
HYPERBOLIC EXAMPLES OF TOPOLOGICALLY SLICE KNOTS

STEFAN FRIEDL

Abstract. In [FT05] the author and Peter Teichner proved a new sliceness cri-
terion and gave examples of satellite knots to which this criterion applies. These
satellite knots can also seen to be topologically slice by applying [CFT07, Theo-
rem 1.5]. In this note we give hyperbolic examples for the main theorem of [FT05]
which are a priori not covered by the sliceness criterion of [CFT07].

1. Statement of the theorem

A knot K ⊂ S3 is called topologically slice if K bounds a locally flat disk D ⊂ D4.
A knot is called smoothly slice if it bounds a smoothly embedded disk in D4. Clearly
a smoothly slice knot is also topologically slice.

In the early 1980’s Freedman showed that any knot with trivial Alexander poly-
nomial is topologically slice (see [FQ90, Theorem 11.7B]). In particular Whitehead
doubles of knots are topologically slice.

In [FT05] the author and Peter Teichner proved a generalization of Freedman’s
theorem. In order to state this result we let

SR := 〈a, c | aca−1 = c2〉 ∼= Z n Z[1/2] ‘solvable ribbon group’.

Here the generator a of Z acts on the normal subgroup Z[1/2] via multiplication by
2. The following is then the main theorem of [FT05].

Theorem 1.1. [FT05] Let K be a knot and denote by MK the 0-surgery on K. Let
G = Z or G = SR and denote the Ore localization of Z[G] by K(G). If there exists
an epimorphism π1(MK) � G, such that the Blanchfield pairing

H1(MK ; Z[G])×H1(MK ; Z[G])→ K(G)/Z[G]

vanishes, then K is topologically slice.

Note that the case G = Z is actually just a reformulation of Freedman’s theorem
since there exists a unique epimorphism π1(MK) → Z up to sign and since the
vanishing of the Blanchfield pairing is equivalent to ∆K(t) = 1.

Before we continue we recall the satellite construction of knots. Let K,C be knots.
Let η ⊂ S3 \ K be a curve, unknotted in S3. Then S3 r νη is a solid torus. Let
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ψ : ∂(νη) → ∂(νC) be a diffeomorphism which sends a meridian of η to a longitude
of C, and a longitude of η to a meridian of C. The space

(S3 \ νη) ∪ψ (S3 \ νC)

is a 3-sphere and the image of K is denoted by S = S(K,C, η). We say is the
satellite knot with companion C, orbit K and axis η. Note that we replaced a tubular
neighborhood of C by a knot in a solid torus, namely K ⊂ S3 \ νη.

All the examples for Theorem 1.1 and G = SR given in [FT05] (and in the cor-
rection [FT06]) are certain satellite knots of the ribbon knot 61 (cf. [FT05, Proposi-
tion 7.4]).

In [CFT07, Theorem 1.5] Tim Cochran, the author and Peter Teichner showed
that under certain circumstances the ‘multi–infection’ of a topologically slice knot by
a string link is still topologically slice. In the special case of an infection by a string
knot we get the following result.

Theorem 1.2. Let K be a topologically slice knot with slice disk D. Let η ⊂ S3 \K
a curve which is the unknot in S3 and such that η is homotopically trivial in D4 \D.
Then the satellite knot S(K,C, η) is topologically slice for any knot C.

Theorem 1.2 can in particular be used to give an alternative proof that Whitehead
doubles and the satellite knots of [FT05, FT06] are topologically slice. We refer to
[CFT07, Section 4] for full details. It is easy to give examples of knots to which
Freedman’s theorem applies but which are not satellite knots, e.g. the Kinoshita–
Terasaka knots.

Whereas it is easy to compute the Alexander polynomial of a given knot it is much
harder to verify whether the condition of Theorem 1.1 is satisfied for G = SR. Our
main result of this paper is that there exist infinitely many non–satellite knots (more
precisely hyperbolic knots) to which Theorem 1.1 applies. More precisely, relying
heavily on results of Kawauchi [Ka89a, Ka89b, Ka89c], we can prove the following
theorem.

Theorem 1.3. Given G = Z or G = SR and V ∈ R there exists a hyperbolic knot
K ⊂ S3 with Vol(S3 \K) > V which has an epimorphism π1(MK)→ G, such that

H1(MK ; Z[G])×H1(MK ; Z[G])→ K(G)/Z[G]

vanishes.

2. Proof of Theorem 1.3

First note that in [FT05] it is shown that the vanishing of the Blanchfield pairing

H1(MK ; Z[G])×H1(MK ; Z[G])→ K(G)/Z[G]

is equivalent to the condition that

Ext1
Z[G](H1(MK ; Z[G]),Z[G]) = 0.
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It is therefore enough to show that given G = Z or G = SR and V ∈ R there
exists a hyperbolic knot K ⊂ S3 with Vol(S3 \ K) > V which has an epimorphism
π1(MK)→ G, such that

Ext1
Z[G](H1(MK ; Z[G]),Z[G]) = 0.

Before we continue we recall that the derived series of a group G(n), n ∈ N is defined
inductively by G(0) = G and G(n+1) = [G(n), G(n)]. The following result of Kawauchi
is the key ingredient for the proof of Theorem 1.3.

Theorem 2.1. Let K ⊂ S3 be any knot, then for any V ∈ R there exists a hyperbolic
knot K̃ ⊂ S3 together with a map f : (S3, K̃)→ (S3, K) such that the following hold:

(1) Vol(S3 \ K̃) > V ,
(2) the map π1(S

3 \ K̃)→ π1(S
3 \K) is surjective, and

(3) the induced map π1(S
3 \ K̃)/π1(S

3 \ K̃)(n) → π1(S
3 \K)/π1(S

3 \K)(n) is an
isomorphism for any n.

The theorem follows from the theory of almost identical imitations of Kawauchi.
More precisely, the theorem follows from combining [Ka89b, Theorem 1.1] with
[Ka89a, Properties I and V, p. 450] (cf. also [Ka89c]). Unfortunately the construction
is so complex that it is difficult to draw an explicit example for K̃ given a knot K.

Recall that 61 is a ribbon knot which satisfies the conditions of Theorem 1.1 (cf.
[FT05]). Theorem 1.3 now follows immediately from Theorem 2.1 applied to K = 61,
and from the following proposition applied to G = Z and G = SR.

Proposition 2.2. Let K, K̃ ⊂ S3 be knots and f : (S3, K̃) → (S3, K) a map such
that (2) and (3) of Theorem 2.1 hold. Then we get an induced map MK̃ →MK with
the following two properties:

(1) The induced map π1(MK̃)→ π1(MK) is surjective and π1(MK̃)/π1(MK̃)(n) →
π1(MK)/π1(MK)(n) is an isomorphism for any n.

(2) For any homomorphism ϕ : π1(MK) → G to a solvable group G the induced
map

H1(MK̃ ; Z[G])→ H1(MK ; Z[G])

is an isomorphism of Z[G]–modules.

We point out that (1) can also be shown using Kawauchi’s methods, since the
argument of [Ka89a, Property I] shows that the induced map MK̃ → MK is an
‘imitation’ in the sense of [Ka89b] and we can again apply [Ka89a, Property V].

For the proof of Proposition 2.2 we will need the following basic lemma in order to
get information on the relation between the fundamental groups of the 0–surgeries of
the knots K, K̃ of the Theorem 2.1.

Lemma 2.3. Let f : G1 → G2 be a surjective homomorphism and let H1 ⊂ G1 be a
normal subgroup. Then H2 = f(H1) is normal and furthermore if the induced map
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G1/G
(n)
1 → G2/G2

(n) is an isomorphism, then the induced map (G1/H1)/(G1/H1)
(n) →

(G2/H2)/(G2/H2)
(n) is an isomorphism as well.

Proof. Since f : G1 → G2 is surjective it follows immediately that H2 = f(H1) is

normal. For i = 1, 2 let G
(n)
i · Hi := {gh|g ∈ G(n)

i , h ∈ Hi}. Since Hi and G
(n)
i are

normal subgroups it follows easily that G
(n)
i ·Hi ⊂ Gi is a normal subgroup as well.

Claim.

(G
(n)
i ·Hi)/G

(n)
i = Ker{Gi/G

(n)
i → (Gi/Hi)/(Gi/Hi)

(n)}.

It is easy to see that (Gi/Hi)
(n) = (G

(n)
i ·Hi)/Hi. Now let a ∈ Gi be in the kernel

of Gi → (Gi/Hi)/(G
(n)
i /Hi). Then aHi ⊂ G

(n)
i ·Hi. The claim is now immediate.

By the 5–lemma and our assumption the lemma now follows once we show that

(G
(n)
1 ·H1)/G

(n)
1 → (G

(n)
2 ·H2)/G

(n)
2

is an isomorphism. This map is surjective since f : G1 → G2 is surjective, but the
following commutative diagram shows that it is also injective:

(G
(n)
1 ·H1)/G

(n)
1 → (G

(n)
2 ·H2)/G

(n)
2

↓ ↓
G1/G

(n)
1 → G2/G

(n)
2

since the bottom map is an isomorphism and the vertical maps are injective. �

Proof of Proposition 2.2. Denote by λ a longitude of K. Since we have a map of
pairs f : (S3, K̃) → (S3, K) it follows that λ̃ = f(λ) is a longitude of K̃. We

denote the corresponding elements in the respective fundamental groups by λ and λ̃
as well. Denote by 〈〈λ〉〉 and 〈〈λ̃〉〉 the normal closures of the subgroups generated

by λ ∈ π1(S
3 \ K) respectively λ̃ ∈ π1(S

3 \ K̃). Note that 〈〈λ̃〉〉 = f(〈〈λ〉〉) since
f : π1(S

3 \ K̃)→ π1(S
3 \K) is surjective.

Clearly π1(MK) ∼= π1(S
3 \ K)/〈〈λ〉〉 and π1(MK̃) ∼= π1(S

3 \ K̃)/〈〈λ̃〉〉. The first
statement now follows from Lemma 2.3

Now we turn to the proof of the second statement. Let ϕ : π1(MK)→ G be a homo-
morphism such that G is solvable. Denote the induced map π1(MK̃)→ π1(MK)→ G
by ϕ̃. First note that the induced map H1(MK̃ ; Z[G]) → H1(MK ; Z[G]) is a Z[G]–
module homomorphism.

By assumption ϕ factors through π1(MK)/π1(MK)(n) for some n. In particular we
have π1(MK)(n+1) ⊂ Ker(φ)(1) and

H1(MK ; Z[G]) ∼= Ker(ϕ)/Ker(ϕ)(1)

∼= (Ker(ϕ)/π1(MK)(n+1))/(Ker(ϕ)(1)/π1(MK)(n+1)).
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We therefore get a commutative diagram

0 → Ker(ϕ̃)(1)/π1(MK̃)(n+1) → Ker(ϕ̃)/π1(MK̃)(n+1) → H1(MK̃ ; Z[G]) → 0
↓ ↓ ↓

0 → Ker(ϕ)(1)/π1(MK)(n+1) → Ker(ϕ)/π1(MK)(n+1) → H1(MK ; Z[G]) → 0.

Clearly the lemma follows once we show that the two vertical maps on the left are
isomorphisms. We therefore consider for i = 0, 1

Ker(ϕ̃)(i)/π1(MK̃)(n+1) ↪→ π1(MK̃)/π1(MK̃)(n+1)y y ∼=
Ker(ϕ̃)(i)/π1(MK)(n+1) ↪→ π1(MK̃)/π1(MK̃)(n+1).

The horizontal maps are injections, the vertical map on the right is an isomorphism
by (1). The vertical map on the left is therefore injective. Since π1(MK̃)→ π1(MK)
is surjective, it follows that the map on the left is also surjective. �
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