Übungen zu Newton-Okounkov Theorie

Aufgabe 1. Bei den folgenden Teilaufgaben ist jeweils **genau eine** Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich.

(i)	Welche der folgenden Mengen ist keine projektive Varietät?
	$ \Box \emptyset \Box \{[x,y] \in \mathbb{P}^1 \mid xy = 0\} \Box \mathbb{P}^1 $
	$\square \ \{[0,1]\} \subseteq \mathbb{P}^1$
(ii)	Welcher der folgenden Ringe ist der Koordinatenring von GL_n ? $\square \mathbb{C}[x_{i,j} 1 \leq i, j \leq n]$ $\square \mathbb{C}(x_{i,j} 1 \leq i, j \leq n)$
	$\square \ \mathbb{C}[\det^{-1}, x_{i,j} \mid 1 \leq i, j \leq n]$ $\square \ \mathbb{C}[x_{i,j} \mid 1 \leq i, j \leq n]/(\det -1)$
(iii)	Aus wievielen Elementen besteht die Menge $\{[a,0,a]\in\mathbb{P}^2\ \ a\in\mathbb{C}^\times\}$? \square 0 \square 1 \square 2
(iv)	Welche der folgenden Aussagen über die Mengen $U_i = \{[s_0, s_1, s_2] \in \mathbb{P}^2 \mid s_i \neq 0\}$ für $i \in \{1, 2, 3\}$ ist wahr? $\square \mathbb{P}^2 = U_0 \cap U_1 \cap U_2.$ $\square P^2 \setminus U_0 \text{ ist abgeschlossen in der Zariski-Topologie in } \mathbb{P}_2.$ $\square U_0 \cap U_2 = \{[0, 1, 0]\}.$
(v)	Was ist die Diskriminante von $x^3 - 3x^2 + 3x - 1$? 0 1 2 3
(vi)	Welches der folgenden Polynome $P(x,y,z)\in\mathbb{C}[x,y,z]$ ist symmetrisch? $\square\ P(x,y,z)=x^2+y^2$ $\square\ P(x,y,z)=xy^2+xz^2+yz^2$

	$\Box P(x,y,z) = xy + xz + yz$
(vii)	Welche der folgenden Aussagen über eine affine Kurve $C_P \in \mathbb{C}^2$ ist falsch?
	\square Ist $C_P = C_{P_1} \cup C_{P_2}$, so gilt $\operatorname{Sing}(C_P) = C_{P_1} \cap C_{P_2}$.
	\square C_P ist eine affine algebraische Menge.
	\square Ist C_P vom Grad 1, dann ist C_P eine affine Varietät.
(viii)	Wieviele Schnittpunkte (gezählt mit Multiplizität) haben eine Gerade und ein Kegelschnitt in $\mathbb{P}^2?$
	□ Keinen.
	\square Zwischen 0 und 2.
	\Box Genau einen.