
ALEXANDER POLYNOMIALS OF PLANE ALGEBRAIC CURVES

Abstract. In this note we use Reidemeister torsion to study the relationship be-
tween the Alexander invariants of a curve complement and the Alexander invariants
of the singularities. In particular we give a single approach to study the results of
Cogolludo{Florens and Maxim{Leidy. We extend the results of Cogolludo{Florens
to the multivariable case and we extend the results of Maxim{Leidy to the twisted
case. The extensions in this note are very modest.

Caveat and Warning

(1) The results in this note should be taken with a grain of salt. I am not an
algebraic geometer.

(2) This note is just the fruit of my attempts at understanding the work of
Cogolludo{Florens and Leidy{Maxim. It's not at all clear whether my gener-
alizations are of any use at all.

(3) Some of the material (especially Section 4) might also be considered algebraic
overkill.

1. Introduction

Let C � C2 be an algebraic curve with irreducible components C1; : : : ; Cr. Let
B4 � C2 be a su�ciently large closed ball, in the sense that int(B4) n (C \ int(B4))
is di�eomorphic to C2 n C. Such a ball exists by [Di92, Theorem 1.6.9]. Note that in
particular all singularities of C lie in the interior of B4.
We denote int(B)4 \ C respectively B4 \ Ci by C respectively by Ci again. Now let

X(C) := B4 n �C. We denote the meridians of C1; : : : ; Cr by �1; : : : ; �r.
The fundamental group �1(X(C)) can be in theory computed using a well{known

approach of Zariski and van Kampen, we refer to [Di92, p. 127] for details. In practice
though this algorithm is di�cult to implement. It is therefore useful to get partial
information on �1(X(C)) from more computable invariants.
This fundamental group is in general non{abelian, we refer [Di92, p. 129] for the

simplest curves with non{abelian fundamental group which were already known to
Zariski [Za29]. Non{abelian groups are in general very di�cult to study. It is therefore
useful to study abelian invariants extracted from the groups.
The one{variable Alexander polynomials of plane algebraic curves and their sin-

gularities were intensively studied by Libgober [Li82]. In particular he showed the
following. Let C � C2 be an algebraic curve and H1(X(C) ! Z the homomorphism
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given by sending each meridian to 1 2 Z. Denote the corresponding Alexander poly-
nomial by �(X(C)). Then the homology of the r{fold cover of C2 branched along C
is in�nite if and only if an r{th root of unity is a zero of �(X(C)) (cf. [Li82, p. 840]
and [Su74]).
Given a point P = (xP ; yP ) 2 C

2 and � > 0 we write B4(P; �) = f(x; y) 2 C2jjx �
xP j

2 + jy � yP j
2 � �2g and S3(P; �) = @B4(P; �).

Now let Sing(C) := fP1; : : : ; Psg � B4 denote the set of singularities of C. Then
there exist �1; : : : ; �s > 0 such that

(1) B4(Pi; �i) are pairwise disjoint,
(2) B4(Pi; �i) � int(B4),
(3) B4(Pi; �i) n C \ B

4(Pi; �i) is the cone on S
3(Pi; �i) n C \ S

3(Pi; �i).

Such �i exist by Thom's �rst isotopy lemma (cf. [Di92, Section 5] for details). Further-
more let S3

1 = @B4. Let Li := S3
i \C and write X(Li) := S3

i n �Li for i = 1; : : : ; s;1.
Now let L be the link at a singularity or the L `at in�nity'. It is a well{known

result that the links Li; i = 1; : : : ; s;1 are iterated torus links (cf. e.g. [Di92,
Proposition 2.2.6]). If L is the link at a singularity P , then the number of components
of L can be read o� from the Puiseux expansion. It also equals the number of
irreducible components of the analytic germ of (X(C); P ) (cf. [Di92, p. 103]).
Burau [Bu32] showed that the link at the singularity is determined by its one{

variable Alexander polynomial if the link has only one component. If L has more
than one singularity, then it is in general not determined by its one{variable Alexander
polynomial (cf. [Di92, p. 44]).
We also point out that Loeser and Vaqui�e [LV90] gave an explicit formula for the

on{variable Alexander polynomial �(X(C)) in terms of the number of irreducible
components, the degree of C and the type and location of the singularities. In partic-
ular they give examples which showed that the Alexander polynomial of X(C) is can
not determined just from the number of irreducible components, the degree of C and
the type (but not the location) of the singularities.
Libgober [Li82] �rst showed that �(X(C)) 2 Z[t�1] divides the product of the

Alexander polynomials of the singularities. This result was re�ned by Degtyarev
[De04, p. 205] who showed one restrict oneself to a certain subset of the singularities.
Another re�nement is given by [CF05, Corollary 1.2] which shows that in some sense,
up to a minor extra term, �(X(C)) divides the product of the Alexander polynomial
of the link at in�nity and the product of the Alexander polynomials of the singularities
twice. Furthermore in [CF05, Theorem 1.1] this is extended to twisted one{variable
Alexander polynomials.
The multivariable Alexander polynomial of a link and a curve complement is a

�ner invariant. For example the link type of algebraic links are completely deter-
mined by their multivariable Alexander polynomials (cf. [Ya84, Theorem A] for links
and [Bu34] for links with 2 components) (cf. also [Di92, p. 44]). The multivariable
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Alexander polynomial of an algebraic link can be computed explicitly given a de-
scription as an iterated torus link (cf. [EN85, Theorem 12.1]). Note that any such
multivariable Alexander polynomial is a product of terms (tn11 � � � � � tnrr � 1)k; k 2 Z.

We now state our two main results. Let C � C2 be an algebraic curve with ir-
reducible components C1; : : : ; Cr. We denote the meridians of C1; : : : ; Cr in X(C)
by �1; : : : ; �r. Let  : H1(X(C);Z) ! Zm be an epimorphism. Furthermore let
Sing(C) := fP1; : : : ; Psg � B4 denote the set of singularities of C. Let Li and
X(Li) := S3

i n �Li for i = 1; : : : ; s;1 as above.
The following extends results of Cogolludo{Florens to the multivariable case (Corol-

lary 7.2).

Theorem 1.1. Let R be a commutative UFD. Let � = R[t�11 ; : : : ; t�1m ] be the multi-
variable polynomial ring of rankm. Furthermore let � : �1(X(C))! GL(R[t�11 ; : : : ; t�1m ]; d)
be a unitary  {compatible representation. Assume that m � 2 and that  is an epi-
morphism. Then

��
1 (X(C)) ���

1 (X(C)) 2 R[t�11 ; : : : ; t�1m ]

divides
rY
i=1

det(id� �(�i))
maxf0;si��(Ci)g

Y
i2f1;:::;s;1g

��
1 (X(Li)) 2 R[t

�1
1 ; : : : ; t�1m ]:

The following theorem is Theorem 6.3 in the text. It can be viewed as a general-
ization of the results of Leidy{Maxim to the twisted case (cf. also Theorem 6.4 for a
variation on their degree formula).

Theorem 1.2. Let K[t�1] be a skew Laurent polynomial ring with skew quotient �eld
K(t). Let � : �1(X(C)) ! GL(K[t�1]; d) be a unitary  {compatible representation.
Let B be any K[t�1]{basis for H2(X(C);K(t)). Assume that H1(X(Li);K(t)) = 0 for
i = 1; : : : ; s;1. Then we have the following equality in K1(K(t))=K1(K[t

�1]):

� �
Y

i2f1;:::;s;1g

��(X(Li)) = ��(X(C)) ���(X(C)) � I(B);

where

� :=
rY
i=1

(id� �(�i))
si��(Ci)

and si := #Sing(C) \ Ci.

Acknowledgment: I would like to thank Laurentiu Maxim and Vincent Florens
for patiently explaining their results to me and for generously answering all my ques-
tions.

Notations and conventions: All homology groups and all cohomology groups
are with respect to Z{coe�cients, unless it speci�cally says otherwise. For a link L
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in S3, X(L) denotes the exterior of L in S3. (That is, X(L) = S3 n�L where �L is an
open tubular neighborhood of L in S3). An arbitrary (commutative) �eld is denoted
by F. For a ring R we denote by R� the units of R.

2. Plane algebraic curves and their topology

The following summarizes some well{known results.

Theorem 2.1. (1) �1(X) is normally generated by the meridians of the irre-
ducible components and H1(X) is a free abelian group of rank r with basis
given by the meridians of the irreducible components.

(2) X is homotopy equivalent to a 2{complex.
(3) If C intersects the line at in�nity transversely, then �1(@X) ! �1(X) is sur-

jective.

Proof. The �rst statement follows from the fact that by gluing in disks at the merid-
ians we kill the fundamental group. The statement about the �rst homology group
follows from Lefschetz duality (cf. [Li82, p. 835]). For the second statement we refer
to [Li86] for a proof (cf. also [Di92, Theorem 1.6.8]. The last statement follows from
applying the Lefschetz hyperplane theorem (cf. e.g. [Di92, p. 25]) to a hyperplane
`close to in�nity' (cf. also [LM05, p. 9]). �

Let M be a 3{manifold and � : H1(M ;Z) ! Z a homomorphism. We say that
(M;�) �bers over S1 if the homotopy class of maps M ! S1 determined by � 2
H1(M ;Z) = [M;S1] contains a representative that is a �ber bundle over S1. Milnor
[Mi68, Theorem 4.8] showed that for i = 1; : : : ; s;1 (X(Li); �i) �bers over S

1 for
�i : H1(X(Li);Z) ! H1(X;Z) ! Z where the last map is induced by sending all
meridians to 1. The Milnor number associated to the singularity Pi is de�ned as
�(C; Pi) = dim(H1(Fi;Q)), where Fi is the �ber of X(Li). We write �(C; P1) for the
Euler characteristic of the �ber of X(L1).
Given an algebraic curve D we de�ne �(D) to be the Euler characteristic of the

normalized curve, i.e. the curve without singularities obtained from D by blow{ups.
Note that �(D) can be computed as follows: Let D0 be the result of �rst removing
balls around the singularities, and let D00 be the result of gluing in disks to all the
boundary components of D0. Then D00 is topologically equivalent to D blown up at
the singularities, in particular

�(D) = �(D00):

Since gluing in a disk increases the Euler characteristic by one we also get the following
useful formula

(1) �(D) = �(D0) + b0(@D
0):
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Let C � C2 again be an algebraic curve with irreducible components C1; : : : ; Cr.
Then the discussion above can be used to show that �(C) =

Pr

i=1 �(Ci).

3. Reidemeister torsion

For the remainder of the paper we will only consider associative rings R with 1 6= 0
with the property that if r 6= s, then Rr is not isomorphic to Rs. This is for example
the case if R is a skew �eld.
For such a ring R de�ne GL(R) := lim

!
GL(R; n), where we have the following

maps in the direct system: GL(R; n) ! GL(R; n + 1) given by A 7!

�
A 0
0 1

�
. We

de�ne K1(R) = GL(R)=[GL(R);GL(R)]. In particular K1(R) is an abelian group.
For details we refer to [Mi66] or [Tu01].
Let K be a (skew) �eld and A a square matrix over K. After elementary row opera-

tions we can arrange that A is represented by a 1�1{matrix (d). Then the Dieudonn�e
determinant det(A) 2 K�

ab = K�=[K�;K�] (where K� = K n f0g) is de�ned to be d.
Note that the Dieudonn�e determinant is invariant under elementary row operations
and that A = det(A) 2 K1(K). The Dieudonn�e determinant induces an isomorphism
det : K1(K) ! K�

ab. We refer to [Ro94, Theorem 2.2.5 and Corollary 2.2.6] for more
details.
Let X be any CW{complex, by this we will always mean a �nite connected CW{

complex. Denote the universal cover of X by ~X. We view C�( ~X) as a right Z[�1(X)]{
module via deck transformations. Let R be a ring. Let � : �1(X) ! GL(R; d) be
a representation, this equips Rd with a left Z[�1(X)]{module structure. We can
therefore consider the right R{module chain complex C�

� (X;R
d) := C�( ~X) 
Z[�1(X)]

Rd. We denote its homology by H�
i (X;Rd). We drop the notation � when the

representation is clear from the context.
We now assume thatH�

� (X;Rd) is a freeR{module. Let B be a basis forH�
� (X;Rd).

We can de�ne the Reidemeister torsion ��(X;B) 2 K1(R)=��(�1(X)). IfH�
� (X;Rd) =

0, then we drop the notation B.
Since ��(X;B) only depends on the homeomorphism type of X and the choice of

a basis B we can de�ne ��(M;B) for a manifold M by picking any CW{structure for
M . We refer to the excellent book of Turaev [Tu01] for �lling in the details.

4. Multivariable Laurent polynomial rings

By a multivariable skew Laurent polynomial ring of rank m over K we mean a ring
R which is an algebra over a skew �eld K with unit (i.e. we can view K as a subring
of R) together with a decomposition R = ��2ZmV� such that the following hold:

(1) V� is a one{dimensional K{vector space,
(2) V� � V� = V�+�.
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In particular R is Zm{graded. Note that V(0;:::;0) = K and that properties (1) and (2)
imply that R is a domain.
The example to keep in mind is a commutative Laurent polynomial ring F[t�11 ; : : : ; t�1m ].

Let t� := t�11 � � � � � t�mm for � = (�1; : : : ; �m), then V� = Ft�; � 2 Zm has the required
properties.
Let R be a multivariable skew Laurent polynomial ring of rank m over K. To

make our subsequent de�nitions and arguments easier to digest we will always pick
t� 2 V� n f0g for � 2 Z

m such that t�� = (t�)�1 for all � 2 Zm. We get the following
properties

(1) t�t~�t�(�+~�) 2 K� for all �; ~� 2 Zm, and
(2) t�K = Kt� for all �.

If m = 1 then we can and will always pick t(n) 2 V(n) such that t(n) = (t(1))n for any
n 2 Z.
We normally denote a multivariable skew Laurent polynomial ring of rankm over K

suggestively by K[t�11 ; : : : ; t�1m ]. We will always assume that we chose t�; � 2 Zm. The
argument of [DLMSY03, Corollary 6.3] can be used to show that any such Laurent
polynomial ring is a (left and right) Ore domain. We denote the quotient �eld of
K[t�11 ; : : : ; t�1m ] by K(t1; : : : ; tm).
In the following assume that K[t�11 ; : : : ; t�1m ] is equipped with an involution r 7! r

such that r � s = s � r for all r; s 2 K[t�11 ; : : : ; t�1m ]. This extends to an involution on

K(t1; : : : ; tm) and to an involution on K1(K(t1; : : : ; tm)) via (aij) := (aji) for (aij) 2

K1(K(t1; : : : ; tm)). Note that det(A) = det(A) for any A 2 K1(K(t1; : : : ; tm)).

5. The main theorem

5.1. Compatible homomorphisms. Let X be a manifold and let  : H1(X)! Zm

be an epimorphism. Let K[t�11 ; : : : ; t�1m ] be a multivariable skew Laurent polynomial
ring of rank m as in Section 4. A representation � : �1(X) ! GL(K[t�11 ; : : : ; t�1m ]; d)
is called  {compatible if for any g 2 �1(X) we have �(g) = At (g) for some A 2
GL(K; d). This generalizes de�nitions in [Tu02] and [Fr05]. We denote the induced
representation �1(X)! GL(K(t1; : : : ; tm); d) by � as well.
The following will be a useful lemma:

Lemma 5.1. Let X be a manifold and  : H1(X;Z)! Zm be a non{trivial map and
� : �1(X) ! K[t�11 ; : : : ; t�1m ] a  {compatible homomorphism to a multivariable skew
Laurent polynomial ring. Then H0(X;K(t1; : : : ; tm)) = 0.

Proof. We can give X a CW{structure with one zero cell and r one cells. Denote the
universal cover by ~X. Then picking appropriate lifts of the cells of X to ~X we see
that the map C1( ~X)! C0( ~X) is represented by a matrix of the form�

1� g1 1� g2 : : : 1� gr
�
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where g1; : : : ; gr 2 �1(X) generate �1(X). Since  is non{trivial and since � is  {
compatible it follows that �(1�gj) 6= 0 2 K[t�11 ; : : : ; t�1m ] for some j, but then �(1�gj)
is a unit in K(t1; : : : ; tm). It therefore follows that H0(X;K(t1; : : : ; tm)) = 0. �

5.2. Unitary representations and intersection pairings. We explain carefully
the de�nition of the intersection pairings with twisted coe�cients. This is slightly
delicate even in the case that R is a commutative ring.
In this section let R be a (possibly non{commutative) ring with involution r 7! r

such that ab = b � a. Let V be a right R{module together with a non{singular R{
sesquilinear inner product h ; i : V � V ! R. This means that for all v; w 2 V and
r 2 R we have

hvr; wi = hv; wir; hv; wri = rhv; wi

and h ; i induces via v 7! (w 7! hv; wi) an R{module isomorphism V �= HomR(V;R).
Here we view HomR(V;R) as right R{module homomorphisms where R gets the right
R{module structure given by involuted left multiplication. Furthermore consider
HomR(V;R) as a right R{module via right multiplication in the target R.
We say that A 2 GL(V;R) is unitary if

hAv;Awi = hv; wi

for all v; w 2 V; g 2 �1(M).
Let X be an n{manifold and � := �1(X). Let � : � ! GL(V ) a unitary represen-

tation. This representation � can be used to de�ne a left Z[�]{module structure on
V . Denote the universal cover of X by ~X. Let V 0 = V as R{modules equipped with
the right Z[�]{module structure given by v � g := �(g�1)v for v 2 V and g 2 �. Then
the map

HomZ[�](C�( ~X); V 0) ! HomR

�
C�( ~X)
Z[�] V;R

�
f 7! ((c
 w) 7! hf(c); wi) :

is a well{de�ned right R{module homomorphism (note that we need that � is unitary)
and gives rise to isomorphisms H�(X;V 0) ! H�(HomR

�
C�( ~X) 
Z[�] V;R

�
). The

evaluation homomorphism now induces a homomorphism of right R{modules

H i(X;V 0)! HomR(Hi(X;V ); R);

here we equip H�(�; V ); H
�(�; V ) with the right R{module structures given on V . If

R is a skew �eld then the universal coe�cient theorem for chain complexes over the
�eld R applied to the R{complex C�( ~X)
Z[�] V shows that the evaluation homomor-
phism is in fact an isomorphism.
Combining with the Poincar�e duality isomorphism (cf. [Wa99]) we get the following

maps

Hi(X;V )! Hi(X; @X;V ) �= Hn�i(X;V 0)! HomR(Hn�i(X;V ); R):

We therefore get an R{sesquilinear pairing

Hi(X;V )�Hn�i(X;V )! R:
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If n = 2i then the pairing is hermitian. It is called the intersection pairing of X with
V {coe�cient system.
For the remainder of this paper we equip Rd with the non{singular R{sesquilinear

inner product hv; wi = wtv. Note that a matrix in A = (aij) 2 GL(R; d) is unitary if

AA
t
= id where A = (aij).

5.3. The main theorem. For the remainder of this section let C � C2 be an al-
gebraic curve with irreducible components C1; : : : ; Cr. We denote the meridians of
C1; : : : ; Cr in X(C) by �1; : : : ; �r. Let  : H1(X(C);Z) ! Zm be an epimorphism.
Let � = K[t�11 ; : : : ; t�1m ] be a multivariable skew Laurent polynomial ring of rank
m with quotient �eld Q(�) = K(t1; : : : ; tm). Furthermore let � : �1(X(C)) !
GL(K[t�11 ; : : : ; t�1m ]; d) be a unitary  {compatible representation.
Now let Sing(C) := fP1; : : : ; Psg � B4 denote the set of singularities of C. Let Li

and X(Li) := S3
i n �Li for i = 1; : : : ; s;1 as in Section 2. We denote the induced

representations �1(X(Li))! �1(X(C))! GL(K[t�11 ; : : : ; t�1m ]; d) by � as well.

Lemma 5.2. (1) If H1(X(Lj);Q(�)
d) = 0 for j = f1; : : : ; s;1g, then for all i we

have Hi(X(Lj);Q(�)
d) = 0 for j = f1; : : : ; s;1g and Hi(@X(C);Q(�)d) = 0.

(2) If Hi(@X(C);Q(�)d) = 0 for all i, then Hi(X(C);Q(�)d) = 0 for all i 6= 2.

Proof. (1) We refer to Section 8.
(2) Since X(C) is homotopy equivalent to a 2{complex by Theorem 2.1 it follows

that Hi(X(C);Q(�)) = 0 for i > 2. Since  is non{trivial and since � is
 {compatible it follows from Lemma 5.1 that H0(X(C);Q(�)) = 0. Consider
the exact sequence

H1(@X(C);Q(�))! H1(X(C);Q(�))! H1(X(C); @X(C);Q(�)):

It remains to show thatH1(X(C); @X(C);Q(�)d) = 0. ButH1(X(C); @X(C);Q(�)) �=
H3(X(C); (Q(�)d)0) which is zero since X(C) is homotopy equivalent to a 2{
complex.

�

Now pick any basis B for H2(X(C);Q(�)d). Then denote by I(B) the matrix
corresponding to the intersection form

H2(X(C);Q(�)d)�H2(X(C);Q(�)d)! Q(�)

and to the basis B. Note that I(B) is a matrix de�ned over Q(�). Since Q(�) is 
at
over � we have a natural isomorphism

H2(X(C);Q(�)d) �= H2(X(C); �d)
� Q(�):

We say that a basis B is de�ned over � if all elements in B are of the form v
 1 with
v 2 H2(X(C); �d).

Lemma 5.3. If B is de�ned over �, then I(B) is a matrix de�ned over �.
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Proof. There exists an intersection pairing

H2(X(C); �d)�H2(X(C); �d)! �:

It follows from the de�nitions that intersection pairings are functorial, i.e. we have a
commutative diagram

H2(X(C); �d) � H2(X(C); �d) ! �
# # #

H2(X(C);Q(�)d) � H2(X(C);Q(�)d) ! Q(�):

The lemma is now immediate. �

The following theorem shows the relationship between the Reidemeister torsions of
the singularities and the curve complement of an algebraic curve.

Theorem 5.4. Let B be any basis for H2(X(C);Q(�)). Assume that H1(X(Li);Q(�)) =
0 for all i. Then we have the following equality in K1(Q(�))=�(�1(X(C))):

� �
Y

i2f1;:::;s;1g

��(X(Li)) = ��(X(C);B) � ��(X(C);B) � I(B);

where

� :=
rY
i=1

(id� �(�i))
si��(Ci)

and si := #Sing(C) \ Ci.

Note that � is de�ned over � if si � �(Ci) � 0 for all i. This is the case if none
of the components Ci is a line, or if any component Ci has at least one singularity.
We postpone the proof to Section 8. The commutative one{variable case is the main
result in [CF05, Theorem 5.6].

6. One{variable Laurent polynomial rings

6.1. Alexander polynomials. Let X be a CW{complex and let  2 H1(X;Z)
non{trivial. Let K be a skew �eld and let K[t�1] be a skew Laurent polynomial ring.
Let � : �1(X)! GL(K[t�1]; d) be a  {compatible representation.
The K[t�1]{modules H1(X;K[t�1]d) are called twisted (non{commutative) Alexan-

der modules. Similar modules were studied in [Co04], [Ha05], [Fr05]. The rings K[t�1]
are principal ideal domains (PID) since K is a skew �eld. We can therefore decompose

H�
i (X;K[t�1]d) �= K[t�1]f �

lM
i=1

K[t�1]=(pi(t))

for some f � 0 and pi(t) 2 K[t�1] n f0g for i = 1; : : : ; l. We de�ne ��
i (X) :=Ql

i=1 pi(t) 2 K[t
�1] n f0g. Note that this di�ers from the de�nition in [Fr05] where

we set ��
i (X) = 0 if f > 0.
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��
i (X) is called the (twisted) Alexander polynomial of (X;�). Note that ��

i (X) 2
K[t�1] has a high degree of indeterminacy. For example writing the pi(t) in a di�erent
order will give a di�erent Alexander polynomial. We refer to [Co04, p. 367] and [Fr05,
Theorem 3.1] for a discussion of the indeterminacy of ��

i (X).
In the case of one{dimensional representations we can determine ��

0 (X). We call
 2 H1(X;Z) primitive if the corresponding map  : H1(X;Z)! Z is surjective.

Lemma 6.1. Let X be a CW{complex,  2 H1(X;Z) primitive. Let � : �1(X) !
GL(K[t�1]; 1) be a  {compatible one{dimensional representation. If Im(�(�1(X))) �
K[t�1] is cyclic, then ��

0 (X) = at� 1 for some a 2 K. Otherwise ��
0 (X) = 1.

Proof. This statement follows easily from considering the chain complex for X and
from well{known properties of PID's. �

Let X be a CW{complex of dimension k and let  2 H1(M ;Z) non{trivial and let
� : �1(M)! GL(K[t�1]; d) be a  {compatible representation. Note thatH�(X;K(t)d) =
H�(X;K[t�1]d)
K[t�1]K(t). We write FH�(K;K[t�1]d) for the quotient ofH�(X;K[t�1]d)
by its maximalK[t�1]{torsion submodule. Note that FH�(K;K[t�1]d) is a freeK[t�1]{
module since K[t�1] is a PID. Note that the map H�(X;K[t�1]d)! H�(X;K(t)d) also
induces a map FH�(X;K[t�1]d)! H�(X;K(t)d).
We say that a basis B = fB0; : : : ;Bkg for H�(X;K(t)d) is a K[t�1]{basis if there ex-

ists a basis ~Bi for FHi(X;K[t�1]d) such that Bi is the image of ~Bi underH�(X;K[t�1]d)!
H�(X;K(t)d).

Theorem 6.2. Let X be a �nite CW{complex which is homotopy equivalent to a
2{complex. Let  2 H1(X;Z) non{trivial and let � : �1(X) ! GL(K[t�1]; d) be a
 {compatible representation. Let B be a K[t�1]{basis for H�(X;K(t)d) de�ned over
K[t�1]. Then ��(M;B) 2 K1(K(t))=K1(K[t

�1]) is independent of the choice of basis
B. Furthermore

��(X;B) = ��
1 (X)��

0 (X)�1 2 K1(K(t))=K1(K[t
�1]):

This theorem was proved in [Tu86, p. 174] and [KL99] in the commutative case.

Proof. Let B0 = fB00; : : : ;B
0
kg be an alternative K[t�1]{basis for Hi(X;K(t)). Let ~Bi

and ~B0i be the corresponding bases for FHi(X;K[t�1]d). Then ~Bi = Ai ~B0i where Ai
is a matrix de�ned over K[t�1] and invertible over K[t�1]. Clearly

��(X;B) =
Y
i

A
(�1)i+1

i ��(X;B0) 2 K1(K(t))=� �(�1(X)):

It follows that ��(X;B) = ��(X;B0) 2 K1(K(t))=K1(K[t
�1]).

The argument in [KL99] can easily be adapted to the non{commutative case to
prove that

��(X;B) =
Y
i

��
i (X)(�1)

i+1

:
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Let Y be a 2{complex homotopy equivalent to X. Since the Alexander polynomial
is a homotopy invariant it is enough to study the Alexander polynomials of Y . Since
Y is a 2{complex it follows that ��

i (X) = 1 for i > 2. Furthermore

H2(Y ;K[t
�1]d) � C2(Y ;K[t

�1]d);

in particular H2(Y ;K[t
�1]d) is torsion{free, hence ��

2 (X) = 1. �

6.2. One{variable version of Theorem 5.4. Let X be a CW{complex and let
 2 H1(X;Z) non{trivial and let � : �1(X) ! GL(K[t�1]; d) be a  {compatible
representation. We de�ne

��(X) := ��
1 (X) ���

0 (X)�1:

Then the following theorem follows immediately from Theorems 5.4 and 6.2.

Theorem 6.3. Let C � C2 be an algebraic curve with irreducible components C1; : : : ; Cr.
Let  : H1(X;Z) ! Z be an epimorphism. Let � : �1(X(C)) ! GL(K[t�1]; d) be a
unitary  {compatible representation. Let B be any K[t�1]{basis for H2(X(C);K(t)).
Assume that H1(X(Li);K(t)) = 0 for i = 1; : : : ; s;1. Then we have the following
equality in K1(K(t))=K1(K[t

�1]):

� �
Y

i2f1;:::;s;1g

��(X(Li)) = ��(X(C)) ���(X(C)) � I(B);

where

� :=
rY
i=1

(id� �(�i))
si��(Ci)

and si := #Sing(C) \ Ci.

A slightly di�erent version in the untwisted commutative case (i.e. K[t�1] = Q[t�1])
was �rst shown by Libgober [Li82]. The commutative case is the main result in [CF05,
Theorem 5.6].

6.3. The degree of the one{variable Alexander polynomial. Let K[t�1] be a
Laurent polynomial ring. Let f(t) 2 K[t�1] n f0g. For f(t) =

Pn

i=m ait
i 2 K[t�1]

with am 6= 0; an 6= 0 we de�ne deg(f(t)) := n �m. Note that deg(��
i (X)) is well{

de�ned (cf. [Co04]). This extends to deg : K(t) n f0g ! Z via deg(f(t)g(t)�1) =
deg(f(t))�deg(g(t)). Since deg is a homomorphism to an abelian group this induces
a homomorphism deg : K(t)�ab ! Z. Using the Dieudonn�e determinant we get a

homomorphism deg : K1(K(t)) ! Z. For a homomorphism Z[�1(X)]
�
�! K[t�1] ,!

K(t) it also passes to deg : K1(K(t))= � �1(X) ! Z. For more details about this
degree homomorphism, we refer to [Fr05, Section 3.3].
If we only consider the degrees we get the following result
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Theorem 6.4. Assume we are in the setting of Theorem 5.4. Let  : H1(X(C);Z)!
Z be the homomorphism given by  (�i) = 1 for all i. Let � : �1(X)! GL(K[t�1]; d) be
a unitary  {compatible representation. Then H�(X(Li);K(t)) = 0 for i = 1; : : : ; s;1
and for any K[t�1]{basis B for H2(X(C); Q(�)d) we have

deg(��(X(C);B)) �
d

2

�
� �(C) +

X
i2f1;:::;s;1g

(�(C; Pi)� 1) +
rX
i=1

#Sing(C) \ Ci

�
:

In particular

deg(�1(X(C))) �
d

2

�
2� �(C) +

X
i2f1;:::;s;1g

(�(C; Pi)� 1) +
rX
i=1

#Sing(C) \ Ci

�
:

Note that
Pr

i=1#Sing(C) \ Ci can be viewed as the number of singularities, each
counted with a weight (namely the number of sheets that meet at the singularity).

Proof. For i = 1; : : : ; s;1 it follows from [Mi68, Theorem 4.8] that (X(Li); H1(X(Li);Z)!

H1(X(C);Z)
 
�! Z) �bers over S1. It then follows from [Ha05, Fr05] thatH�(X(Li);K(t)) =

0 and
deg(��(X(Li))) = d (�(C; Pi)� 1):

Now let B be a K[t�1]{basis for H2(X(C);K(t)). In particular we can therefore apply
Theorem 5.4 and we get

� �
Y

i2f1;:::;s;1g

��(X(Li)) = ��(X(C);B) � ��(X(C);B)) � I(B);

in K1(K(t))=� �(�1(X)) where � =
Qr

i=1(id� �(�i))
si��(Ci) and si = #Sing(C) \ Ci.

Clearly I(B) is a matrix de�ned over K[t�1]. Since K[t�1] is a PID we can diag-
onalize I(B) over K[t�1] using elementary row and column operations. This shows
that det(I(B)) 2 K(t)�ab can be represented by an element in K[t�1]. In particular it
follows that deg(I(B)) � 0.
Furthermore note that

deg(��(X(C);B)) = deg(det(��(X(C);B)))

= deg(det(��(X(C);B)))

= deg(det(��(X(C);B)))

= deg(��(X(C);B)):

Furthermore

deg
� rY
i=1

(id� �(�i))
si��(Ci)

�
= d

rX
i=1

(si � �(Ci))

since � is  {compatible and  (�i) = 1 for all i. Note that by equation (1) we have
rX
i=1

(si � �(Ci)) =
rX
i=1

si � �(C):
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From the fact that the degree map is a homomorphism it now follows that

2 deg(��(X(C);B)) � d(s� �(C)) + d
X

i2f1;:::;s;1g

(�(C; Pi)� 1):

The �rst inequality is now immediate. The second equality follows from Theorem
6.2 and the observation that the argument in Lemma 5.1 can be used to show that
deg(��

0 (X(C))) � d. �

Remark. If C intersects the line at in�nity transversely, then Leidy and Maxim [LM05]
prove two upper bounds on deg(�1(X(C))) in the untwisted case, one just involving
the singularities, and one just involving the link at in�nity. Combined they give (in
the case d = 1) a slightly better bound than ours. Note that if C intersects the line at
in�nity transversely, then L1 is just the Hopf link on d components, its one{variable
Alexander polynomial is (td�1)d�2(t�1) (cf. [Ok02, p. 9]) and has degree d(d�2)+1.
So the higher{order Alexander polynomials have degree d(d� 2).

Remark. Theorem 6.3 has the advantage over the bounds in [LM05] that it is an
equality, i.e. the study of the degrees of ��(X(C)) is in some way equivalent to the
study of the degree of I(B).

7. Commutative representations

Note that there is no multivariable Alexander polynomial de�ned over non{commutative
multivariable Laurent polynomial rings. The reason is that if A is a matrix de-
�ned over a multivariable skew Laurent polynomial ring � of rank m � 2, then
det(A) 2 Q(�)�=[Q(�)�; Q(�)�] is in general not represented by an element in �.
If we want to study multivariable Alexander polynomials we therefore have to go

to the commutative setting.

7.1. Torsion invariants. Let R be a commutative Noetherian unique factorization
domain (henceforth UFD). An example of R to keep in mind is F[t�1 ; t

�
2 ; : : : ; t

�
n ], a

(multivariable) Laurent polynomial ring over a �eld F. For a �nitely generated R-
module A, we can �nd a presentation

Rr P
�! Rs ! A! 0

since R is Noetherian. Let i � 0 and suppose s � i � r. We de�ne Ei(A), the i-th
elementary ideal of A, to be the ideal in R generated by all (s � i) � (s � i) minors
of P if s � i > 0 and to be R if s � i � 0. If s � i > r, we de�ne Ei(A) = 0. It is
known that Ei(A) does not depend on the choice of a presentation of A (cf. [CF77,
p. 101] together with [Li97, Theorem 6.1]).
Since R is a UFD there exists a unique smallest principal ideal of R that contains

E0(A). A generator of this principal ideal is de�ned to be the order of A and denoted
by ord(A) 2 R. The order is well-de�ned up to multiplication by a unit in R. Note
that A is not R-torsion if and only if ord(A) = 0. For more details, we refer to [Hi02].
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Given a UFD R we denote its quotient �eld by Q(R). We use the determinant to
identify K1(Q(R)) with Q(R)

�.

7.2. Twisted Alexander invariants. Let X be a CW{complex. Let  : �1(X)!
Zm be a homomorphism. We do not demand that  is surjective. Let R be a commu-
tative unique factorization domain (UFD), e.g. R = Z; R = C; R = Z=p. Henceforth
R[t�11 ; : : : ; t�1m ] and R(t1; : : : ; tm) will denote the usual commutative Laurent polyno-
mial ring and its quotient �eld.
Let � : �1(M) ! GL(R; k) be a representation. Using � and  , we de�ne a left

Z[�1(M)]-module structure on Rd 
Z Z[t
�1
1 ; : : : ; t�1m ] =: R[t�11 ; : : : ; t�1m ]d as follows:

g � (v 
 p) := (�(g) � v)
 (t (g)p)

where g 2 �1(M) and v 
 p 2 Rd 
Z Z[t
�1
1 ; : : : ; t�1m ] = R[t�11 ; : : : ; t�1m ]d and t (g) is in

multiindex notation. Note that R[t�11 ; : : : ; t�1m ] is a UFD again.
We can therefore consider the R[t�11 ; : : : ; t�1m ]-modules H�

i (X;R[t�11 ; : : : ; t�1m ]d). If
X has �nitely many cells in dimension i then these modules are �nitely generated
over R[t�11 ; : : : ; t�1m ] since R[t�11 ; : : : ; t�1m ] is Noetherian.
The i-th (twisted) Alexander polynomial of (X; ; �) is de�ned to be ord(H�

i (X;R[t�11 ; : : : ; t�1m ]d)) 2
R[t�11 ; : : : ; t�1m ] and denoted by ��

i (X). Note that twisted Alexander polynomials are
well-de�ned up to multiplication by a unit in R[t�11 ; : : : ; t�1m ]. We drop � when � is
the trivial representation to GL(Q; 1). We also de�ne

��(X) := ��
1 (X) � (��

0 (X))�1:

Remark. Let X be a compact manifold. Then �1(X) is �nitely presented and we
can obtain the Eilenberg{MacLane space K(�1(X); 1) by adding cells of dimension
greater than or equal to 3 to X. This does not change the two lowest homology
groups, in particular

H�
i (X;R[t�11 ; : : : ; t�1m ]d) �= H�

i (K(�1(X); 1);R[t�11 ; : : : ; t�1m ]d)

In particular ��
i (X) only depends on �1(X) for i = 0; 1. Furthermore given a pre-

sentation of the fundamental group Fox calculus [Fo53, Fo54, CF77]) can be used to
compute ��

i (K(�1(X); 1)) for i = 0; 1.

7.3. Multivariable version of Theorem 5.4. In the following let R be a commu-
tative UFD.

Theorem 7.1. Assume we are in the setting of Theorem 5.4. Let  : H1(X(C);Z)!
Zm be a non{trivial homomorphism and let � : �1(X) ! GL(R[t�11 ; : : : ; t�1m ]; d) be
a unitary  {compatible representation such that H1(X(Li); R(t1; : : : ; tm)) = 0 for
i = 1; : : : ; s;1. Let

� :=
rY
i=1

det(id� �(�i))
si��(Ci)
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and si := #Sing(C) \ Ci. Then there exists p 2 � such that

p ���(X(C)) ���(X(C)) = � �
Y

i2f1;:::;s;1g

��(X(Li)):

Corollary 7.2. Assume we are in the setting of Theorem 5.4 and that m � 2 and
that  is an epimorphism. Then

��
1 (X(C)) ���

1 (X(C)) 2 R[t�11 ; : : : ; t�1m ]

divides
rY
i=1

det(id� �(�i))
maxf0;si��(Ci)g

Y
i2f1;:::;s;1g

��
1 (X(Li)) 2 R[t

�1
1 ; : : : ; t�1m ]:

Proof. An easy argument shows that ��
0 (X(C)) = 1 since m � 2 and since  is

an epimorphism (cf. [FK05b, Lemma 6.2] for details). The corollary now follows
immediately from Theorem 7.1. �

Remark. If C intersects the line at in�nity transversely, then using the ideas of [LM05]
and the main result of [KSW05] and using one can also show that ��

1 (X(C)) dividesQ
i2f1;:::;sg�

�
1 (X(Li)) (up to some terms of the form det(1�Ati)) and that ��

1 (X(C))

divides ��
1 (X(L1)).

Often it is di�cult to determine �1(X(C)) and therefore it is di�cult to �nd a
presentation. But we can always easily determine H1(X(C)) and we can therefore
always study the untwisted multivariable Alexander polynomial. Therefore perhaps
the most interesting application of Corollary 7.2 is the untwisted case:

Corollary 7.3. Assume we are in the setting of Theorem 5.4, m � 2 and that
 : H1(X(C);Z)! Zr is the canonical isomorphism. Then

�1(X(C)) ��1(X(C)) 2 R[t�11 ; : : : ; t�1m ]

divides
rY
i=1

(1� ti)
maxf0;si��(Ci)g

Y
i2f1;:::;s;1g

�1(X(Li)) 2 R[t
�1
1 ; : : : ; t�1m ]:

We point out that the maps H1(X(Li)) ! H1(X(C)) are injective (this needs
a reference!), in particular the Alexander polynomial of X(Li) corresponding to
H1(X(Li)) ! H1(X(C)) �= ht1; : : : ; tri is indeed the multivariable Alexander poly-
nomial of Li.
The proof of Theorem 7.1 will require the remainder of this section.
We �rst consider ��(X(Li)), i = 1; : : : ; s;1. Since H1(X(Li); R(t1; : : : ; tm)

d) = 0
it follows from Lemma 5.2 that H�(X(Li); R(t1; : : : ; tm)

d) = 0. We can therefore
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apply [Tu01, Theorem 4.7] to get

��(X(Li)) =
3Y
i=0

�
��
i (X(Li))

�(�1)i+1
:

But it follows from [FK05, Corollary 4.3 and Proposition 4.13] (in the case that Li
has one component) and [FK05b, Lemmas 6.2 and 6.5] (in the case that Li has more
than one component) that ��

i (X(Li)) = 1 for i = 2; 3. In particular ��(X(Li)) =
��(X(Li)).
In the following we denote the ringR[t�11 ; : : : ; t�1m ] by � and the ringR[t�11 ; : : : ; t�1i�1; t

�1
i+1; : : : ; t

�1
m ]

by �i.

Lemma 7.4. For any i we can �nd a basis B for H2(X(C); Q(�)) de�ned over �
such that

��(X(C);B) � qi = ��
X(C) 2 Q(�)

�=��

with qi 2 �i.

Proof. Let h : X(C) ! Y be a homotopy equivalence with Y a 2{complex which
exists by Theorem 2.1. Then for any basis B for H2(X(C);Q(�)d) it follows from
[Tu01, Theorem 9.1] that

��(X(C);B) = ��(Y; h�(B)) � u

for u = det(�(A)) where A is an invertible matrix over Z[�1(X(C))]. Clearly u is a
unit in �. Since Alexander polynomials are homotopy invariants this shows that it is
enough to show the lemma for Y .
Consider C�(Y ; �

d), this is a complex of free based �{modules of length two. De-
note the rank of Cj(Y ; �

d) by nj. We use the bases to identify Cj(Y ; �
d) with �nj .

Denote the matrices corresponding to the boundary maps by Ai.
Let Qi := Q(t1; : : : ; ti�1; ti+1; : : : ; tm)[t

�1
i ]. Note that any element in Qi is of the

form fg�1 with f 2 �; g 2 �i n f0g. Note that Q(�) and Qi are 
at over �. Consider

K := Kerf�n2 
� Qi
A2�! �n1 
� Qig � �n2 
� Qi:

This is a torsion{free Qi{module, and since Qi is a PID it follows that K is in fact a
free Qi{module. We can pick b1; : : : ; br 2 K which form a Qi{basis for K. Note that
after multiplication by units in Qi we can assume that b1; : : : ; br 2 K \ �n2 . Let B
be the n2 � r{matrix with columns b1; : : : ; br.

Claim. The (principal) ideal in Qi generated by the r � r{minors of B is generated
by an element � 2 �i.

Denote by fm1; : : : ;mNg (N =

�
n2
r

�
) the set of all the r � r{minors of B. Fur-

thermore given g1; : : : ; gl 2 � we denote by (g1; : : : ; gl)� respectively (g1; : : : ; gl)Qi

the ideal generated by g1; : : : ; gl in � respectively Qi. Let �0 2 � be a greatest



ALEXANDER POLYNOMIALS OF PLANE ALGEBRAIC CURVES 17

common divisor of m1; : : : ;mN . Then (�0)� is the smallest principal ideal containing
(m1; : : : ;mN)�. Since Qi is a PID we can �nd g 2 Qi such that

(m1; : : : ;mN)Qi
= (g)Qi

:

Note that after multiplication by a unit we can assume that g 2 � and we can assume
that g 2 � is not divisible by any non{unit in �i � �. Since (m1; : : : ;mN)Qi

= (g)Qi

we can write mi = g fi
gi
with fi 2 �; gi 2 �i. Hence migi = gfi 2 �. But since g 2 �

is not divisible by any non{unit in �i it follows that fi = gihi for some hi 2 �. In
particular g divides mi in �, i.e. g is a common divisor of m1; : : : ;mN . By de�nition
of �0 it follows that

(�0)� � (g)�:

Putting everything together we get

(�0)Qi
� (g)Qi

= (m1; : : : ;mN)Qi
� (�0)Qi

:

It follows that
(�0)Qi

= (m1; : : : ;mN)Qi

= (En2�r(Q
n2
i =BQ

r
i ))

= (En2�r(Q
n2
i =K))

= (En2�r(A2Q
n2
i )):

But A2(Q
n2
i ) is a free Qi{module of rank n2�r, hence (En2�r(A2Q

n2
i )) = Qi. It follows

that � 2 Q�
i . In particular �0 2 � \Q�

i . But clearly this implies that �0 = tli� for
some � 2 �i. The claim now follows from the observation that (�0)Qi

= (�)Qi
.

Now denote by D� the following �{complex of free based modules:

0! �r
B
�! �n2

A2�! �n1
A1�! �n0 ! 0:

Note that for i = 0; 1 we have Hi(D� 
 Q(�)) = Hi(Y ;Q(�)
d) = 0. Furthermore

Hi(D� 
Q(�)) = 0 for i = 2; 3 by construction. It follows that D� 
Q(�) is acyclic
and we can therefore apply [Tu01, Theorem 4.7]. We get

�(D 
� Q(�)) =
2Y
i=0

ord(Hi(D))(�1)
i+1

:

Let B = fb1; : : : ; brg � H2(Y ; �
d) � H2(Y ;Q(�)

d). This is a �{basis forH2(Y ;Q(�)
d).

It follows easily from the de�nitions that �(D 
� Q(�)) = �(Y;B).
It follows from [Tu01, Lemma 4.11] that ord(H2(D)) = �, hence

2Y
i=0

ord(Hi(D))(�1)
i+1

= ��1��
1 (Y )(�

�
0 (Y ))

�1:

This concludes the proof of the lemma. �
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For i = 1; : : : ;m pick a basis Bi for H2(X(C); Q(�)) de�ned over � as in the
above lemma. Let qi as in the above lemma and let pi = det(I(Bi)) 2 �. Then for
i = 1; : : : ;m we have

pi
qi
��(X(C)) ���(X(C)) = � �

Y
i2f1;:::;s;1g

��(X(Li)):

But since gcd(q1; : : : ; qm) = 1 we get the required result.

8. Proof of Theorem 5.4

Let C � C2 be an algebraic curve. We use the notation from Section 2. Pick an open
tubular neighborhood �C of C such that �C \S3

i is an open tubular neighborhood for
Li � S3

i for i = 1; : : : ; s;1. We write �Li := �C\S3
i andX(Li) = S3n�Li. Let Ti; i =

1; : : : ; s;1 be the boundaries of S3
i n �Li. Now consider F := C \ (B4 n [si=1int(B

4
i )).

Clearly @X(C) \ (B4 n [si=1int(B
4
i ))

�= F � S1. We can therefore write

@X(C) := (F � S1) [T1[���[Ts[T1
[

i=1;:::;s;1

X(Li):

With this setup we can now proof the �rst part of Lemma 5.2. So let  : H1(X(C))!
Zm be an epimorphism. Let � be a multivariable skew Laurent polynomial ring of rank
m with quotient �eld Q(�) and let � : �1(X(C))! GL(�; d) be a  {compatible repre-
sentation such that H1(X(Lj);Q(�)

d) = 0 for j = f1; : : : ; s;1g. It follows from stan-
dard arguments (cf. e.g. [FK05b, Lemmas 6.2 and 6.3]) that Hi(X(Lj);Q(�)

d) = 0
for j = f1; : : : ; s;1g and for all i.
We have to show that Hi(@X(C);Q(�)d) = 0 for all i. Let Fi := Ci n ([int(B

4
i ))\Ci

for i = 1; : : : ; r. Then F1; : : : ; Fr are the connected components of F . For i 2
f1; : : : ; rg we have Fi � Ci, in particular  : H1(Fi � S1)! H1(X(C))! Zm factors
through H1(Ci � S1). Since  (�i) is non{trivial we can apply the argument of the
proof of [CF05, Theorem 5.6] to show that

��(Fi � S1) = (id� �(�i))
��(Fi):

In particular H�(Fi � S1; Q(�)d) = 0.
Denote the components of Ti by T 1

i ; : : : ; T
oi
i . Clearly  is non{trivial on any

T ji . Using the standard cell decomposition of the torus we can easily see that
H�(T

j
i ; Q(�)

d) = 0 and in fact ��(Ti) = 1 2 K1(Q(�))= � �(�1(X(C))) (c.f. e.g.
[Ki96, Proposition 4.4]). The �rst statement of Lemma 5.2 now follows from the
Meyer{Vietoris sequence for @X(C) for the above decomposition of @X(C).

The proof of Theorem 5.4 builds on the above discussion. By equation (1) we have
�(Fi) + si = �(Ci). It therefore follows from the Meyer{Vietoris sequence and from
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[Tu01, Theorem 3.4] that

��(@X(C)) =
rY
i=1

(id� �(�i))
si��(Ci) �

Y
i2f1;:::;s;1g

��(X(Li)):

Now let B be any basis forH2(X(C);Q(�)d). We equip HomQ(�)(H2(X(C); Q(�)d); Q(�))
with the corresponding dual basis. Let B0 be the corresponding basis ofH2(X(C); @X(C);Q(�)d)
under the isomorphisms

H2(X(C); @X(C);Q(�)d) �= H2(X(C); (Q(�)d)0) �= HomQ(�)(H2(X(C); Q(�)d); Q(�)):

Note that with the bases B and B0 the long exact sequence H

� � � ! Hi(@X(C);Q(�)d)! Hi(X(C);Q(�)d)! Hi(X(C); @X(C);Q(�)d)! : : :

becomes a based acyclic complex. By [Mi66, Theorem 3.2] we now have the following
equality in K1(Q(�))=� �(�1(X))

��(X(C);B) = ��(X(C); @X(C);B0) � ��(@X(C)) � �(H):

But it follows immediately from the de�nitions that �(H) = det(I(B)). It remains to
show that

��(X(C); @X(C);B0) = ��(X(C);B)
�1
:

But this follows from an argument as in the proof of [Tu01, Theorem 14.1 and Corol-
lary 14.2]. Note that this only works because B0 corresponds to B under Poincar�e
duality.

9. Examples of unitary  {compatible representations

9.1. Skew �elds of group rings. A group G is called locally indicable if for every
�nitely generated subgroup U � G there exists a non{trivial homomorphism U ! Z.

Theorem 9.1. Let G be a locally indicable and amenable group and let R be a subring
of C. Then R[G] is an Ore domain, in particular it embeds in its classical right ring
of quotients K(G).

It follows from [Hi40] that R[G] has no zero divisors. The theorem now follows
from [Ta57] or [DLMSY03, Corollary 6.3].
A group G is called poly{torsion{free{abelian (PTFA) if there exists a �ltration

1 = G0 � G1 � � � � � Gn�1 � Gn = G

such that Gi=Gi�1 is torsion free abelian. It is well{known that PTFA groups are
amenable and locally indicable (cf. [St74]). The group rings of PTFA groups played
an important role in [COT03], [Co04] and [Ha05].



20 ALEXANDER POLYNOMIALS OF PLANE ALGEBRAIC CURVES

References

[Bu32] W. Burau, Kennzeichnung der Schlauchknoten, Abh. Math. Sem. Hamburg 9: 125{133 (1932)
[Bu34] W. Burau, Kennzeichnung der Schlauchverkettungen, Abh. Math. Sem. Hamburg 10: 285{

297 (1934)
[Ch74] T. A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math. 96 (1974)

488{497
[COT03] T. Cochran, K. Orr, P. Teichner, Knot concordance, Whitney towers and L2-signatures,

Ann. of Math. (2) 157, no. 2: 433{519 (2003)
[Co04] T. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347{398.
[CF05] J. I. Cogolludo, V. Florens, Twisted Alexander polynomials of plane algebraic curves,

Preprint (2005)
[Co85] P. M. Cohn, Free rings and their relations, Second Edition, London Math. Soc. Monographs,

no. 19, Academic Press, London and New York (1985)
[CF77] R. Crowell and R. Fox, Introduction to knot theory, reprint of the 1963 original. Graduate

Texts in Mathematics, No. 57. Springer-Verlag, New York-Heidelberg, 1977.
[De04] A. I. Degtyarev, A divisibility theorem for the Alexander polynomial of a plane algebraic

curve, J. Math. Sci. (N. Y.) 119 (2004), no. 2, 205{210
[Di92] A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New

York (1992)
[DLMSY03] J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L2-invariants,

and the Atiyah conjecture, Preprint Series SFB 478 Muenster, Germany. Communications on
Pure and Applied Mathematics, vol. 56, no. 7:839-873 (2003)

[EN85] D. Eisenbud, W. Neumann, Three dimensional link theory and invariants of plane curve

singularities, Annals of Mathematics Studies 110, Princeton University Press (1985)
[Fo53] R. H. Fox, Free di�erential calculus I, derivation in the free group ring, Ann. of Math. (2)

57, (1953). 547{560.
[Fo54] R. H. Fox, Free di�erential calculus II, the isomorphism problem, Ann. of Math. (2) 59,

(1954). 196{210.
[FK05] S. Friedl and T. Kim, Thurston norm, �bered manifolds and twisted Alexander polynomials,

preprint (2005)
[FK05b] S. Friedl and T. Kim, Twisted Alexander norms give lower bounds on the Thurston norm,

preprint (2005).
[FH05] S. Friedl and S. Harvey, Non{commutative multivariable Reidemeister torsion and the

Thurston norm, in preparation (2005)
[Fr05] S. Friedl, Reidemeister torsion, the Thurston norm and Harvey's invariants, preprint (2005)
[FV05] S. Friedl and S. Vidussi, Twisted Alexander polynomials and symplectic structures, in prepa-

ration (2005)
[Ha05] S. Harvey, Higher{order polynomial invariants of 3{manifolds giving lower bounds for the

Thurston norm, Topology 44: 895{945 (2005)
[Ha06] S. Harvey, Monotonicity of degrees of generalized Alexander polynomials of groups and 3{

manifolds, preprint arXiv:math. GT/0501190, to appear in Math. Proc. Camb. Phil. Soc. (2006)
[Hi40] G. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46, (1940). 231{248.
[Hi02] J. Hillman, Algebraic invariants of links, Series on Knots and Everything, 32. World Scienti�c

Publishing Co., Inc., River Edge, NJ, 2002.
[HS83] J. Howie, H. R. Schneebeli, Homological and topological properties of locally indicable groups,

Manuscripta Math. 44, no. 1-3: 71{93 (1983)
[KL99] P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion and Casson{

Gordon invariants, Topology 38 (1999), no. 3, 635{661.



ALEXANDER POLYNOMIALS OF PLANE ALGEBRAIC CURVES 21

[Ki96] T. Kitano, Twisted Alexander polynomials and Reidemeister torsion, Paci�c J. Math. 174
(1996), no. 2, 431{442.

[KSW05] T. Kitano, M. Suzuki, M. Wada, Twisted Alexander polynomials and surjectivity of a group
homomorphism, Algebr. Geom. Topol. 5 (2005) 1315-1324

[LM05] C. Leidy, L. Maxim, Higher-order Alexander invariants of plane algebraic curves, Preprint,
arXiv:math.AT/0509462 (2005)

[Li97] W. B. F. Lickorish, An introduction to knot theory, Springer Graduate Texts in Mathematics
175 (1997)

[Li82] A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke
Math. Journal 49 (1982), no. 4, 833{851.

[Li86] A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine
Angew. Math. 367 (1986), 103{114.
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