Übungen zu Newton-Okounkov Theorie

Aufgabe 1. Wir wollen die Zariski-Topologie auf \mathbb{C}^n genauer untersuchen.

- (i) Sein \mathfrak{a} und \mathfrak{b} Ideale in $\mathbb{C}[x_1,\ldots,x_n]$ und $(\mathfrak{a}_i)_{i\in I}$ eine beliebige Familie von Idealen in $\mathbb{C}[x_1,\ldots,x_n]$. Zeigen Sie, dass
 - (a) $\mathfrak{a} \subset \mathfrak{b} \Rightarrow \mathcal{V}(\mathfrak{a}) \supset \mathcal{V}(\mathfrak{b})$,
 - (b) $\mathcal{V}(\mathfrak{a}) \cup \mathcal{V}(\mathfrak{b}) = \mathcal{V}(\mathfrak{a} \cap \mathfrak{b}) = \mathcal{V}(\mathfrak{a} \cdot \mathfrak{b})$ und
 - (c) $\bigcap_{i \in I} \mathcal{V}(\mathfrak{a}_i) = \mathcal{V}(\bigcup_{i \in I} \mathfrak{a}_i) = \mathcal{V}(\sum_{i \in I} \mathfrak{a}_i)$ gilt.
- (ii) Zeigen Sie, dass die Zariski-Topologie auf dem \mathbb{C}^n tatsächlich eine Topologie ist.
- (iii) Bestimmen Sie alle abgeschlossenen Teilmengen von \mathbb{C} .
- (iv) Zeigen Sie, dass Morphismen affiner algebraischer Mengen stetig in der Zariski-Topologie sind. Wir verstehen die Zariski-Topologie auf einer affinen algebraischen Menge $X \subseteq \mathbb{C}^n$ hierbei als die Teilraumtopologie der zugrunde liegenden Zariski-Topologie auf dem \mathbb{C}^n .

Aufgabe 2. Zeigen Sie, dass $GL_n(\mathbb{C})$ eine affine algebraische Menge ist und bestimmen Sie den Koordinatenring $\mathbb{C}[GL_n(\mathbb{C})]$.

Aufgabe 3. Zeigen Sie, dass $SL_n(\mathbb{C})$ eine affine Varietät ist. *Hinweis:* Zeigen Sie, dass $\mathcal{I}(SL_n(\mathbb{C}))$ von einem irreduziblen Polynom erzeugt wird.

Aufgabe 4. Betrachten Sie die Abbildung $\phi: \mathbb{C} \mapsto \mathbb{C}^2, t \mapsto (t^2, t^3)$. Zeigen Sie zunächst, dass Im ϕ eine affine Varietät ist. Zeigen Sie ferner, dass ϕ keinen Isomorphismus $\mathbb{C} \to \operatorname{Im} \phi$ induziert, obwohl ϕ bijektiv ist.

Abgabe am 04. Juni in der Vorlesung.