Übungen zu Newton-Okounkov Theorie

Notation. Zur einfacheren Notation bezeichnen wir im Folgenden für eine beliebige holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ die definierende Funktion der Tangentialgeraden an f im Punkt $x_0 \in \mathbb{C}$ mit $T_{x_0}(f)$. Für ein Polynom $f(x) = \sum_{i=0}^d a_i x^i \in \mathbb{C}[x]$ ergibt sich somit insbesondere der lineare Anteil $T_0(f)(x) := a_0 + a_1 x$.

Aufgabe 1. Sei $f(x) \in \mathbb{C}[x]$ ein Polynom. Wir wollen nun die Gleichung f(x) = 0 mit dem ursprünglichen Verfahren von Newton und mit dem Verfahren von Raphson lösen. Wir beginnen dazu mit einer Startlösung $x_0 \in \mathbb{C}$, das heißt $f(x_0) \approx 0$, und definieren im Fall von Newton rekursiv die Folge komplexer Zahlen $(x_n)_{n \in \mathbb{N}}$ sowie die Folge von Polynomen $(f_n)_{n \in \mathbb{N}}$ durch die Eigenschaft, dass

$$f_n(x) := f_{n-1}(x_{n-1} + x)$$
 und $T_0(f_n)(x_n) = 0$,

wobei $f_0(x) := f(x)$. Die Näherungslösung im n-ten Schritt ist dann gegeben durch

$$s_n := x_0 + \ldots + x_n.$$

Im Fall von Raphson definieren wir stattdessen iterativ die n-te Näherungslösung $r_n \in \mathbb{C}$ durch die Eigenschaft, dass

$$T_{r_{n-1}}(f)(r_n) = 0.$$

Zeigen Sie, dass die beiden Folgen $(s_n)_{n\in\mathbb{N}}$ und $(r_n)_{n\in\mathbb{N}}$ in diesem Fall (f ist ein Polynom) übereinstimmen und insbesondere die Formel

$$s_n = s_{n-1} - \frac{f(s_{n-1})}{f'(s_{n-1})}$$

gilt, die heutzutage üblicherweise zur Definition des Newton-Verfahrens verwendet wird.

Aufgabe 2. Wandeln Sie auf Newtons Spuren, indem Sie eine Lösung der Gleichung

$$x^3 - 2x - 5 = 0$$

ausgehend von der Startlösung $x_0=2$ beliebig genau berechnen. Sie sollten mindestens die fünfte Näherungslösung erreichen.

Aufgabe 3. Führen Sie das Beispiel aus der Vorlesung fort und verwenden Sie das Newton-Verfahren um eine lokale Lösungsfunktion y(x) der Gleichung

$$x^3 + y^3 + xy + x + y = 0$$

zu bestimmen. Verbessern Sie Ihre Lösung, solange Ihnen das Verfahren Spaß macht, mindestens aber bis zur fünften Näherungslösung.

Aufgabe 4. Wir wollen nun mit Hilfe des Newton-Verfahrens die Zahl $\sqrt{2}$ berechnen. Wir betrachten dazu die beiden Funktionen

$$f(x) = x^2 - 2$$
 und $g(x) = 1 - \frac{2}{x^2}$

und verwenden den Startwert $x_0 = 1$.

- (i) Bestimmen Sie für beide Funktionen f und g die n-te Näherungslösung in Abhängigkeit der (n-1)-ten Näherungslösung.
- (ii) Bestimmen Sie in beiden Fällen die ersten fünf Näherungslösungen.
- (iii) Vergleichen Sie die Näherungen. Gibt es einen Unterschied zwischen beiden Iterationen?
- (iv) Welchen Vorteil könnte das Verfahren mit der Funktion g gegenüber dem ursprünglichen Wurzelziehen nach Heron mittels der Funktion f haben?

Abgabe am 28. Mai in der Vorlesung.