Übungen zu Newton-Okounkov Theorie

Aufgabe 1. Sei X ein topologischer Raum. Zeigen Sie, dass die folgenden Eigenschaften äquivalent sind.

- (i) Für je zwei abgeschlossene Teilmengen A und B in X mit $X = A \cup B$ gilt A = X oder B = X.
- (ii) Für je zwei nichtleere, offene Teilmengen U und V in X gilt $U \cap V \neq \emptyset$.
- (iii) Für jede nichtleere, offene Teilmenge U in X gilt $X = \overline{U}$.

Definition 1. Sei $\mathfrak{v}: \mathbb{C}[x_1,\ldots,x_n] \mapsto \mathbb{Z}^n$ eine Bewertung und \leq eine Ordnung auf \mathbb{Z}^n . Zu jedem Tupel $\mathbf{m} \in \mathbb{N}^n$ definieren wir

$$\mathbb{C}[x_1, \dots, x_n]_{\mathbf{m}} := \{ f \in \mathbb{C}[x_1, \dots, x_n] \mid \mathfrak{v}(f) \geq \mathbf{m} \},
\mathbb{C}[x_1, \dots, x_n]_{>\mathbf{m}} := \{ f \in \mathbb{C}[x_1, \dots, x_n] \mid \mathfrak{v}(f) > \mathbf{m} \} \text{ und}
\overline{\mathbb{C}[x_1, \dots, x_n]_{\mathbf{m}}} := \mathbb{C}[x_1, \dots, x_n]_{\mathbf{m}}/\mathbb{C}[x_1, \dots, x_n]_{>\mathbf{m}},$$

wobei der Quotient als Quotient von Vektorräumen zu verstehen ist. Wir nennen $\overline{\mathbb{C}[x_1,\ldots,x_n]_{\mathbf{m}}}$ ein **Blatt** der Bewertung \mathfrak{v} .

Aufgabe 2. Sei $\mathfrak{v}: \mathbb{C}[x] \to \mathbb{Z}$ definiert durch $\mathfrak{v}(\sum a_i x^i) := \min\{i \in \mathbb{N} \mid a_i \neq 0\}.$

- (i) Zeigen Sie, dass \mathfrak{v} eine Bewertung ist.
- (ii) Geben Sie eine explizite Beschreibung von $\mathbb{C}[x]_m$ und $\mathbb{C}[x]_{>m}$ für beliebiges $m \in \mathbb{N}$ an.
- (iii) Zeigen Sie, dass \mathfrak{v} ausschließlich eindimensionale Blätter hat.

Definition 2. Es sei \leq eine totale Ordnung auf \mathbb{Z}^n und \min_{\leq} bezeichne das Minimum bezüglich dieser Ordnung auf \mathbb{Z}^n . Wir definieren die Abbildung

$$\mathfrak{v}_{\leq}: \mathbb{C}[x_1, \dots, x_n] \to \mathbb{Z}^n$$
$$\sum a_{\mathbf{i}} \mathbf{x}^{\mathbf{i}} \mapsto \min_{\leq} \left\{ \mathbf{i} \in \mathbb{N}^n \mid a_{\mathbf{i}} \neq 0 \right\}.$$

Aufgabe 3. Sei \leq die homogen lexikographische Ordnung auf \mathbb{Z}^n .

- (i) Zeigen Sie, dass \mathfrak{v}_{\leq} eine Bewertung ist.
- (ii) Finden Sie ein Polynom f, so dass die Bewertungen von f bezüglich der lexikographischen, rechts-lexikographischen, homogen lexikographischen und homogen rechts-lexikographischen Ordnung jeweils paarweise verscheiden sind.
- (iii) Bestimmen Sie $\overline{\mathbb{C}[x,y]_{(1,0)}}$ bezüglich der vier Ordnungen aus (ii).

Aufgabe 4. Sei $X\subseteq \mathbb{C}^2$ die Kurve definiert durch

$$x^3 - 2x^2 + x = y^2.$$

- (i) Bestimmen Sie die Degenerierung von X mit dem Verfahren aus der Vorlesung. Hinweis: Sei P(x,y) das definierende Polynom von X. Bestimmen Sie das Newton-Polygon von P(x,y) – welches kein Punkt sein sollte – und betrachten Sie das Segment durch (0,2). Der negative Kehrwert der Steigung dieses Segments sei $\mu = p/q$. Schreiben Sie anschließend $P(x,y) = P_1(x,y) + P_2(x,y) + \ldots + P_r(x,y)$ wobei $P_i(x,y) = \sum_{\alpha+\mu\beta=\eta_i} c_{\alpha,\beta} x^{\alpha} y^{\beta}$ für bestimmte rationale Zahlen $\eta_i = p_i/q$ mit $\eta_1 < \ldots < \eta_r$. Bestimmen Sie dann das Polynom $\mathfrak{P}(x,y,t) = P_1(x,y) + P_2(x,y) t^{p_2-p_1} + \ldots + P_r(x,y) t^{p_r-p_1}$ und die zugehörige affine Varietät $X_t := \mathcal{V}(\mathfrak{P}(x,y,t))$.
- (ii) Zeigen Sie explizit, dass $X_t \simeq X_1$ für alle $t \in \mathbb{C}^{\times}$.
- (iii) Bestimmen Sie X_0 . Zeigen oder widerlegen Sie: $X_0 \simeq X_1$.

Abgabe am 11. Juni in der Vorlesung.