Newton-Okounkov Bodies of Partial Flag Varieties

Christian Steinert

University of Cologne

13.02.2019

Goal: Associate combinatorial objects (e. g. polytopes) to algebraic/geometric objects and recover information about them. Toy example: toric varieties.

Possible uses: toric degenerations, mirror symmetry, rep. theory ...

What if there is no canonical combinatorial object? \rightsquigarrow Newton-Okounkov bodies!

Definition

A convex polytope $\mathcal{P} \subset \mathbb{R}^d$ is called **reflexive** if \mathcal{P} and $\mathcal{P}^* := \{y \in \mathbb{R}^d \mid \langle x, y \rangle \geq -1 \text{ for all } x \in \mathcal{P}\}$ are lattice polytopes.

When is the NO-Body a reflexive polytope? (based on Rusinko '08) **Q1:** When is the NO-Body a lattice polytope? **Q2:** When is the dual of the NO-Body a lattice polytope?

Definition of NO-Bodies

G $\Phi_P^+ \subset \Phi_P$ $\Lambda_P^+ \subset \Lambda_P$ \mathcal{L}_{λ}

simple complex algebraic group $T \subset B \subset P \subset G$ a Borel and a parabolic subgroup (positive) roots with respect to T, B and P dominant integral weights with respect to Pample line bundle over G/P

 $N_P := |\Phi_P^+|, R_\lambda := \bigoplus_{n>0} H^0(G/P, \mathcal{L}_{n\lambda})$

Definition

Fix a total ordering on \mathbb{Z}^{N_P} . A map $v : R_{\lambda} \setminus \{0\} \to \mathbb{Z}^{N_P}$ is called a **valuation** if for all $c \in \mathbb{C}^{\times}$, $f, g \in R_{\lambda} \setminus \{0\}$

- v(cf) = v(f),
- v(fg) = v(f) + v(g) and
- $v(f+g) > \min\{v(f), v(g)\}$ (if $f+g \neq 0$).

We say that v has **full rank** if dim $(\operatorname{Im} v)_{\mathbb{R}} = N_P$.

Definition of NO-Bodies

Definition

Given a valuation v we define the graded semigroup

$$\Gamma(\lambda) := \{0\} \cup \bigcup_{n>0} \left\{ (n, v(f)) \, \middle| \, f \in H^0(G/P, \mathcal{L}_{n\lambda}) \setminus \{0\} \right\}$$

the closed convex cone $C(\lambda) = \overline{\text{cone }\Gamma(\lambda)} \subseteq \mathbb{R} \times \mathbb{R}^{N_P}$ and finally the **Newton-Okounkov body**

$$\{1\} \times \Delta(\lambda) := C(\lambda) \cap \{x_0 = 1\}.$$

Lemma

If v has full rank and $\Gamma(\lambda)$ is finitely generated and saturated, $\Delta(\lambda)$ is a rational convex polytope of dimension N_P with exactly dim $H^0(G/P, \mathcal{L}_{\lambda})$ many lattice points and $\Delta(n\lambda) = n\Delta(\lambda)$ for all $n \in \mathbb{N}$.

A Partial Solution

Theorem

Let $\lambda \in \Lambda_P^+$ be P-regular, v a full-rank valuation with $\Gamma(\lambda)$ finitely generated and saturated. The following are equivalent.

- $\Delta(\lambda)$ contains exactly one interior lattice point p_{λ} .
- \mathcal{L}_{λ} is the anticanonical line bundle over G/P.

In this case $(\Delta(\lambda) - p_{\lambda})^*$ is a lattice polytope.

Corollary

Under the same assumptions $\Delta(\lambda)$ is reflexive if and only if it is a lattice polytope and \mathcal{L}_{λ} is the anticanonical line bundle over G/P.

Corollary

The Gelfand-Tsetlin polytope (in type A_n), the Feigin-Fourier-Littelmann-Vinberg polytope (in types A_n and C_n) and the Gornitskii polytope (in type G_2) for λ are reflexive (after translation by p_{λ}) if and only if λ is the anticanonical weight over G/P.

Ehrhart Theory

 $\mathcal{P} \subset \mathbb{R}^d$ rational convex polytope.

$$L_{\mathcal{P}}(n) := \#(n\mathcal{P} \cap \mathbb{Z}^d).$$

Theorem (Ehrhart-Macdonald Reciprocity '71)

 $L_{\mathcal{P}}$ is a quasi-polynomial of degree d and

$$L_{\operatorname{int} \mathcal{P}}(n) = (-1)^{\dim \mathcal{P}} L_{\mathcal{P}}(-n)$$

for all $n \in \mathbb{N}$.

Theorem (Hibi '92)

Suppose \mathcal{P} is full-dimensional with $0 \in \operatorname{int} \mathcal{P}$ and $L_{\mathcal{P}}$ is a polynomial. Then \mathcal{P}^* is a lattice polytope if

$$L_{\mathcal{P}}(-n-1) = (-1)^d L_{\mathcal{P}}(n)$$

for all $n \in \mathbb{N}$.

Sketch of Proof

We know that

$$\begin{split} L_{\Delta(\lambda)}(n) &= \#(\Delta(n\lambda) \cap \mathbb{Z}^{N_P}) \\ &= \dim H^0(G/P, \mathcal{L}_{n\lambda}) \\ &= \dim V(n\lambda) \\ &= \prod_{\beta \in \Phi_P^+} \frac{\langle n\lambda + \rho, \beta^{\vee} \rangle}{\langle \rho, \beta^{\vee} \rangle}. \end{split}$$

(For
$$P = B$$
: $L_{\Delta(2\rho)}(n) = (2n+1)^N$)

Now calculate $1 = L_{int \Delta(\lambda)}(1)$ if and only if \mathcal{L}_{λ} is the anticanonical line bundle and in that case $L_{\Delta(\lambda)}(-n-1) = (-1)^{N_P} L_{\Delta(\lambda)}(n)$.

Then Hibi's Theorem completes the proof.

 \rightsquigarrow Q1': When is $\Delta(\lambda^{ac})$ a lattice polytope?

What about String Polytopes?

For every reduced decomposition $\underline{w_0}$ of the longest word of the Weyl group we get a string polytope $Q_{\underline{w_0}}(\lambda)$ [Littelmann '98, Berenstein-Zelevinsky '01, Alexeev-Brion '04, Kaveh '15].

Theorem (Rusinko '08)

Let $G = SL_n$. Then $(Q_{\underline{w_0}}(2\rho) - p_{2\rho})^*$ is a lattice polytope for every reduced decomposition $\underline{w_0}$.

Problem: String polytopes are not always lattice polytopes!

Example

Let G be of type B₂ and $\underline{w_0} = s_2 s_1 s_2 s_1$. Then $Q_{\underline{w_0}}(\omega_2)$ has one half-integral vertex. So $Q_{w_0}(4\omega_2)$ is a lattice polytope.

Example

Let G be of type G₂ and $\underline{w_0} = s_1 s_2 s_1 s_2 s_1 s_2$. Then $Q_{\underline{w_0}}(2\rho)$ is not a lattice polytope.

Conjecture A

Let G be of type A_n, B_n, C_n or D_n , let $\lambda \in \Lambda^+$ and let $\underline{w_0}$ be the "standard" reduced decomposition. Then $Q_{\underline{w_0}}(\lambda)$ is a lattice polytope if and only if one of the following conditions hold. (i) G is of type A_n , (ii) G is of type B_n and $\langle \lambda, \alpha_n^{\vee} \rangle \in 2\mathbb{Z}$, (iii) G is of type C_n or (iv) G is of type D_n and $\langle \lambda, \alpha_{n-1}^{\vee} \rangle + \langle \lambda, \alpha_n^{\vee} \rangle \in 2\mathbb{Z}$.

Conjecture B

Let G be of type A_n , B_n , C_n or D_n , let G/P be a partial flag variety and let w_0 be the "standard" reduced decomposition. Let $\lambda \in \Lambda_P^+$. Then $Q_{\underline{w_0}}(\lambda)$ is reflexive (after unique translation) if and only if λ is the weight of the anticanonical line bundle over G/P.

Example

Let $G = SL_6$ and $w_0 = s_1s_3s_2s_1s_3s_2s_4s_3s_2s_1s_5s_4s_3s_2s_1$. Then $Q_{w_0}(\omega_3)$ has one half-integral vertex. So for G/P = Gr(3, 6) the "anticanonical" string polytope $Q_{w_0}(6\omega_3)$ will still be a lattice polytope.

Example

Let $G = SL_7$ and $\underline{w_0} = s_1s_3s_2s_1s_3s_2s_4s_3s_2s_1s_5s_4s_3s_2s_1s_6s_5s_4s_3s_2s_1$. Then $Q_{\underline{w_0}}(\omega_3)$ has half-integral vertices. So for G/P = Gr(3,7) the "anticanonical" string polytope $Q_{\underline{w_0}}(7\omega_3)$ will not be a lattice polytope!

Thank you for your attention!