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ABSTRACT. We study a twisted Alexander polynomial naturally associated to
a hyperbolic knot in an integer homology 3-sphere via a lift of the holonomy
representation to SL(2,C). It is an unambiguous symmetric Laurent polyno-
mial whose coefficients lie in the trace field of the knot. It contains informa-
tion about genus, fibering, and chirality, and moreover is powerful enough to
sometimes detect mutation.

We calculated this invariant numerically for all 313,209 hyperbolic knots in
S3 with at most 15 crossings, and found that in all cases it gave a sharp bound
on the genus of the knot and determined both fibering and chirality.

We also study how such twisted Alexander polynomials vary as one moves
around in an irreducible component X0 of the SL(2,C)-character variety of the
knot group. We show how to understand all of these polynomials at once in
terms of a polynomial whose coefficients lie in the function field of X0. We
use this to help explain some of the patterns observed for knots in S3, and
explore a potential relationship between this universal polynomial and the
Culler-Shalen theory of surfaces associated to ideal points.
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1. INTRODUCTION

A fundamental invariant of a knot K in an integral homology 3-sphere Y is
its Alexander polynomial ∆K . While ∆K contains information about genus and
fibering, it is determined by the maximal metabelian quotient of the fundamen-
tal group of the complement M = Y \ K , and so this topological information has
clear limits. In 1990, Lin introduced the twisted Alexander polynomial associ-
ated to K and a representation α : π1(M) → GL(n,F), where F is a field. These
twisted Alexander polynomials also contain information about genus and fiber-
ing and have been studied by many authors (see the survey [FV3]). Much of this
work has focused on those α which factor through a finite quotient of π1(M),
which is closely related to studying the ordinary Alexander polynomial in finite
covers of M . In contrast, we study here a twisted Alexander polynomial associ-
ated to a representation coming from hyperbolic geometry.

Suppose that K is hyperbolic, i.e. the complement M has a complete hyper-
bolic metric of finite volume, and consider the associated holonomy represen-
tation α : π1(M) → Isom+(H3). Since Isom+(H3) ∼= PSL(2,C), there are two sim-
ple ways to get a linear representation so we can consider the twisted Alexan-
der polynomial: compose α with the adjoint representation to get π1(M) →
Aut(sl2C) ≤ GL(3,C), or alternatively lift α to a representation π1(M) → SL(2,C).
The former approach is the focus of the recent paper of Dubois and Yamaguchi
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[DY]; the latter method is what we use here to define an invariant TK (t ) ∈C[t±1]
called the hyperbolic torsion polynomial.

The hyperbolic torsion polynomial TK is surprisingly little studied. To our
knowledge it has only previously been looked at for 2-bridge knots in [Mor, KM1,
HM, SW]. Here we show that it contains a great deal of topological information.
In fact, we show that TK determines genus and fibering for all 313,209 hyper-
bolic knots in S3 with at most 15 crossings, and we conjecture this is the case for
all knots in S3.

1.1. Basic properties. More broadly, we consider here knots in Z2-homology
3-spheres. The ambient manifold Y containing the knot K will always be ori-
ented, not just orientable, and TK depends on that orientation. Following Tu-
raev, we formulate TK as a Reidemeister-Milnor torsion as this reduces its ambi-
guity; in that setting, we work with the compact core of M , namely the knot ex-
terior X := Y \int(N (K )) (see Section 2 for details). By fixing certain conventions
for lifting the holonomy representation α : π1(X ) → PSL(2,C) to α : π1(X ) →
SL(2,C), we construct in Section 4 a well-defined symmetric polynomial TK ∈
C[t±1]. The first theorem summarizes its basic properties:

1.2. Theorem. Let K be a hyperbolic knot in an orientedZ2-homology 3-sphere.
Then TK has the following properties:

(a) TK is an unambiguous element of C[t±1] which satisfies TK (t−1) =TK (t ).
It does not depend on an orientation of K .

(b) The coefficients of TK lie in the trace field of K . If K has integral traces,
the coefficients of TK are algebraic integers.

(c) TK (ξ) is non-zero for any root of unity ξ. In particular, TK 6= 0.
(d) If K ∗ denotes the mirror image of K , then TK ∗(t ) = TK (t ), where the

coefficients of the latter polynomial are the complex conjugates of those
of TK .

(e) If K is amphichiral then TK is a real polynomial.
(f) The values TK (1) and TK (−1) are mutation invariant.

Moreover, TK both determines and is determined by a sequence of C-valued
torsions of finite cyclic covers of X . Specifically, let Xm be the m–fold cyclic
cover coming from the free abelianization of H1(X ;Z). For the restriction αm of
α toπ1(Xm), we consider the correspondingC-valued torsion τ(Xm ,αm). A stan-
dard argument shows that TK determines all the τ(Xm ,αm) (see Theorem 3.1).
More interestingly, the converse holds: the torsions τ(Xm ,αm) determine TK

(see Theorem 4.5). This latter result follows from work of David Fried [Fri] (see
also Hillar [Hil]) and that of Menal–Ferrer and Porti [MFP1].

1.3. Remark. Conjecturally, the torsions τ(Xm ,αm) can be expressed as ana-
lytic torsions and as Ruelle zeta functions defined using the lengths of prime
geodesics. See Ray–Singer[RS], Cheeger [Che1, Che2], Müller [Mu1] and Park
[Par] for details and background material. We hope that this point of view will
be helpful in the further study of TK .
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The torsions τ(Xm ,αm) are interesting invariants in their own right. For ex-
ample, Menal–Ferrer and Porti [MFP1] showed that τ(Xm ,αm) is non–zero for
any m. Furthermore, Porti [Por1] showed that τ(X1,α1) = τ(X ,α) = TK (1) is
not obviously related to hyperbolic volume. More precisely, using a variation
on [Por2, Théorème 4.17] one can show that there exists a sequence of knots
Kn whose volumes converge to a positive real number, but the numbers TKn (1)
converge to zero. See [Por2, MFP1, MFP2] for further results.

1.4. Topological information: genus and fibering. We define x(K ) to be the
Thurston norm of a generator of H2(X ,∂X ;Z) ∼= Z; if K is null-homologous in
Y , then x(K ) = 2 · genus(K )−1, where genus(K ) is the least genus of all Seifert
surfaces bounding K . Also, we say that K is fibered if X fibers over the circle.

A key property of the ordinary Alexander polynomial ∆K is that

x(K ) ≥ deg(∆K )−1.

When K is fibered, this is an equality and moreover the lead coefficient of ∆K

is 1 (here, we normalize ∆K so that the lead coefficient is positive). As with any
twisted Alexander/torsion polynomial, we get similar information out of TK :

1.5. Theorem. Let K be a knot in an oriented Z2-homology sphere. Then

x(K ) ≥ 1

2
deg(TK ).

If K is fibered, this is an equality and TK is monic, i.e. has lead coefficient 1.

Theorem 1.5 is an immediate consequence the definitions below and of [FK1,
Theorem 1.1] (for the genus bound) and of the work of Goda, Kitano and Mori-
fuji [GKM] (for the fibered case); see also Cha [Cha], Kitano and Morifuji [KM2],
Pajitnov [Paj], Kitayama [Kit2], [FK1] and [FV3, Theorem 6.2].

1.6. Experimental results. The calculations in [Cha, GKM, FK1] gave evidence
that when one can freely choose the representation α, the twisted torsion poly-
nomial is very successful at detecting both x(K ) and non-fibered knots. More-
over [FV1] shows that collectively the twisted torsion polynomials of representa-
tions coming from homomorphisms to finite groups determine whether a knot
is fibered. However, it is not known if all twisted torsion polynomials together
always detect x(K ).

Instead of considering many different representations as in the work just dis-
cussed, we focus here on a single, albeit canonical, representation. Despite this,
we find that TK alone is a very powerful invariant. In Section 6, we describe
computations showing that the bound on x(K ) is sharp for all 313,209 hyperbolic
knots with at most 15 crossings; in contrast the bound from ∆K is not sharp for
2.8% of these knots. Moreover, among such knots TK was monic only when the
knot was fibered, whereas 4.0% of these knots have monic ∆K but aren’t fibered.
(Here we computed TK numerically to a precision of 250 decimal places, see
Section 6.6 for details.)
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Given all this data, we are compelled to propose the following, even though on
its face it feels quite implausible, given the general squishy nature of Alexander-
type polynomials.

1.7. Conjecture. For a hyperbolic knot K in S3, the hyperbolic torsion polyno-
mial TK determines x(K ), or equivalently its genus. Moreover, the knot K is
fibered if and only if TK is monic.

We have not done extensive experiments for knots in manifolds other than
S3, but so far we have not encountered any examples where TK doesn’t contain
perfect genus and fibering information.

1.8. Topological information: Chirality and mutation. When K is an amphichi-
ral, TK is a real polynomial (Theorem 1.2(e). This turns out to be an excellent
way to detect chirality. Indeed, among hyperbolic knots in S3 with at most 15
crossings, the 353 knots where TK is real are exactly the amphichiral knots (Sec-
tion 6.3).

Also, hyperbolic invariants often do not detect mutation, for example the vol-
ume [Rub], the invariant trace field [MR, Corollary 5.6.2], and the birationality
type of the geometric component of the character variety [CL, Til1, Til2]. The
ordinary Alexander polynomial ∆K is also mutation invariant for knots in S3.
However, x(K ) can change under mutation, and given that x(K ) determines the
degree of TK for all 15 crossing knots, it follows that TK can change under mu-
tation; we discuss many such examples in Section 6.4. However, sometimes mu-
tation does preserve TK , and we don’t know of any examples of two knots with
the same TK which aren’t mutants.

1.9. Character varieties. So far, we have focused on the twisted torsion poly-
nomial of (a lift of) the holonomy representation of the hyperbolic structure on
M . However, this representation is always part of a complex curve of represen-
tations π1(M) → SL(2,C), and it is natural to study how the torsion polynomial
changes as we vary the representation. In Sections 7 and 8, we describe how
to understand all of these torsion polynomials at once, and use this to help ex-
plain some of the patterns observed in Section 6. For the special case of 2-bridge
knots, Kim and Morifuji [Mor, KM1] had previously studied how the torsion
polynomial varies with the representation, and our results here extend some of
their work to more general knots.

Consider the character variety X (K ) := Hom
(
π1(M), SL(2,C)

)
//SL(2,C), which

is an affine algebraic variety over C. We show in Section 7 that each χ ∈ X (K ) has
an associated torsion polynomial T χ

K . These T
χ

K vary in an understandable way,
in terms of a polynomial with coefficients in the ring of regular functions C[X0]:

1.10. Theorem. Let X0 be an irreducible component of X (K ) which contains the
character of an irreducible representation. There is a unique TK

X0 ∈C[X0][t±1] so
that for all χ ∈ X0 one has T

χ

K (t ) =TK
X0(χ)(t ). Moreover, TK

X0 is itself the torsion
polynomial of a certain representation π1(M) → SL(2,F), and thus has all the
usual properties (symmetry, genus bound, etc.).
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1.11. Corollary. Let K be a knot in an integral homology 3-sphere. Then

(a) The set
{
χ ∈ X (K )

∣∣ deg(T χ

K ) = 2x(K )
}

is Zariski open.

(b) The set
{
χ ∈ X (K )

∣∣ T
χ

K is monic
}

is Zariski closed.

It is natural to focus on the component X0 of X (K ) which contains the (lift
of) the holonomy representation of the hyperbolic structure, which we call the
distinguished component. In this case X0 is an algebraic curve, and we show the
following conjecture is implied by Conjecture 1.7.

1.12. Conjecture. Let K be a hyperbolic knot in S3, and X0 be the distinguished
component of its character variety. Then 2x(K ) = deg(TK

X0) and TK
X0 is monic if

and only if K is fibered.

At the very least, Conjecture 1.12 is true for many 2-bridge knots as we discuss
in Section 7.6. We also give several explicit examples of TK

X0 in Section 8 and
use these to explore a possible avenue for bringing the Culler-Shalen theory of
surfaces associated to ideal points of X (K ) to bear on Conjecture 1.12.

1.13. Other remarks and open problems. For simplicity, we restricted ourselves
here to the study of knots, especially those in S3. However, we expect that many
of the results and conjectures are valid for more general 3-manifolds. In the
broader settings, the appropriate question is whether the twisted torsion poly-
nomial detects the Thurston norm and fibered classes (see [FK1, FK2] and [FV2]
for more details).

As we mentioned earlier, there is another natural way to get a torsion polyno-
mial from holonomy representation α : π1(M) → PSL(2,C), namely by consider-
ing the adjoint representation of PSL(2,C) on its Lie algebra. The corresponding
torsion polynomial was studied by Dubois and Yamaguchi [DY], partly building
on work of Porti [Por2]. Here, in Section 5.2 we calculate this alternate invari-
ant for an interesting pair of knots and surprisingly find that its degree is not
determined by the knot genus.

We conclude this introduction with a few questions and open problems:

(a) Does TK determine the volume of the complement of K ? Some theo-
retical evidence of a close relationship between TK and the volume is
given by the recent work of Bergeron and Venkatesh [BV] and the work
of Müller [Mu2, Mu3]. Some calculational evidence is also given in [FJ]
and in Section 6.4 in this paper.

(b) If two knots in S3 have the same TK , are they necessarily mutants? See
Section 6.4 for more on this.

(c) Does the invariant TK contain information about symmetries of the knot
besides information on chirality?

(d) Does there exist a hyperbolic knot with TK (1) = 1?
(e) If TK is a real polynomial, is K necessarily amphichiral?
(f) For an amphichiral knot, is the top coefficient of TK always positive?
(g) For fibered knots, why is the second coefficient of TK so often real? This

coefficient is the sum of the eigenvalues of the monodromy acting on
the twisted homology of the fiber. See Section 6.5 for more.
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(h) Why is |TK (−1)| > |TK (1)| for 99.99% of the knots considered in Sec-
tion 6.5?

Acknowledgments. We thank Jérôme Dubois, Taehee Kim, Takahiro Kitayama,
Vladimir Markovic, Jinsung Park, Joan Porti, Dan Silver, Alexander Stoimenow,
Susan Williams and Alexandru Zaharescu for interesting conversations and help-
ful suggestions. We are particularly grateful to Joan Porti for sharing his expertise
and early drafts of [MFP1, MFP2] with us. Dunfield was partially supported by
US NSF grant DMS-0707136.

2. TWISTED INVARIANTS OF 3–MANIFOLDS

In this section, we review torsions of twisted homology groups and explain
how they are used to define the twisted torsion polynomial of a knot together
with a representation of its fundamental group to SL(2,C). We then summarize
the basic properties of these torsion polynomials, including how to calculate
them.

2.1. Torsion of based chain complexes. Let C∗ be a finite chain complex over
a field F. Suppose that each chain group Ci is equipped with an ordered basis
ci and that each homology group Hi (C∗) is also equipped with an ordered ba-
sis hi . Then there is an associated torsion invariant τ(C∗,c∗,h∗) ∈ F× := F \ {0}
as described in the various excellent expositions [Mil, Tur3, Tur4, Nic]. We will
follow the convention of Turaev, which is the multiplicative inverse of Milnor’s
invariant. If the complex C∗ is acyclic, then we will write τ(C∗,c∗) := τ(C∗,c∗,;).

2.2. Twisted homology. For the rest of this section, fix a finite CW–complex X
and set π :=π1(X ). Consider a representation α : π→ GL(V ), where V is a finite-
dimensional vector space over F. We can thus view V as a left Z[π]–module. To
define the twisted homology groups Hα∗ (X ;V ), consider the universal cover X̃
of X . Regarding π as the group of deck transformations of X̃ turns the cellular
chain complex C∗(X̃ ) := C∗(X̃ ;Z) into a left Z[π]–module. We then give C∗(X̃ )
a right Z[π]–module structure via c · g := g−1 · c for c ∈ C∗(X̃ ) and g ∈ π, which
allows us to consider the tensor product

Cα
∗ (X ;V ) :=C∗(X̃ )⊗Z[π] V.

Now Cα∗ (X ;V ) is a finite chain complex of vector spaces, and we define Hα∗ (X ;V )
to be its homology.

We call two representations α : π → GL(V ) and β : π → GL(W ) conjugate if
there exists an isomorphism Ψ : V → W such that α(g ) =Ψ−1 ◦β(g ) ◦Ψ for all
g ∈π. Note that such aΨ induces an isomorphism of Hα∗ (X ;V ) with H∗

β(X ;W ).

2.3. Euler structures, homology orientations and twisted torsion of CW com-
plexes. To define the twisted torsion, we first need to introduce certain addi-
tional structures on which it depends. (In our final application, most of these
will come out in the wash.) First, fix an orientation of each cell of X . Then choose
an ordering of the cells of X so we can enumerate them as c j ; only the relative
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order of cells of the same dimension will be relevant, but it is notationally con-
venient to have only one subscript.

An Euler lift for X associates to each cell c j of X a cell c̃ j of X̃ which covers it.
If c̃ ′j is another Euler lift, then there are unique g j ∈ π so that c̃ ′j = g j · c̃ j . We say
these two Euler lifts are equivalent if∏

j
g (−1)dim(c j )

j represents the trivial element in H1(X ;Z).

An equivalence class of Euler lifts is called an Euler structure on X . The set of
Euler structures on X , denoted Eul(X ), admits a canonical free transitive action
by H1(X ;Z); see [Tur2, Tur3, Tur4, FKK] for more on these Euler structures. Fi-
nally, a homology orientation for X is just an orientation of the R-vector space
H∗(X ;R).

Now we can define the torsion τ(X ,α,e,ω) associated to X , a representation
α, an Euler structure e, and a homology orientationω. If Hα∗ (X ;V ) 6= 0, we define
τ(X ,α,e,ω) := 0, and so now assume Hα∗ (X ;V ) = 0. Up to sign, the torsion we
seek will be that of the twisted cellular chain complex Cα∗ (X ;V ) with respect to
the following ordered basis. Let {vk } be any basis of V , and {c̃ j } any Euler lift
representing e. Order the basis {c̃ j ⊗ vk } for Cα∗ (X ;V ) lexicographically, i.e. c̃ j ⊗
vk < c̃ j ′ ⊗ vk ′ if either j < j ′ or both j = j ′ and k < k ′. We thus have a based
acyclic complex Cα∗ (X ;V ) and we can consider

τ(Cα
∗ (X ;V ),c∗⊗ v∗) ∈ F×.

When dim(V ) is even, this torsion is in fact independent of all the choices in-
volved, but when dim(V ) is odd we need to augment it as follows to remove a
sign ambiguity.

Pick an ordered basis hi for H∗(X ;R) representing our homology orientation
ω. Since we have ordered the cells of X , we can consider the torsion

τ
(
C∗(X ;R),c∗,h∗

) ∈R×.

We define βi (X ) = ∑i
k=0 dim

(
Hk (X ;R)

)
and γi (X ) = ∑i

k=0 dim
(
Ck (X ;R)

)
, and

then set N (X ) =∑
i βi (X ) ·γi (X ). Following [FKK], which generalizes the ideas of

Turaev [Tur1, Tur2], we now define

τ(X ,α,e,ω) :=

(−1)N (X )·dim(V ) ·τ(Cα
∗ (X ;V ),c∗⊗ v∗

) · sign
(
τ
(
C∗(X ;R),c∗,h∗

))dim(V )
.

A straightforward calculation using the basic properties of torsion shows that
this invariant does not depend on any of the choices involved, i.e. it is indepen-
dent of the ordering and orientation of the cells of X , the choice of representa-
tives for e and ω, and the particular basis for V . Similar elementary arguments
prove the following lemma. Here −ω denotes the opposite homology orienta-
tion to ω, and note that (det◦α) :π→ F factors through H1(X ;Z).
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2.4. Lemma. If β is conjugate to α, then given h ∈ H1(X ;Z) and ε ∈ {−1,1}, one
has

τ(X ,β,h ·e,ε ·ω) = εdim(V ) · ((det◦α)(h)
)−1 ·τ(X ,α,e,ω).

2.5. Twisted torsion of 3-manifolds. Let N be a 3-manifold whose boundary
is empty or consists of tori. We first recall some facts about Spinc -structures
on N ; see [Tur4, Section XI.1] for details. The set Spinc (N ) of such structures
admits a free and transitive action by H1(N ;Z). Moreover, there exists a map
c1 : Spinc (N ) → H1(N ;Z) which has the property that c1(h ·s) = 2h+c1(s) for any
h ∈ H1(N ;Z) and s ∈ Spinc (N ).

Now consider a triangulation X of N . By [Tur4, Section XI] there exists a
canonical bijection Spinc (N ) → Eul(X ) which is equivariant with respect to the
actions by H1(N ;Z) = H1(X ;Z). Given a representation α : π1(N ) → GL(V ), an
element s ∈ Spinc (N ), and a homology orientation ω for N , we define

τ(N ,α,s,ω) := τ(X ,α,e,ω)

where e is the Euler structure on X corresponding to s. It follows from the work
of Turaev [Tur1, Tur2] that τ(N ,α,s,ω) is independent of the choice of triangula-
tion and hence well-defined. See also [FKK] for more details about τ(N ,α,s,ω).

2.6. Twisted torsion polynomial of a knot. Let K be a knot in a rational homol-
ogy 3-sphere Y . Throughout, we write XK := Y \ int(N (K )) for the knot exterior,
which is a compact manifold with torus boundary. We define an orientation of
K to be a choice of oriented meridian µK ; if Y is oriented, instead of just ori-
entable, this is equivalent to the usual notion. Suppose now that K is oriented.
Let πK := π1(XK ) and take φK : πK → Z to be the unique epimorphism where
φ(µK ) > 0. There is a canonical homology orientation ωK for XK as follows: take
a point as a basis for H0(XK ;R) and take {µK } as the basis for H1(XK ;R). We will
drop K from these notations if the knot is understood from the context.

For a representation α : π→ GL(n,R) over a commutative domain R, we de-
fine a torsion polynomial as follows. Consider the leftZ[π]–module structure on
Rn ⊗R R[t±1] ∼= R[t±1]n given by

g · (v ⊗p) := (
α(g ) · v

)⊗ (
tφ(g )p

)
for g ∈ π and v ⊗ p ∈ Rn ⊗R R[t±1]. Put differently, we get a representation α⊗
φ : π → GL(n,R[t±1]). We denote by Q(t ) the field of fractions of R[t±1]. The
representation α⊗φ allows us to view R[t±1]n and Q(t )n as left Z[π]–modules.
Given s ∈ Spinc (X ) we define

τ(K ,α,s) := τ(XK ,α⊗φ,s,ωK ) ∈Q(t )

to be the twisted torsion polynomial of the oriented knot K corresponding to the
representation α and the Spinc -structure s. Calling τ(K ,α,s) a polynomial even
though it is defined as a rational function is reasonable given Theorem 2.11 be-
low.

2.7. Remark. The study of twisted polynomial invariants of knots was introduced
by Lin [Lin]. The invariant τ(K ,α,s) can be viewed as a refined version of the
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twisted Alexander polynomial of a knot and of Wada’s invariant. We refer to
[Wada, Kit1, FV3] for more on twisted invariants of knots and 3-manifolds.

2.8. The SL(2,F) torsion polynomial of a knot. Our focus in this paper is on
2-dimensional representations, and we now give a variant of τ(K ,α,s) which
does not depend on s or the orientation of K . Specifically, for an unoriented
knot K in aQHS and a representation α : π→ SL(2,F) we define

(2.9) T α
K := tφ(c1(s)) ·τ(K ,α,s)

for any s ∈ Spinc (X ) and choice of oriented meridian µ and show:

2.10. Theorem. For α : π→ SL(2,F), the invariant T α
K is a well-defined element

of F(t ) which is symmetric, i.e. T α
K (t−1) =T α

K (t ).

We will call T α
K ∈ F(t ) the twisted torsion polynomial associated to K and α.

Proof. That the right-hand side of (2.9) is independent of the choice of s follows
easily from Lemma 2.4 using the observation that det

(
(α⊗φ)(g )

) = t 2φ(g ) for
g ∈π and the properties of c1 given in Section 2.5.

The choice of meridian µ affects the right-hand side of (2.9) in two ways: it
is used to define the homology orientation ω and the homomorphism φ : π→
Z. The first doesn’t matter by Lemma 2.4, but switching φ to −φ is equivalent
to replacing t with t−1. Hence being independent of the choice of meridian is
equivalent to the final claim that T α

K is symmetric.
Now any SL(2,F)-representation preserves the bilinear form on F2 given by

(v, w) 7→ det(v w). Using this observation it is shown in [FKK, Theorem 7.3], gen-
eralizing [HSW, Corollary 3.4] and building on work of Turaev [Tur1, Tur2], that
in our context we have

τ(K ,α,s)
(
t−1)= t 2φ(c1(s)) ·τ(K ,α,s)

which establishes the symmetry T α
K and hence the theorem. �

While in general T α
K is a rational function, it is frequently a Laurent polyno-

mial or can be computed in terms of the ordinary Alexander polynomial ∆K .

2.11. Theorem. Let K be a knot in aQHS and let α :πK → SL(2,F) be a represen-
tation.

(a) If α is irreducible, then T α
K lies in F[t±1].

(b) If α is reducible, then T α
K = TK

β where β is the diagonal part of α, i.e. a
diagonal representation where tr

(
β(g )

)= tr
(
α(g )

)
for all g ∈π.

(c) If α is reducible and factors through H1(XK ;Z)/(torsion) then

T α
K (t ) = ∆K (zt ) ·∆K (z−1t )

t − (z + z−1)+ t−1

where z, z−1 are the eigenvalues of α(µK ) and ∆K is the symmetrized
Alexander polynomial.
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When the ambient manifold Y is an ZHS, then the torsion polynomial of any
reducible representation α to SL(2,F) can be computed by combining (b) and
(c); when H1(Y ;Z) is finite but nontrivial, then T α

K is the product of the torsion
polynomials of two 1-dimensional representations, but may not be directly re-
lated to ∆K .

Proof. Part (a) is due to Kitano and Morifuji [KM2] and is seen as follows. Since
α is irreducible, there is a g ∈ [π,π] so that α(g ) does not have trace 2 (see
e.g. Lemma 1.5.1 of [CS] or the first part of the proof of Theorem 1.1 of [KM2]).
Then take a presentation of π where g is a generator and apply Proposition 2.13
below with xi = g ; since φ(g ) = 0 and tr

(
α(g )

) 6= 2 the denominator in (2.14) lies
in F× and hence T α

K is in F[t±1].
For Part (b), conjugate α so that it is upper-diagonal

α(g ) =
(

a(g ) b(g )
0 a(g )−1

)
for all g ∈π.

The diagonal part ofα is the representation β given by g 7→
(

a(g ) 0
0 a(g )−1

)
. It is easy

to see, for instance by using (2.14), that T α
K = TK

β. Finally, part (c) follows from
a straightforward calculation with (2.14), see e.g. [Tur3, Tur4]. �

2.12. Calculation of torsion polynomials using Fox calculus. Suppose we are
given a knot K in a QHS and a representation α : π1(XK ) → SL(2,F). In this sec-
tion, we give a simple method for computing T α

K . As usual, we writeπ :=π1(XK )
and φ= φK . We can extend the group homomorphism α⊗φ : π→ GL(2,F[t±1])
to a ring homomorphism Z[π] → M(2,F[t±1]) which we also denote by α⊗φ.
Given a k × l–matrix A = (ai j ) over Z[π], we denote by (α⊗φ)(A) the 2k × 2l–
matrix obtained from A by replacing each entry ai j by the 2 × 2–matrix (α⊗
φ)(ai j ).

Now let F = 〈x1, . . . , xn〉 be the free group on n generators. By Fox (see [Fox1,
Fox2, CF] and also [Har, Section 6]) there exists for each xi a Fox derivative

∂

∂xi
: F →Z[F ]

with the following two properties:

∂x j

∂xi
= δi j and

∂(uv)

∂xi
= ∂u

∂xi
+u

∂v

∂xi
for all u, v ∈ F .

We also need the involution of Z[F ] which sends g ∈ F to g−1 and respects ad-
dition (this is not an algebra automorphism since it induces an anti-homomor-
phism for multiplication). We denote the image of a ∈ Z[F ] under this map by
a, and if A is a matrix over Z[F ] then A denotes the result of applying this map
to each entry.

The following allows for the efficient calculation of T α
K , since π always has

such a presentation (e.g. if K is a knot in S3 one can use a Wirtinger presenta-
tion).
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2.13. Proposition. Let K be a knot in a QHS, and 〈x1, . . . , xn |r1, . . . ,rn−1〉 be a
presentation of πK of deficiency one. Let A be the n × (n − 1)–matrix with en-

tries ai j = ∂r j

∂xi
. Fix a generator xi and consider the matrix Ai obtained from

A by deleting the i th row. Then there exists an l ∈ Z so that for every even-
dimensional representation α : π→ GL(V ) one has

(2.14) T α
K (t ) = t l ·

det
(
(α⊗φ)

(
Ai

))
det

(
(α⊗φ)

(
xi −1

))
whenever the denominator is nonzero.

The same formula also holds, up to a sign, when dim(V ) is odd. An easy way to
ensure nonzero denominator in (2.14) is to choose an xi where φ(xi ) 6= 0; then
det

(
(α⊗φ)

(
xi −1

))
is essentially the characteristic polynomial of α(xi )−1 and

hence nonzero.

2.15. Remark. Wada’s invariant (see [Wada]) is defined to be

det
(
(α⊗φ)

(
At

i

))
det

(
(α⊗φ)

(
xi −1

)) .

In [FV3, p. 53] it is erroneously claimed that, up to multiplication by a power of
t , the torsion polynomial T α

K agrees with Wada’s invariant. Since there seems to
be some confusion in the literature regarding the precise relationship between
twisted torsion and Wada’s invariant, we discuss it in detail in Section 2.20. In
that section, we will also see that for representations into SL(2,F), Wada’s invari-
ant does in fact agree with T α

K (t ). In particular the invariant studied by Kim and
Morifuji [KM1] agrees with T α

K (t ).

Proposition 2.13 is an immediate consequence of:

2.16. Proposition. Let K ,π, A be as above. For each generator xi , there is an
s ∈ Spinc (XK ) so that for every even-dimensional representation β : π→ GL(V )
one has

(2.17) τ(XK ,β,s) = det
(
β(Ai )

)
det

(
β(xi −1)

) whenever the denominator is nonzero.

The homology orientation ω is suppressed in (2.17) because by Lemma 2.4 it
doesn’t affect τ as dim(V ) is even.

Proof of Proposition 2.16. Let X be the canonical 2–complex corresponding to
the presentation of π, i.e. X has one cell of dimension zero, n cells of dimension
one and n−1 cells of dimension two. As the Whitehead group ofπ is trivial [Wal],
it follows that X is simple-homotopy equivalent to any other CW-decomposition
of XK ; in particular, it is simple-homotopy equivalent to a triangulation. By stan-
dard results (see e.g. [Tur3, Section 8]) we can now use X to calculate the torsion
of XK .

Consider the Euler structure e for X which is given by picking an arbitrary
lift of the vertex of X to the universal cover X̃ , and then taking the lift of each
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xi which starts at this basepoint. Reading out the words r j in x1, . . . , xn starting
at the basepoint gives a canonical lift for the 2-cells corresponding to the rela-
tors. With respect to this basing, the chain complex C∗(X̃ ) is isomorphic to the
following chain complex

0 →Z[π]n−1 ∂2−→Z[π]n ∂1−→Z[π] → 0.

The bases of C2(X̃ ) and C1(X̃ ) are abusively denoted by {r j } and {xi }, and the
basis of C0(X̃ ) is the lifted basepoint b. Thus

∂2(r j ) =∑
i

∂r j

∂xi
xi =

∑
i

ai j xi and ∂1(xi ) = (xi −1)b.

Now fix a basis {vk } for V . If we then view elements v ∈ V as vertical vectors
andβ(g ) as a matrix, the leftZ[π]-module structure on V is given by g ·v =β(g )v .
Thus in the complex C∗

β(X ;V ) =C∗(X̃ )⊗Z[π] V we have

∂2(r j ⊗ vk ) =∑
i

(
ai j xi ⊗ vk

)=∑
i

(
xi ·ai j ⊗ vk

)=∑
i

(
xi ⊗ai j · vk

)
=∑

i

(
xi ⊗β(ai j )vk

)
.

Thus with the basis ordering conventions of Section 2.3, the twisted chain com-
plex C∗

β(X ;V ) is given by

(2.18) 0 →V n−1 β(A)−−−→V n (β(x1−1), ... ,β(xn−1))−−−−−−−−−−−−−−→V → 0,

where as usual matrices act on the left of vertical vectors.
From now on, we assume that det

(
β(xi −1)

) 6= 0 as otherwise there is nothing
to prove. First, consider the case when det

(
β(Ai )

)= 0. We claim in this case that
C∗
β(X ;V ) is not acyclic, and thus (2.17) holds by the definition of τ. Consider any

v ∈ V n−1 which is in the kernel of Ai ; because β(xi −1) is non-singular, the fact
that ∂2 = 0 forces v to be in the kernel of A. Hence H2

β(X ;V ) 6= 0 as needed.

When instead det
(
β(Ai )

) 6= 0, then both boundary maps in (2.18) have full
rank and hence the complex is acyclic. Following Section 2.2 of [Tur3] we can
use a suitable matrix τ-chain to compute the desired torsion. Specifically [Tur3,
Theorem 2.2] gives

(2.19) τ(X ,β,e) = det
(
β(Ai )

)
det

(
β(xi −1)

) .

Here, we are using that dim(V ) is even, which forces the sign discussed in [Tur3,
Remark 2.4] to be positive. Also, the convention of [Tur3] is to record a basis as
the rows of a matrix, whereas we use the columns; this is irrelevant since the de-
terminant is transpose invariant. Given (2.19) if we take s be the Spinc –structure
corresponding to e, we have established (2.17). �
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2.20. Connection to Wada’s invariant. We now explain why the formula (2.14)
differs from the one used to define Wada’s invariant [Wada], and how Wada’s
invariant also arises as a torsion of a suitable chain complex. To start, suppose
we have a representation β : π→ GL(d ,F), where as usual π is the fundamental
group of a knot exterior. The representation βmakes V := Fd into both a left and
a rightZ[π]–module. The left module βV is defined by g ·v :=β(g )v where v ∈V
is viewed as a column vector, and the right module Vβ is defined by v ·g := vβ(g )
where now v ∈V is viewed as a row vector.

Given a left Z[π]–module W we denote by W op the right Z[π]–module given
by w · f := f ·w . Similarly we can define a left module W op for a given rightZ[π]–
module W . In Section 2, we started with the left modules C∗(X̃ ) and βV and
used the chain complex

C∗
β(X̃ ,Fd ) :=C∗(X̃ )op ⊗Z[π] βV

when defining the torsion.
One could instead consider the chain complex

Vβ⊗Z[π] C∗(X̃ ).

Here, if {vk } is a basis for V and {c̃ j } is a Z[π]–basis for C∗(X̃ ), then we endow
Vβ⊗Z[π] C∗(X̃ ) with the basis {vk ⊗ c̃ j } ordered reverse lexicographically, i.e. vk ⊗
c̃ j < vk ′ ⊗ c̃ j ′ if either j < j ′ or both j = j ′ and k < k ′.

Suppose now we want to compute the torsion of Vβ⊗C∗(X̃ ) using the setup
of the proof of Theorem 2.16. Then we have

∂2(vk ⊗ r j ) =∑
i

(
vk ⊗ai j xi

)=∑
i

(
vk ⊗ai j · xi

)=∑
i

(
vk ·ai j ⊗xi

)
=∑

i

(
vk β(αi j )⊗xi

)
.

Since we are focusing on a right module Vβ, it is natural to write the matrices for
the boundary maps in Vβ⊗Z[π] C∗(X̃ ) as matrices which act on the right of row
vectors. With these conventions one gets the chain complex

0 →V n−1 β(At )−−−→V n (β(x1−1), ... ,β(xn−1))t

−−−−−−−−−−−−−−−→V → 0

where here At denotes the transpose of A, and so At is an (n−1)×n matrix over
Z[π]. As in the proof of Theorem 2.16, in the generic case [Tur3, Theorem 2.2]
gives that

τ
(
Vβ⊗Z[π] C∗(X̃ )

)= det
(
β(At

i )
)

det
(
β(xi −1)

) .

Up to the sign of the denominator, this is precisely the formula for Wada’s invari-
ant given in [Wada].

It’s important to note here that β(At ) is not necessarily the same as
(
β(A)

)t ,
and hence Wada’s invariant may differ from our τ(X ,β). However, note that
there exists a canonical isomorphism

Vβ⊗Z[π] C∗(X̃ ) → C∗(X̃ )op ⊗Z[π]
(
Vβ

)op

v ⊗σ 7→ σ⊗ v
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which moreover respects the ordered bases. Thus these chain complexes have
the same torsion invariant. It’s easy to see that the left module (Vβ)op is iso-
morphic to β∗V where β∗ : π→ GL(d ,F) is the representation given by β∗(g ) :=(
β(g )−1

)t . Thus Wada’s invariant for β is our torsion τ(X ,β∗).
Our focus in this paper is on β of the form α⊗φ where α : π→ SL(2,F) and

φ : π → Z is the usual epimorphism. Note that α∗ is conjugate to α (see e.g.
[HSW]) and hence (α⊗φ)∗ is conjugate to α∗⊗ (−φ). Since we argued in Sec-
tion 2.8 that T α is independent of the choice ofφ, it follows that in this case our
T α is exactly Wada’s invariant for α.

3. TWISTED TORSION OF CYCLIC COVERS

As usual, let K be a knot in a QHS with exterior X and fundamental group π.
For an irreducible representation α : π→ SL(2,C), in this section we relate the
torsion polynomial T α

K to a sequence of C-valued torsions of finite cyclic covers
of X . We show that the latter determines the former, and will use this connection
in Section 4 to prove nonvanishing of the hyperbolic torsion polynomial.

To start, pick an orientation of K to fix the homomorphism φ : π→ Z. For
each m ∈ N, we denote by Xm the m-fold cyclic cover corresponding to πm :=
φ−1(mZ). We denote by αm the restriction of α to πm = π1(Xm). Since the di-
mension is even and the image of αm lies in SL(2,C), it follows from Lemma
2.4 that the torsion τ(Xm ,α,s,ω) ∈ C does not depend on the choice of Spinc -
structure or homology orientation; therefore we denote it by τ(Xm ,αm). We also
let µm be the set of all mth roots of unity in C. The first result of this section is
the following (see [DY, Corollary 27] for a related result).

3.1. Theorem. Let K be a knot in aQHS with exterior X and fundamental group
π. Letα : π→ SL(2,C) be an irreducible representation. Then for every m ∈Nwe
have ∏

ζ∈µm

T α
K (ζ) = τ(Xm ,αm).

Note here since α is irreducible the torsion polynomial T α
K is in C[t±1] by The-

orem 2.11(a), and so T α
K (ξ) is well-defined for any ξ ∈ C×. Combining Theo-

rem 3.1 with a (generalization of) a result of David Fried [Fri], we will show:

3.2. Theorem. If τ(Xm ,αm) is non-zero for every m ∈N, then the τ(Xm ,αm) de-
termine T α

K (t ) ∈C(t ).

To state the key lemmas, we first need some notation. We denote by γm the

representation π→ GL
(
C[Zm]

)
which is the composite of the epimorphism π

φ→
Z→ Zm with the regular representation of Zm on C[Zm]. Given any ξ ∈ C×, we
denote by λξ the representation π→ GL(1,C) which sends g ∈π to ξφ(g ). We first
prove Theorem 3.1 assuming the following lemmas.

3.3. Lemma. τ(Xm ,αm) = τ(X ,α⊗γm).

3.4. Lemma. For every ξ ∈C× and s ∈ Spinc (X ) we have

(3.5) τ(X ,α⊗φ,s)(ξ) = τ(X ,α⊗λξ,s).
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Proof of Theorem 3.1. Using Lemma 3.3 and the fact that γm and
⊕

ζ∈µm
λζ are

conjugate representations of π, we have

τ(Xm ,αm) = τ(X ,α⊗γm) = ∏
ζ∈µm

τ(X ,α⊗λζ,s).

Note here that while the other terms do not depend on s, those in the product at
right do since α⊗λζ is no longer a special linear representation. We now apply
Lemma 3.4 to find

τ(Xm ,αm) = ∏
ζ∈µm

τ(X ,α⊗λζ,s) = ∏
ζ∈µm

τ(X ,α⊗φ,s)(ζ)

= ∏
ζ∈µm

(ζ)−φ(c1(s))T α
K (ζ) = ∏

ζ∈µm

T α
K (ζ)

where the last two equalities follow from (2.9) and the fact that
∏
ζ= 1. �

Proof of Lemma 3.3. The idea is that for suitable choices one gets an isomor-
phism

Cαm∗ (Xm ;V ) →Cγm⊗α
∗

(
X ;C[Zm]⊗CV

)
as based chain complexes over C, and hence their torsions are the same.

Fix a triangulation for X with an ordering c j of its cells, as well as an Euler lift
c j 7→ c̃ j of the cells to the universal cover X̃ . Let φm : π→ Zm be the epimor-
phism whose kernel is πm = π1(Xm), and fix g ∈ π where g = φm(g ) generates
Zm .

Consider the triangulation of Xm which is pulled back from that of X , and let
c ′j be the cell in Xm which is the image of c̃ j under X̃ → Xm . Then each cell of

Xm has a unique expression as g k · c ′j for k in {0, · · · ,k − 1}, where here g k acts

on Xm as a deck transformation. We order these cells so that g k · c ′j < g k ′ · c ′j ′ if

j < j ′ or both j = j ′ and k < k ′. When computing torsion, we’ll use the Euler lift
g k · c ′j 7→ g k · c̃ j for Xm .

Let V denote C2 with the π-module structure given byα, and let {v1, v2} be an
ordered basis for V . Consider the map

(3.6) f : C∗(X̃ )⊗Z[πm ] V → C∗(X̃ )⊗Z[π]
(
C[Zm]⊗CV

)
induced by c̃ ⊗ v 7→ c̃ ⊗ (1⊗ v); this is well defined since for h ∈πm we have

f
(
(c̃ ·h)⊗ v

)= (c̃ ·h)⊗ (1⊗ v) = c̃ ⊗ (
h · (1⊗ v)

)
= c̃ ⊗ (

(h ·1)⊗ (h · v)
)= c̃ ⊗ (

1⊗ (h · v)
)= f

(
c̃ ⊗ (h · v)

)
,

where we used h ∈πm to see h ·1 = 1 in C[Zm]. Clearly f is a chain map of com-
plexes of C-vector spaces, and it is an isomorphism since it sends the elements
of the basis {(g k · c̃ j )⊗v`} to those of the basis {c̃k ⊗(g−k ⊗g−k ·v`)}. Now choose

{vk,` = g−k⊗g−k ·v`} as our basis forC[Zm]⊗CV and order them by vk,` < vk ′,`′ if
k < k ′ or both k = k ′ and `< `′. Then with the ordered bases used in Section 2.3,
the map f in (3.6) is an isomorphism of based chain complexes. In particular,
the complexes have the same torsion, which proves the lemma. �
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Proof of Lemma 3.4. Since for any a ∈Z[π] we have (α⊗φ)(a)(ξ) =α⊗λξ(a) the
result should follow by computing both sides of (3.5) with Proposition 2.16. The
only issue is that we need to ensure the nonvanishing of the denominators in
(2.17) for both α⊗φ and α⊗λξ. Since α is irreducible, we can choose g ∈ [π,π]
so that tr(α(g )) 6= 2 (see e.g. [CS, Lemma 1.5.1]). Notice then thatα⊗φ(g−1−1) =
α⊗λξ(g−1 −1) = α(g−1 −1), and since tr(α(g )) 6= 2 we have det

(
α(g−1 −1)

) 6= 0.
Hence if we take a suitable presentation of πwhere g is a generator, then we can
apply Proposition 2.16 with xi = g to both α⊗φ and α⊗λξ and so prove the
lemma. �

We turn now to the proof of Theorem 3.2, which says that typically the tor-
sions τ(Xm ,αm) collectively determine T α

K (by Theorem 3.1, the hypothesis that
τ(Xm ,αm) 6= 0 for all m is equivalent to no root of T α

K being a root of unity).

A polynomial p in C[t ] of degree d is palindromic if p(t ) = t d p(1/t ), or equiv-
alently if its coefficients satisfy ak = ad−k for 0 ≤ k ≤ d . For any polynomial
p ∈C[t ] and m ∈N, we denote by rm(p) the resultant of t m −1 and p, i.e.

rn(p) = Res(p, t m −1) = (−1)md Res(t m −1, p) = (−1)md
∏
ζ∈µm

p(ζ)

where here d is the degree of p. The following theorem was proved by Fried [Fri]
for p ∈R[t ] and generalized by Hillar [Hil] to the case of C[t ].

3.7. Theorem. Suppose p and q are palindromic polynomials in C[t ]. If rm(p) =
rm(q) 6= 0 for all m ∈N then p = q .

Theorem 3.2 now follows easily from Theorems 3.1 and 3.7 and the symmetry of
T α

K shown in Theorem 2.10.

3.8. Remark. We just saw that, under mild assumptions, the torsions τ(Xm ,αm)
of cyclic covers determine the C(t )-valued torsion polynomial T a

K . It would be
very interesting if one could directly read off the degree and the top coefficient
of T α

K from the τ(Xm ,αm). See [HL] for some of what’s known about recovering
a palindromic polynomial p from the sequence rm(p); in particular, when p is
monic and of even degree d , Sturmfels and Zworski conjecture that one only
needs to know rm(p) for m ≤ d/2+1 to recover p.

4. TORSION POLYNOMIALS OF HYPERBOLIC KNOTS

Let K be a hyperbolic knot in an oriented Z2-homology sphere Y . In this
section, we define the hyperbolic torsion polynomial TK associated to a certain
preferred lift to SL(2,C) of the holonomy representation of its hyperbolic struc-
ture.

4.1. The discrete and faithful SL(2,C) representations. As usual, we write π =
πK :=π1(XK ), and let µ ∈π be a meridian for K . The orientation of µ, or equiva-
lently of K , will not matter in this section, but fix one so that φ : π→ Z is deter-
mined.

From now on assume that M = Y \K ∼= int(X ) has a complete hyperbolic struc-
ture. The manifold M inherits an orientation from Y , and so its universal cover
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M̃ can be identified with H3 by an orientation preserving isometry. This identi-
fication is unique up to the action of Isom+(H3) = PSL(2,C), and the action of π
on M̃ =H3 gives the holonomy representation α : π→ PSL(2,C), which is unique
up to conjugation.

4.2. Remark. By Mostow-Prasad rigidity, the complete hyperbolic structure on
M is unique. Thusα is determined, up to conjugacy, solely by the knot K and the
orientation of the ambient manifold Y . A subtle point is that there are actually
two conjugacy classes of discrete faithful representations πK → PSL(2,C); the
other one corresponds to reversing the orientation of Y (not K ) or equivalently
complex-conjugating the entries of the image matrices.

To define a torsion polynomial, we want a representation into SL(2,C) rather
than PSL(2,C). Thurston proved that α always lifts to a representation α : π→
SL(2,C); see [Thu] and [Sha, Section 1.6] for details. In fact, there are exactly two
such lifts, the other being g 7→ (−1)φ(g )α(g ); the point is that any other lift has the
form g 7→ ε(g )α(g ) for some homomorphism ε : π→ {±1}, i.e. some element of
H 1(M ;Z2) =Z2. Now α(µ) is parabolic, and so tr

(
α(µ)

)=±2. Since Y is a Z2HS,
we know φ(µ) is odd; hence there is a lift α where tr

(
α(µ)

) = 2; arbitrarily, we
focus on that lift and call it the distinguished representation. This representation
is determined, up to conjugacy, solely by K (sans orientation). We explain below
the simple change that results if we instead required the trace to be −2.

4.3. The hyperbolic torsion polynomial. For a hyperbolic knot K in an ori-
ented Z2HS, we define the hyperbolic torsion polynomial to be

TK (t ) :=T α
K (t )

where α : π→ SL(2,C) is the distinguished representation. Before proving The-
orem 1.2 which summarizes basic properties of TK (t ), we give a few defini-
tions. The trace field FK of K is the field obtained by adjoining toQ the elements
tr

(
α(g )

)
for all g ∈π; this is a finite extension ofQ and an important number the-

oretic invariant of the hyperbolic structure on M ; see [MR] for more. We say that
K has integral traces if every tr

(
α(g )

)
is an algebraic integer (this is necessarily

the case if M does not contain a closed essential surface, see e.g. [MR, Theo-
rem 5.2.2]). Also, we denote by K ∗ the result of switching the orientation of the
ambient manifold Y ; we call K ∗ the mirror image of K . We call K amphichiral
if Y has an orientation reversing self-homeomorphism which takes K to itself;
equivalently, K = K ∗ in the category of knots in oriented 3-manifolds.

Theorem 1.2. Let K be a hyperbolic knot in an oriented Z2-homology 3-sphere.
Then TK has the following properties:

(a) TK is an unambiguous element of C[t±1] which satisfies TK (t−1) =TK (t ).
It does not depend on an orientation of K .

(b) The coefficients of TK lie in the trace field of K . If K has integral traces,
the coefficients of TK are algebraic integers.

(c) TK (ξ) is non-zero for any root of unity ξ.
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(d) If K ∗ denotes the mirror image of K , then TK ∗(t ) = TK (t ), where the
coefficients of the latter polynomial are the complex conjugates of those
of TK .

(e) If K is amphichiral then TK is a real polynomial.
(f) The values TK (1) and TK (−1) are mutation invariant.

For the special case of 2-bridge knots and ξ=±1, the assertion (c) is also a con-
sequence of the work of Hirasawa-Murasugi [HM] and Silver-Williams [SW].

Proof. Since the distinguished representation α is irreducible, part (a) follows
from Theorems 2.10 and 2.11(a).

Next, since M has a cusp, by Lemma 2.6 of [NR] we can conjugate α so that
its image lies in SL(2,FK ), where FK is the trace field; hence TK ∈ FK [t±1] proving
the first part of (b). To see the other part, first using [MR, Theorem 5.2.4] we
can conjugate α so that α(π) ⊂ SL(2,OK), where here OK is the ring of algebraic
integers in some number fieldK (which might be a proper extension of FK ). We
now compute T α

K by applying Proposition 2.13 to a presentation of π where µ
is our preferred generator. Since α(µ) is parabolic with trace 2, the denominator
in (2.14) is p(t ) := det

(
(α⊗φ)(µ−1 −1)

)= (t k −1)2 where k =−φ(µ) 6= 0. Thus by
(2.14), we know p(t ) ·T α

K is in OK [t±1]. Then since p(t ) ∈ Z[t±1] is monic, the
lead coefficient of T α

K must be integral. An easy inductive argument now shows
that all the other coefficients are also integral, proving part (b).

The proof of (c) uses Theorem 3.1, and we handle all mth roots of unity at
once. In the notation of Section 3, we have

(4.4)
∏
ζ∈µm

TK (ζ) = τ(Xm ,αm).

By Menal–Ferrer and Porti [MFP1, Theorem 0.4], which builds on work of Raghu-
nathan [Rag], we have that Hαm∗ (Xm ;C2) = 0, or equivalently, τ(Xm ,αm) is non-
zero. Thus by (4.4) we must have TK (ζ) 6= 0 for any mthroot of unity, establishing
part (c).

For (d), the distinguished representation for the mirror knot K ∗ is α : π →
SL(2,C) where each α(g ) is the matrix which is the complex conjugate of α(g ).
Since our choice of orientation for the meridian µ was arbitrary, we can use the
same φ for when calculating both TK and TK ∗ . Thus we have

TK ∗(t ) = tφ(c1(s))τ(X ,α⊗φ) = tφ(c1(s))τ(Xk ,α⊗φ) =TK (t )

proving (d). Next, claim (e) follows immediately from (d). Finally, claim (f) is a
recent result of Menal-Ferrer and Porti [MFP2]. �

As in Section 3, we now consider the C-valued torsions τ(Xm ,αm) of finite
cyclic covers of XK . Somewhat surprisingly, these determine TK :

4.5. Theorem. Let K be a hyperbolic knot in a Z2HS with distinguished repre-
sentation α : πK → SL(2,C). Then TK is determined by the torsions τ(Xm ,αm) ∈
C.
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Proof. As discussed in the proof of Theorem 1.2(c), every τ(Xm ,αm) 6= 0, so the
result is immediate from Theorem 3.2. �

4.6. Remark. When choosing our distinguished representation, we arbitrarily
chose the lift α : π→ SL(2,C) where tr(α(µ)) = 2. As discussed, the other lift β
is given by g 7→ (−1)φ(g )α(g ). Note that given g ∈π we have

(
(β⊗φ)(g )

)
(t ) =β(g ) · tφ(g ) =α(g ) · (−1)φ(g ) · tφ(g )

=α(g ) · (−t )φ(g ) = (
(α⊗φ)(g )

)
(−t ).

It follows from Proposition 2.13 that TK
β(t ) = T α

K (−t ) = TK (−t ). Put differently,
using β instead of α would simply replace t by −t .

4.7. Remark. When Y is not a Z2HS, the choice of lift α of the holonomy rep-
resentation can have a more dramatic effect on T α. For example, consider
the manifold m130 in the notation of [CHW, CDW]. This manifold is a twice-
punctured genus 1 surface bundle over the circle, and as H1(M ;Z) =Z⊕Z8, there
are 4 distinct lifts of the holonomy representation. Two of these lifts give T α

K =(
t 2 + t−2

)−2i and the other two give T α
K = (

t 2 + t−2
)+p−8−8i

(
t 1 + t−1

)−6i for
the two distinct square-roots of −8−8i . In particular, the fields generated by the
coefficients are different; only the latter two give the whole trace field.

5. EXAMPLE: THE CONWAY AND KINOSHITA–TERASAKA KNOTS

The Conway and Kinoshita-Terasaka knots are a famous pair of mutant knots
which both have trivial Alexander polynomial. Despite their close relationship,
they have different genera. Thus they are a natural place to start our exploration
of TK , and we devote this section to examining them in detail.

The Conway knot C is the mirror of the knot 11n34 in the numbering of [HT,
HTW]. The program Snap [GN, CGHN] finds that the trace field F of the hyper-
bolic structure on the exterior of C is the extension of Q gotten by adjoining the
root θ ≈ 0.1233737−0.5213097i of

p(x) = x11 −x10 +3x9 −4x8 +5x7 −8x6 +8x5 −5x4 +6x3 −5x2 +2x −1.

Snap also finds the explicit holonomy representation πC → SL(2,F), and one can
directly apply Proposition 2.13 to compute TC . If we set

η= 1

53

(
20θ10 +9θ9 +28θ8 +3θ7 +θ6 +19θ5 +10θ4 +47θ3 +6θ+1

)
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then
{
η,θ,θ2, . . . ,θ10

}
is an integral basis for OF, and we find

TC (t ) = (−79θ10−35θ9−111θ8−11θ7−4θ6−71θ5−38θ4−187θ3−2θ2−24θ+206η)(t 5+t−5)

+(257θ10+114θ9+361θ8+36θ7+13θ6+232θ5+124θ4+608θ3+6θ2+78θ−671η)(t 4+t−4)

+(−372θ10−165θ9−523θ8−51θ7−21θ6−334θ5−183θ4−877θ3−11θ2−111θ+972η)(t 3+t−3)

+(373θ10+162θ9+528θ8+40θ7+33θ6+312θ5+200θ4+866θ3+24θ2+99θ−968η)(t 2+t−2)

+(−303θ10−115θ9−445θ8+14θ7−75θ6−152θ5−227θ4−649θ3−73θ2−29θ+749η)(t 1+t−1)

+(116θ10+14θ9+200θ8−88θ7+116θ6−122θ5+204θ4+146θ3+124θ2−78θ−220η)

≈ (4.89524+0.09920i)(t 5+t−5)+(−15.68571−0.29761i)(t 4+t−4)+(23.10363−0.07842i)(t 3+t−3)

+(−26.94164+4.84509i)(t 2+t−2)+(38.38349−24.49426i)(t 1+t−1)+(−43.32401+44.08061i).

The Kinoshita–Terasaka knot is the mirror of 11n42. Its trace field is the same
as for the Conway knot (since [F : Q] is odd, the trace field is also the invariant
trace field, which is mutation invariant), and one finds

TKT (t ) = (−55θ10−24θ9−78θ8−6θ7−5θ6−45θ5−29θ4−128θ3−5θ2−15θ+142η)(t 3+t−3)

+(293θ10+126θ9+416θ8+28θ7+29θ6+236θ5+160θ4+678θ3+24θ2+75θ−756η)(t 2+t−2)

+(−699θ10−291θ9−1001θ8−42θ7−95θ6−512θ5−419θ4−1585θ3−81θ2−149θ+1785η)(t 1+t−1)

+(790θ10+314θ9+1146θ8+8θ7+150θ6+494θ5+532θ4+1738θ3+136θ2+126θ−1986η)

≈ (4.41793−0.37603i)(t 3+t−3)+(−22.94164+4.84509i)(t 2+t−2)+(61.96443−24.09744i)(t 1+t−1)

+(−82.69542+43.48539i).

From the above we see that TK is not invariant under mutation. Since C and
KT have genus 3 and 2 respectively and deg(TC ) = 10 and deg(TKT ) = 6, we see
that Conjecture 1.7 holds for both knots. Also note that the coefficients of these
polynomials are not real, certifying the fact that both knots are chiral.

5.1. Remark. It was shown in [FK1, Section 5] that twisted Alexander polyno-
mials corresponding to representations over finite fields detect the genus of all
knots with at most twelve crossings. For example, for the Conway knot there
is a representation α : π1(XC ) → GL(4,F13) such that the corresponding torsion
polynomial T α

C ∈ F13[t±1] has degree 14, and hence

x(C ) ≥ 1

4
deg

(
T α

C

)= 3.5.

In particular this shows that x(C ) = 5 since x(C ) = 2genus(C )−1 is an odd inte-
ger.

The calculation using the discrete and faithful SL(2,C) representation is ar-
guably more satisfactory since it gives the equality

x(C ) = 1

2
deg(TC )

on the nose, and not just after rounding up to odd integers. Interestingly, we
have not found an example where this rounding trick applies to TK ; at least for
knots with at most 15 crossings one always has x(K ) = deg(TK )/2 (see Section 6).
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5.2. The adjoint representation. For an oriented hyperbolic knot K with dis-
tinguished representation α : π1(XK ) → SL(2,C), we now consider the adjoint
representation

αadj : π1(XK ) → Aut
(
sl(2,C)

)
g 7→ A 7→α(g )Aα(g )−1

associated toα. It is well-known that this representation is also faithful and irre-
ducible. Using sign-refined torsion and the orientation on K , one gets an invari-

ant T
adj

K ∈ C[t±1] which is well-defined up to multiplication by an element of

the form t k . We refer to [DY] for details on this construction and for further in-
formation on T

adj
K ; one thing they show is that T

adj
K (t ) =−T

adj
K (t−1) up a power

of t , and so T
adj

K has odd degree.
For the Conway knot we calculate that

T
adj

C (t ) ≈ (−0.2788+16.4072i)(t 13−1)+(−3.9858−20.1706i)(t 12−t)+(−4.2204−60.5497i)(t 11−t 2)

+(52.0953+134.5013i)(t 10−t 3)+(−147.7856−46.07448i)(t 9−t 4)+(897.2087+62.3265i)(t 8−t 5)

+(−2465.8556−1308.0110i)(t 7−t 6)

and for the Kinoshita-Terasaka knot we found

T
adj

KT (t ) ≈ (−0.7378+12.4047i)(t 7−1)+(29.9408−56.5548i)(t 6−t)

+(−655.7823−173.0400i)(t 5−t 2)+(2056.7509+1678.4875i)(t 4−t 3).

As dim
(
sl(2,C)

)= 3, it follows from Theorem [FK1, Theorem 1.1] that

(5.3) x(K ) ≥ 1

3
deg

(
T

adj
K (t )

)
and hence x(C ) ≥ 13

3
and x(KT) ≥ 7

3
.

Thus using that x(K ) is in integer, we get x(C ) ≥ 5 and x(KT) ≥ 3, which are
sharp. Intriguingly, unlike for TK one does not have equality in (5.3) for these
two knots.

6. KNOTS WITH AT MOST 15 CROSSINGS

There are 313,231 prime knots with 15 or fewer crossings [HTW], of which all
but 22 are hyperbolic. For each of these hyperbolic knots, we computed a high-
precision numerical approximation to TK (see Section 6.6 for details), and this
section is devoted to describing the various properties and patterns we found.

6.1. Genus. The genus bound from TK given in Theorem 1.5 is sharp for all
313,209 hyperbolic knots with 15 or fewer crossings; that is, x(K ) = deg(TK )/2
for all these knots. In contrast, the ordinary Alexander polynomial fails to detect
the genus for 8,834 of these knots, which is 2.8% of the total.

We showed the genus bound from TK was sharp using the following tech-
niques to give upper bounds on the genus. First, for the alternating knots (36%
of the total), the genus is simply determined by the Alexander polynomial [Mur1,
Cro]. For the nonalternating knots, we first did 0-surgery on the knot K to get a
closed 3-manifold N ; by Gabai [Gab2], the genus of K is the same as that of the
simplest homologically nontrivial surface in N . We then applied the method
of Section 6.7 of [DR] to a triangulation of N to quickly find a homologically
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nontrivial surface. As this surface need not be minimal genus, when necessary
we randomized the triangulation of N until we found a surface whose genus
matched the lower bound from TK .

6.2. Fibering. We also found that TK gives a sharp obstruction to fibering for all
hyperbolic knots with at most 15 crossings. In particular, the 118,252 hyperbolic
knots where TK is monic are all fibered. In contrast, while the ordinary Alexan-
der polynomial always certifies nonfibering for alternating knots [Mur2, Gab1],
among the 201,702 nonalternating knots there are 7,972 or 4.0% whose Alexan-
der polynomials are monic but don’t fiber.

To confirm fibering when TK was monic, we used a slight generalization of
the method of Section 6.11 of [DR]. Again by [Gab2], it is equivalent to show
that the 0-surgery N is fibered. Starting with the minimal genus surface S found
as above, we split N open along S, and tried to simplify a presentation for the
fundamental group of N \ S until it was obviously that of a surface group. If it
is, then it follows that N \ S = S × I and N is fibered. The difference with [DR] is
that we allowed S to be a general normal surface instead of the restricted class of
Figure 6.13 of [DR]. We handled this by splitting the manifold open along S and
triangulating the result using Regina [Bur2].

6.3. Chirality. For hyperbolic knots with at most 15 crossings, we found that a
knot was amphichiral if and only if TK had real coefficients. In particular, there
are 353 such knots with TK real, and SnapPy [CDW] easily confirms that they are
all amphichiral. (This matches the count of amphichiral knots from Table A1 of
[HTW].)

In contrast, the numbers TK (1) and TK (−1) do not always detect chirality.
For example, the chiral knot 10153 = 10n10 has TK (1) = 4 and 10157 = 10n42 has
TK (−1) = 576. Moreover, the knot 14a506 has both TK (1) and TK (−1) real. (This
last claim was checked to the higher precision of 10,000 decimal places.)

6.4. Knots with the same TK . While we saw in Section 5 that TK is not mutation
invariant, there are still pairs of knots with the same TK . In particular, among
knots with at most 15 crossings, there are 2,739 groups of more than one knot
that share the same TK , namely 2,700 pairs and 39 triples. Here, we do not dis-
tinguish between a knot and its mirror image, and having the same TK means
that the coefficients agree to 5,000 decimal places. Stoimenow found there are
34,349 groups of mutant knots among those with at most 15 crossings, involving
some 77,680 distinct knots [Sto]. Thus there are many examples where mutation
changes TK . However, all of the examples we found of knots with the same TK

are in fact mutants.
As mentioned, Menal-Ferrer and Porti [MFP2] showed that the evaluations

TK (1) and TK (−1) are mutation invariant. We found 38 pairs of non-mutant
knots with the same TK (1) and the same TK (−1). Suggestively, several of these
pairs (including the five pairs shown in [DGST, Figure 3.9], see also [ST, Tables 2
and 3]) are known to be genus-2 mutants. We also found a triple of mutually
non-mutant knots {10a121,12a1202,12n706} where TK (+1) =−4, and a similar
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sextet {10n10,12n881,13n592,13n2126,15n9378,15n22014} where TK (+1) = 4;
however, within these groups, the value TK (−1) did not agree.

6.5. Other patterns. We found two other intriguing patterns which we are un-
able to explain. The first is that the second highest coefficient of TK is often real
for fibered knots. In particular, this is the case for 53.1% (62,763 of 118,252) of
the fibered knots in this sample. In contrast, the second coefficient is real for
only 0.2% (364 of 194,957) of nonfibered knots. (Arguably, the right compari-
son is with the lead coefficient of TK for nonfibered knots; even fewer (0.05%)
of these are real.) For fibered knots, the twisted homology of the universal cyclic
cover can be identified with that of the fiber; hence the action of a generator of
the deck group on this homology of the cover can be thought of as the action of
the monodromy of the bundle on the twisted homology of the fiber. The second
coefficient of TK is then just the sum of the eigenvalues of this monodromy, but
it’s unclear why this should often be a real number.

The second observation is that |TK (−1)| > |TK (1)| for all but 22 (< 0.01%) of
these knots. The exceptions are nonalternating and all but one (15n151121) is
fibered.

6.6. Computational details. The complete software used for these computa-
tions, as well as a table of TK for all these knots, is available at [DFJ]. The soft-
ware runs within Sage [Sage], and makes use of SnapPy [CDW] and t3m [CD].
It finds very high-precision solutions to the gluing equations, in the manner of
Snap [GN, CGHN], and extracts from this a high-precision approximation to the
distinguished representation. Except as noted above, we did all computations
with 250 decimal places of precision. However, to save space, only 40 digits were
saved in the final table. To guard against error, two of the authors independently
wrote programs which computed TK , and the output of these programs were
then compared for all nonalternating knots with 14 crossings.

7. TWISTED TORSION AND THE CHARACTER VARIETY OF A KNOT

As usual, consider a hyperbolic knot K in a Z2HS, and let π := π1(XK ). So far,
we have focused on the torsion polynomial of the distinguished representation
α : π→ SL(2,C) coming from the hyperbolic structure. However, this represen-
tation is always part of a complex curve of representations π→ SL(2,C), and it is
natural to ask if there is additional topological information in the torsion poly-
nomials of these other representations. In this section, we describe how to un-
derstand all of these torsion polynomials at once, and use this to help explain
some of the patterns observed in Section 6. For the special case of 2-bridge
knots, Kim and Morifuji [Mor, KM1] had previously studied how the torsion
polynomial varies with the representation, and we extend here some of their
results to more general knots.
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To state our results, we must first review some basics about character vari-
eties; throughout, see the classic paper [CS] or the survey [Sha] for details. Con-
sider the representation variety R(K ) := Hom

(
π,SL(2,C)

)
which is an affine alge-

braic variety over C. The group SL(2,C) acts on R(K ) by conjugating each rep-
resentation; the algebro-geometric quotient X (K ) := R(K )//SL(2,C) is called the
character variety. More concretely, X (K ) is the set of characters of representa-
tions α ∈ R(K ), i.e. functions χα : π→ C of the form χα(g ) = tr

(
α(g )

)
for g ∈ π.

When α is irreducible, the preimage of χα under the projection R(K ) → X (K )
is just all conjugates of α, but distinct conjugacy classes of reducible represen-
tations can sometimes have the same character. Still, it makes sense to call a
character irreducible or reducible depending on which kind of representations
it comes from.

The character variety X (K ) is also an affine algebraic variety over C; its coor-
dinate ring C[X (K )], which consists of all regular functions on X (K ), is simply
the subring C[R(K )]SL(2,C) of regular functions on R(K ) which are invariant un-
der conjugation. We start by showing that it makes sense to define a torsion
polynomial T

χ

K for χ ∈ X (K ) via T
χ

K :=T α
K for any α with χα =χ.

7.1. Lemma. If α,β ∈ R(K ) have the same character, then T α
K =TK

β.

Proof of Lemma 7.1. As discussed, ifα is irreducible thenβmust be conjugate to
α; hence they have the same torsion polynomial. If instead α is reducible, then
Theorem 2.11(b) shows that T α

K depends only on the diagonal part of α, which
can be recovered from its character. Since β must also be reducible and has the
same character as α, we again get T α

K =TK
β. �

An irreducible component X0 of X (K ) has dimC(X0) ≥ 1 since the exterior of
K has boundary a torus. There are two possibilities for X0: either it consists
entirely of reducible characters, or it contains an irreducible character. In the
latter case, it turns out that irreducible characters are Zariski open in X0, and
every character in X0 is that of a representation with non-abelian image. As the
torsion polynomials of reducible representations are boring (see Theorem 2.11
and the discussion immediately following), we focus on those components con-
taining an irreducible character. We denote the union of all such components
as X (K )irr ; equivalently, X (K )irr is the Zariski closure of the set of irreducible
characters.

It is natural to ask how T
χ

K varies as a function of χ. We find:

Theorem 1.10. Let X0 be an irreducible component of X (K )irr . There is a unique
TK

X0 ∈C[X0][t±1] so that for all χ ∈ X0 one has T
χ

K (t ) =TK
X0(χ)(t ). Moreover, TK

X0

is itself the torsion polynomial of a certain representation π→ SL(2,F) and thus
has all the usual properties (symmetry, genus bound, etc.).

We give several explicit examples of TK
X0 later in Section 8. The following result

is immediate from Theorem 1.10.

7.2. Corollary. Let X0 be an irreducible component of X (K )irr . Then
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(a) For allχ ∈ X0, we have deg
(
T

χ

K

)≤ deg
(
TK

X0
)

with equality on a nonempty
Zariski open subset.

(b) If TK
X0 is monic, then T

χ

K is monic for all χ ∈ X0. Otherwise, T χ

K is monic
only on a proper Zariski closed subset.

In particular, when X0 is a curve, the genus bound and fibering obstruction
given by T

χ

K are the same for all χ ∈ X0 except on a finite set where T
χ

K provides
weaker information. We can also repackage Corollary 7.2 as a uniform statement
on all of X (K ).

Corollary 1.11. Let K be a knot in an integral homology 3-sphere. Then

(a) The set
{
χ ∈ X (K )

∣∣ deg(T χ

K ) = 2x(K )
}

is Zariski open.

(b) The set
{
χ ∈ X (K )

∣∣ T
χ

K is monic
}

is Zariski closed.

Proof. It suffices to consider the intersections of these sets with each irreducible
component X0 of X (M). If X0 consists solely of reducible characters, the result is
immediate from Theorem 2.11(c). Otherwise, it follows from Corollary 7.2 com-
bined with the fact that deg(TK

X0) ≤ 2x(K ). �

We now turn to the proof of Theorem 1.10.

Proof of Theorem 1.10. By Proposition 1.4.4 of [CS], there is an irreducible com-
ponent R0 of R(K ) where the projection R0 → X (K ) surjects onto X0. Consider
the tautological representation

ρtaut : π→ SL
(
2,C[R0]

)
which sends g ∈π to the matrix ρtaut(g ) of regular functions on R0 so that

ρtaut(g )(α) =α(g ) for all α ∈ R0.

Since R0 is irreducible, C[R0] is an integral domain. Thus we can consider its
field of fractions, i.e. the field of rational functions C(R0). Working over C(R0)
there is an associated torsion polynomial T taut

K which is inC(R0)[t±1] since ρtaut

is irreducible. From Lemma 2.13, it is clear that for everyα ∈ R0 we have T α
K (t ) =

T taut
K (α)(t ) in C[t±1]. Hence the coefficients of T taut

K have well-defined values
at every pointα ∈ R0, and so lie inC[R0]. Now since the torsion polynomial is in-
variant under conjugation, each coefficient of T taut

K lies in C[X0] = C[R0]SL(2,C),
and hence T taut

K descends to an element of C[X0][t±1], which is the TK
X0 we

seek. �

7.3. The distinguished component. It is natural to focus on the component X0

of X (M) which contains the distinguished representation. In this case X0 is an
algebraic curve, and we refer to it as the distinguished component. By Corol-
lary 7.2, the following conjecture that TK

X0 detects both the genus and fibering
of K is implied by Conjecture 1.7.

Conjecture 1.12. Let K be a hyperbolic knot in S3, and X0 be the distinguished
component of its character variety. Then 2x(K ) = deg(TK

X0) and TK
X0 is monic if

and only if K is fibered.
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As we explain in Section 7.6, this conjecture is true for many 2-bridge knots.
One pattern in Section 6 is that TK never gave worse topological information

than the ordinary Alexander polynomial ∆K . In certain circumstances, Corol-
lary 7.2 allows us to relate ∆K to TK as we now discuss. First, we can sometimes
show that TK

X0 must contain at least as much topological information as ∆K .

7.4. Lemma. Let K be a knot in an ZHS. Suppose X0 is a component of X (K )irr

which contains a reducible character. Then deg(TK
X0) ≥ 2deg(∆K )−2 and if ∆K

is nonmonic so is TK
X0.

Proof. Let α be a reducible representation whose character lies in X0. By The-
orem 2.11(c), the torsion polynomial T α

K has degree 2deg(∆K )− 2 and its lead
coefficient is the square of that of ∆K ∈ Z[t±1]. The result now follows from
Corollary 7.2. �

Now, consider the distinguished representation α and distinguished compo-
nent X0 ⊂ X (K ). We say that α is sufficiently generic if deg(TK ) = deg(TK

X0) and
TK is monic only if TK

X0 is. Corollary 7.2 suggests that most knots will have
sufficiently generic distinguished representations; however, because the distin-
guished character takes on only algebraic number values, there seems to be no
a priori reason why this must always be the case. Regardless, our intuition is that
the hypothesis of this next proposition holds quite often:

7.5. Proposition. Let K be a knot in anZHS whose distinguished representation
is sufficiently generic, and whose distinguished component of X (M) contains a
reducible character. Then deg(TK ) ≥ 2deg(∆K )−2 and if ∆K is nonmonic so is
TK .

7.6. 2-bridge knots. For 2-bridge knots in S3, Kim and Morifuji previously stud-
ied the torsion polynomial as a function on X (M)irr in [KM1]. As 2-bridge knots
are alternating, the ordinary Alexander polynomial ∆K determines the genus
and whether K fibers [Mur2, Cro, Mur2, Gab1]. However, as mentioned, there
seems to be no a priori reason that the same must be true for TK

X0. We now
sketch what is known about this special case, starting with two results from
[KM1].

7.7. Theorem ([KM1, Theorem 4.2]). Let K be a hyperbolic 2-bridge knot. Then
there exists a component X0 ⊂ X (K )irr such that 2x(K ) = deg(TK

X0) and TK
X0 is

monic if and only if K is fibered. In particular, if X (K )irr is irreducible, then
Conjecture 1.12 holds for K .

Proof. Since∆K detects the genus, it is nonconstant and so has a nontrivial root.
For any knot in an ZHS, a root of ∆K gives rise to a reducible representation
πK → SL(2,C) with nonabelian image. In the case of 2-bridge knots, the char-
acter of any such representation belongs to a component X0 ⊂ X (M)irr (see Re-
mark 1.9 and Corollary 2.9 of [HLM], originating in Proposition 2.3 and the com-
ment following it in [Bur1]), and Lemma 7.4 now finishes the proof. �
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7.8. Theorem ([KM1, Lemma 4.8 and Theorem 4.9]). Let K = K (p, q) be a hyper-
bolic 2-bridge knot, and let c be the lead coefficient of ∆K . Suppose there exists
a prime divisor ` of p so that if c 6= ±1 then the reduction of c mod ` is not in
{−1,0,1}. Then Conjecture 1.12 holds for K .

Proof sketch. Let X0 be any component of X (K )irr . First, one shows that X0 con-
tains a character χ where tr(µK ) = 0. In Lemma 4.6 of [KM1] this is shown using
the particular structure of πK , and it also follows from the following more gen-
eral fact:

7.9. Claim. Let K be a knot in S3 whose exterior contains no closed essential
surface. If X0 is a component of X (M), then given a ∈ C there is a χ ∈ X0 where
tr(µK ) = a.

Two-bridge knots satisfy the hypothesis of Claim 7.9 by [HT], and the proof
of the claim is straightforward from the Culler-Shalen theory of surfaces asso-
ciated to ideal points of X0. Specifically, on the smooth projective model of X0

the rational function tr(µK ) takes on the value a somewhere, and if this were at
an ideal point the associated essential surface would have to be either closed
or have meridian boundary; the latter situation also implies the existence of a
closed essential surface by [CGLS, Theorem 2.0.3].

The representation corresponding to a χ where tr(µK ) = 0 is irreducible but
has metabelian image, and in the 2-bridge case one can use this to calculate T

χ

K
explicitly. In particular, in [KM1] they find that, provided there exists a prime `
as in the hypothesis, the polynomial T

χ

K is non-monic and degT
χ

K = 2x(K ). We
then apply Corollary 7.2 to see that Conjecture 1.12 holds. �

Another interesting class of characters in X (M)irr are those of representations
where µK is parabolic (e.g. the distinguished representation); such parabolic
representations must occur on any component X0 by Claim 7.9. For the 3,830
non-fibered 2-bridge knots with q < p ≤ 287, we numerically computed T

χ

K for
all such parabolic characters, using a precision of 150 decimal places. In every
case, the polynomial T

χ

K was nonmonic and gave a sharp genus bound. Since
2-bridge knots contain no closed essential surfaces, every component of X (M)
is a curve. Thus for all 2-bridge knots with p ≤ 287 there are only finitely many
χ ∈ X (M) where T

χ

K is monic or where deg(T χ

K ) < 2deg(∆K )−2, as conjectured
in [KM1].

8. CHARACTER VARIETY EXAMPLES

As with many things related to the character variety, while TK
X0 is a very nat-

ural concept, actually computing it can be difficult. Here, we content ourselves
with finding TK

X0 for three of the simplest examples. In each case, there is only
one natural choice for X0, and moreover it is isomorphic to C \ {finite set}. Thus
X0 is rational and C(X0) is just rational functions in one variable, which makes
it easy to express the answer. We do one fibered example and two that are non-
fibered; in all cases the simplest Seifert surface has genus 1.



TWISTED ALEXANDER POLYNOMIALS OF HYPERBOLIC KNOTS 29

8.1. Example: m003. We start with the sibling M of the figure-8 complement,
which is one of the two orientable cusped hyperbolic 3-manifolds of minimal
volume. The manifold is m003 in the SnapPea census [CHW, CDW], and is the
once-punctured torus bundle over the circle with monodromy

(−2 1
1 −1

)
. Its ho-

mology is H1(M ;Z) =Z⊕Z/5Z, and it is, for instance, the complement of a null-
homologous knot in L(5,1). After randomizing the triangulation a bit, SnapPy
gives the following presentation

π :=π1(M) = 〈
a,b

∣∣ bab3aba−2 = 1
〉

.

We will view X (π) as a subvariety of X
(〈a,b〉), where 〈a,b〉 is the free group on

{a,b}. Now X
(〈a,b〉)∼=C3 where the coordinates are (x, y, z) = (

tr(a), tr(b), tr(ab)
)
;

this is because the trace of any word w ∈ 〈a,b〉 can be expressed in terms of
these coordinates using the fundamental relation tr(UV ) = tr(U )tr(V )−tr(UV −1)
for U ,V ∈ SL(2,C). Since π is defined by the single relator R = bab3aba−2, the
character variety X (π) is cut out by the polynomials corresponding to tr(R) = 2,
tr

(
[a,R]

) = 2, and tr
(
[b,R]

) = 2. Using Gröbner bases in [Sage] to decompose
X (π) into irreducible components over Q, we found a unique component X0

which contains an irreducible character, i.e. contains a point where tr
(
[a,b]

) 6= 2.
Explicitly, the ideal of X0 is

〈
y z −x − z, xz +1

〉
and hence X0 can be bijectively

parameterized by

f : C\ {0} → X0 where f (u) = (
u,1−u2,−1/u

)
.

To compute TK
X0, we consider the curve R0 ⊂ R(π) lying above X0 consisting of

representations of the form

ρ(a) =
(

u 1
−1 0

)
and ρ(b) =

(
0 v

−v−1 1−u2

)
where v + v−1 = u−1.

Such representations are parameterized by v ∈ C \ {0}, and hence C(R0) ∼= C(v)
and we have an explicit π→ GL(2,C(v)) which is the restriction of the tautolog-
ical representation. Using Lemma 2.13, we find the torsion polynomial of this
representation is

t − 2
(
v4 + v2 +1

)
v3 + v

+ t−1.

Substituting in v =±(
1−

p
−4u2 +1

)/
2u to eliminate v gives the final answer

TK
X0(t ) = t + 2

(
u2 −1

)
u

+ t−1.

8.2. Example: m006. The census manifold M = m006 can also be described as
5/2 surgery on one component of the Whitehead link L. (Here our conventions
are such that +1 surgery on either component of L gives the trefoil knot whereas
−1 surgery gives the figure-8 knot). Thus M is, for instance, the complement of
a null-homologous knot in the lens space L(5,2) and again H1(M ;Z) =Z⊕Z/5Z.
Using spun-normal surfaces, it is easy to check via [CD] that there is a Seifert
surface in M which has genus one with one boundary component.
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SnapPy gives the presentation

π :=π1(M) = 〈
a,b

∣∣ b2abab2a−2 = 1
〉

.

Changing the generators to anew = a−1 and bnew = ab rewrites this as

π= 〈
a,b

∣∣ a3bab3ab = 1
〉

.

Using the same setup as in the last example, we find a single component X0

containing an irreducible character. The ideal of X0 is
〈

x − y, y2z − z −1
〉

and
hence we can bijectively parameterize X0 by

(8.3) f : C\ {1,−1} → X0 where f (u) = (
u,u, (u2 −1)−1).

Considering the curve of representations given by

ρ(a) =
(

v 1
0 v−1

)
and ρ(b) =

(
v−1 0

3−2u2

u2−1 v

)
where v + v−1 = u

and again directly applying Lemma 2.13 and eliminating v gives

TK
X0(t ) = 2u2 −1

u2 −1

(
t + t−1)+ 2u3

u2 −1
.

8.4. m037. The census manifold M = m037 has H1(M ;Z) =Z⊕Z/8Z, and so is
not a knot in a Z/2-homology sphere. However, this makes no difference in this
character variety context. Again, using spun-normal surfaces one easily checks
that there is a Seifert surface in M which has genus one with one boundary com-
ponent. Now π= 〈

a,b
∣∣ a3ba2ba3b−2 = 1

〉
, and this time, there are two compo-

nents of X (π) containing irreducible characters. However, one of these consists
entirely of metabelian representations which factor through the epimorphism
π→ Z/2∗Z/2 = 〈

c,d
∣∣ c2 = d 2 = 1

〉
given by a 7→ c and b 7→ d . Focusing on the

other component X0, it turns out the ideal is
〈

xz −2y,4y2 − z2 −4
〉

and so we
can parameterize X0 by

f : C\ {−2,0,2} → X0 where f (u) =
(

u2 +4

4u
,

u2 +4

u2 −4
,

8u

u2 −4

)
and then calculate

TK
X0(t ) = (u +2)4

16u2

(
t + t−1)+ (u +2)

(
u4 +4u3 −8u2 +16u +16

)
8(u −2)u2 .

8.5. The role of ideal points. A key part of the Culler-Shalen theory is the asso-
ciation of an essential surface in the manifold M to each ideal point of a curve
X0 ⊂ X (M). The details are in e.g. [Sha], but in brief consider the smooth pro-
jective model X̂ 0 with its rational map X̂ 0 → X0. Now X̂ 0 is a smooth Riemann
surface, and the finite number of points where X̂ 0 → X0 is undefined are called
the ideal points of X0. To each such point x, there is an associated non-trivial
action of π := π1(M) on a simplicial tree Tx . One then constructs a surface S in
M dual to this action, which can be taken to be essential (i.e. incompressible,
boundary incompressible, and not boundary parallel). As minimal complexity
Seifert surfaces often arise from an ideal point of some X0, a very natural idea is
thus to try to use such an ideal point x to say something about TK

X0. Moreover,
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provided that X0 ⊂ X (M)irr , a surface associated to an ideal point is never a fiber
or semifiber, which suggests that one might hope to prove non-monotonicity
of TK

X0 by examining TK
X0(x). Thus, we now compute what happens to TK

X0 at
such ideal points in our two non-fibered examples m006 and m037. (Aside: It
is known that even for knots in S3 not all boundary slopes need arise from ideal
points [CT], so it is probably too much to expect that there is always an ideal
point which gives a Seifert surface.)

8.6. Ideal points of m006. If we view the parameterization (8.3) above as a ratio-
nal map from P 1(C) → X0, we have ideal points corresponding to u ∈ {−1,1,∞}.
To calculate the boundary slopes of the surfaces associated to each of these, we
consider the trace functions of SnapPy’s preferred basis µ,λ for π1(∂M). In our
presentation for π, we calculate

tr(µ) = tr(a2bab) = x
(
z2 − z −1

)=− u
(
u4 −u2 −1

)
(u −1)2(u +1)2

tr(λ) = tr(a3ba) =−x3 −xz +2x =−u
(
u4 −3u2 +3

)
(u −1)(u +1)

tr(µλ) = x4 −2x2 − z +1 =
(
u2 −2

)(
u4 −u2 +1

)
(u −1)(u +1)

.

Now, consider an ideal point x with associated surface S, and pick a simple
closed curve γ on π1(∂M). Then the number of times γ intersects ∂S is twice
the order of the pole of tr(γ) at x (here, if tr(γ) has a zero of order m at x, this
counts as a pole of order 0, not one of order −m). The above formulae thus show
that the points u = 1 and u =−1 give surfaces with boundary slope µλ2, whereas
u =∞ gives one with boundary slope µ3λ−1. The latter is the homological lon-
gitude, and as there is only one spun-normal surface with that boundary slope
and each choice of spinning direction, it follows that the surface associated to
ξ=∞ must be the minimal genus Seifert surface. Thus we’re interested in

TK
X0(u =∞)(t ) = 2

(
t + t−1)+ (simple pole)t 0.

8.7. Ideal points of m037. This time we have four ideal points corresponding to
u =−2,2,0,∞. We find

tr(µ) = tr(a2ba3) = u8 −48u6 +96u4 −768u2 +256

64(u −2)(u +2)u3

tr(λ) = tr(a−1ba3b)

=−u12 −72u10 +1264u8 −12032u6 +20224u4 −18432u2 +4096

256(u −2)2(u +2)2u4

tr(µλ) =−u8 −16u6 +352u4 −256u2 +256

4(u −2)3(u +2)3u
.

Hence {2,−2} give surfaces with boundary slope µ2λ−1 and {0,∞} give surfaces
with boundary slopeµ4λ3. In fact, the homological longitude isµ2λ−1 and again
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using spun-normal surfaces one easily checks that surfaces associated to {2,−2}
are the minimal genus Seifert surface. Thus, we care about

TK
X0(u = 2)(t ) = 4

(
t + t−1)+ (simple pole)t 0 and TK

X0(u =−2)(t ) = 0.

8.8. General picture for ideal points. Based on the preceding examples and a
heuristic calculation for tunnel-number one manifolds, we posit:

8.9. Conjecture. Let K be a knot in a rational homology 3-sphere, and X0 a com-
ponent of X (K )irr . Suppose x is an ideal point of X0 which gives a Seifert surface
(hence K is nonfibered). Then the lead coefficient of TK

X0 has a finite value at x.

Unfortunately, Conjecture 8.9 does not seem particularly promising as an at-
tack on Conjecture 1.12 for distinguishing fibered versus nonfibered cases. More-
over, in terms of looking at such Seifert ideal points to show that TK

X0 determines
the genus, the second ideal point u =−2 in Section 8.7 where TK

X0 vanishes is not
a promising sign.

However, when trying to use an ideal point x of X0 which gives a Seifert sur-
face to understand TK

X0, it may be wrong to focus on just the value of TK
X0 at x.

After all, there is no representation of π corresponding to x. Rather, as in the
construction of the surface associated to x, perhaps one should view x as giv-
ing a valuation on C(R0), where R0 is a component of R(M) surjecting onto X0.
If we unwind the definition of the associated surface and its properties, we are
left with the following abstract situation. There is a field F with an additive val-
uation v : F× → Z with a representation ρ : π→ SL(2,F) so that for each γ ∈ π
we have v

(
tr(γ)

) ≥ ∣∣φ(γ)
∣∣ where φ : π→ Z is the usual free abelianization ho-

momorphism. This alone is not enough, because even in the fibered case one
always has such a setup by looking at an ideal point of a component of X (M)
consisting of reducible representations. Thus it seems that the key to such an
approach must be to exploit the fact that since X0 contains an irreducible char-
acter there is a γ ∈π with φ(γ) = 0 yet v

(
tr(γ)

)
is arbitrarily large.
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