckung f; = Lp, wobei

r=PQ/PQ gilt. Fir P, = fi(P) = P und @1 = f1(Q) gilt AQy =

P@Q. Also gibt es eine Bewegung fo mit fo(P;) = P und f2(Q1) = Q.

Ist fy nicht eigentlich, so ersetze f; durch die Komposition von f; und

der Spiegelung an (PQ). Die Komposition f = f, o f; ist dann die

gesuchte Ahnlichkeit.

Cibt es eine andere eigentliche Ahnlichkeit f mit f(P) = P und
f(Q)=Q,soist g= f'of eine eigentliche Ahnlichkeit mit g(P) = P
und ¢(Q) = Q. Dann ist g eine eignetliche Bewegung, die die Gerade
(PQ) punktweise festlift, also die Identitéit. Folglich ist f = f.

Zu (2). Hat man die Aussage fiir ein beliebiges Tripel (P, Q, R)
und ein fetsgewihltes Tripel (P, Q, R) gezeigt, so gilt sie fiir beliebige
P.Q,Rund P,Q, R.

Wir diirfen also R = oo annehmen. Wir finden ein f; € M mit
fi(R) = R = oo. Denn ist R = oo, kénnen wir die Identitit als f;
wahlen. Ist R # oo, so wahle f; als die Komposition einer Spiegelung
an einer Geraden durch R und einer Inversion mit Zentrum in R. Dann
liegen P, = f1(P) und Q; = f1(Q) in E und nach Teil (1) gibt es eine
eigentliche Ahnlichkeit fo mit fo(P) = P und f2(Q;) = Q. Beachte,
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dass fa(00) = oo, also erfiillt f = f o f; die geforderten Bedingungen.
Die Eindeutigkeit folgt wie in (1) mit Hilfe von (1). O

Ferner konnen wir jetzt sehen:

SATZ 3.4. Sei I' C E ein Kreis und H, das Innere des Kreises,
versehen mit der hyperbolischen Metrik des Scheibenmodells. Die Ein-
schrankungen der Mobiustransformationen g € M mit g(H) = H sind
genau die eigentlichen Bewegungen der hyperbolischen Ebene H.

Beweis. Gilt g(H) = H so gilt g(I') = I' und g schickt alle zu T
senkrechten Zykel auf ebensolche. Da g das Doppelverhéltnis erhalt,
erhélt es die h-Abstande in H. Winkel werden nach Definition erhalten.

Andererseits ist jede eigentliche Bewegung von H die Komposition
von zwei Spiegelungen in H. Eine Spiegelung in H ist die Einschrankung
einer Inversion an einem zu I' senkrechten Zykel. Solche Inversionen
erhalten I' und H und die Komposition von zwei solchen Inversionen
ist ein Element aus M. U



