
SYMPLECTIC 4–MANIFOLDS WITH A FREE CIRCLE ACTION

STEFAN FRIEDL AND STEFANO VIDUSSI

Abstract. Let M be a symplectic 4–manifold admitting a free circle action. In
this paper we show that, modulo suitable subgroup separability assumptions, the
orbit space N admits a fibration over the circle. The separability assumptions are
known to hold in several cases: in particular, this result covers the case where N
has vanishing Thurston norm, or is a graph manifold. Furthermore, combining this
result with the Lubotzky alternative, we show that if the symplectic structure has
trivial canonical bundle then M is a torus bundle over a torus, confirming a folklore
conjecture. We also generalize various constructions of symplectic structures on
4–manifold with a free circle action. The combination of our results allows us in
particular to completely determine the symplectic cone of a 4–manifold with a free
circle action such that the orbit space is a graph manifold.

1. Introduction and main results

The study of symplectic 4–manifolds, in spite of the enormous developments of
the last 20 years, still faces the hurdle of answering one of the most basic questions,
of smooth topology in character, namely determining which 4–manifolds admit a
symplectic structure. Strengthened by the results of Taubes, that have allowed the use
of Seiberg-Witten theory to address this question, a lot of interest has been devoted
to what is perhaps the most elementary class of manifolds for which the question
is non–obvious, namely 4-manifolds of the form S1 ×N . Here, various authors have
given convincing evidence to the conjecture that S1×N admits a symplectic structure
if and only if N fibers over the circle. In [FV06b] the authors of the present paper
proved the existence of a relation between this problem and the study of certain
algebraic properties of the fundamental group of N . This relation allowed us to solve
the conjecture in the affirmative for various classes of manifolds, and to relate the
general solution to standard conjectures in 3–dimensional hyperbolic geometry.

In this paper we will extend our results in two directions, that correspond roughly
to two parts. First, we will show how the techniques of [FV06b] can be applied to
study the case of symplectic 4–manifolds M admitting a free circle action with non–
trivial Euler class. Second, we will obtain new results on the existence of symplectic
structures on 4–manifolds with a free circle action. Combining these two parts we get
complete information on the symplectic cone for various manifolds. (Recall that the
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symplectic cone of a 4–manifold M is the cone of elements of H2(M,R) that can be
represented by symplectic form.)

Before stating our main results, we will introduce some notation. Given a 4–
manifold M with a free circle action we denote the orbit space by N and we denote
by p : M → N the quotient map, which defines a principal S1–bundle over N . We
denote by e ∈ H2(N) the Euler class of the S1–bundle. Recall the Gysin sequence

(1) Z = H0(N)
·e−→ H2(N)

p∗−→ H2(M)
p∗−→ H1(N)

∪e−→ H3(N) = Z.

Here p∗ : H2(M)→ H1(N) is the map given by integration along the fiber. The same
sequence can be considered for cohomology with real coefficients.

The first group of results, in the spirit of [FV06b], is aimed at characterizing the
topology of symplectic 4–manifolds with a free circle action. The starting point is
the following result, that appears (with different generality) in [Th76], [Bou88] and
[FGM91].

Proposition 1. Let p : M → N be a principal S1–bundle with Euler class e. Let
φ ∈ H1(N) be a fibered class such that φ ∪ e = 0. Then M can be endowed with a
symplectic form ω with the property that p∗[ω] = φ.

A folklore conjecture posits that the converse of the corollary holds (cf. e.g. [Kr99]
and [Bal01]). Under subgroup separability assumptions, we can prove that this is
indeed the case.

Theorem 2. Let (M,ω) be a symplectic 4–manifold admitting a free circle action.
Assume that φ = p∗[ω] ∈ H1(N) is a primitive class. Furthermore assume that the
class dual to φ can be represented by a connected incompressible embedded surface Σ
such that π1(Σ) is separable in π1(N). Then (N, φ) fibers over S1.

(This statement depends, in part, on the geometrization conjecture, that is required
to show that the orbit space N is prime.)

Concerning this statement, note that for any symplectic structure ω on M we
have p∗([ω]) 6= 0 (cf. Section 2), hence, using openness of the symplectic condition
and scaling suitably, the integrality and primitiveness conditions on p∗[ω] are not
restrictive. Also, recall that a finitely generated subgroup A ⊂ π1(N) is said to be
separable if, for all g ∈ π1(N) \ A, there exists an epimorphism onto a finite group
α : π1(N)→ G such that α(g) /∈ α(A). In particular, the separability assumption of
the theorem is satisfied if N has vanishing Thurston norm ([LN91]) and, conjecturally
([Th82]), for all hyperbolic manifolds. (In the special case that N has vanishing
Thurston norm this result has independently been obtained also by Bowden [Bow07],
building on ideas of [FV06b].) With similar methods, we prove that the statement
holds true unconditionally in the case where N is a graph manifold (cf. Proposition
3.7 and Theorem 5.1).
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As mentioned above, the present paper covers the case where the Euler class e ∈
H2(N) of the S1–fibration p : M → N is non–trivial; the product case is covered in
[FV06b].

Next, we address the related question of which manifolds as above can be endowed
with a symplectic structure with trivial canonical class. Our result is the following.

Theorem 3. Let M be a manifold with free circle action. Then M admits a symplectic
structure with trivial canonical class if and only if it is a T 2–bundle over T 2.

In fact, we will proof that the orbit space N is a torus bundle over S1, which implies,
with further considerations, the stated result. The ‘if’ part of Theorem 3 follows then
easily from Proposition 1. The proof of Theorem 3 follows by combining separability
of torus subgroups with a rather unexpected application of the Lubotzky alterna-
tive (see [LS03, Corollary 16.4.18]). Our result, which groups together Theorem 4.1
and Corollary 5.2, confirms that all symplectic manifolds with trivial canonical class
admitting a free circle action are contained in Table 1 of [Li06a].

The previous results ascertain what is (likely) the topology of 4–manifolds with
free circle action that admit a symplectic structure. In particular we obtain results
on the image of the symplectic cone under the map p∗ : H2(M,R) → H1(N,R).
The second group of results is devoted to the study of the symplectic cone for these
manifolds, and the proof that the cohomology classes in that cone can be realized by
S1–invariant symplectic forms.

The main result is the following existence theorem, that generalizes the aforemen-
tioned constructions of [Th76], [Bou88] and [FGM91].

Theorem 4. Let M be a 4–manifold admitting a free circle action. Let ψ ∈ H2(M ; R)
such that ψ2 > 0 ∈ H4(M ; R) and such that p∗(ψ) ∈ H1(N ; R) can be represented by
a non–degenerate closed 1–form. Then there exists an S1–invariant symplectic form
ω on M with [ω] = ψ ∈ H2(M ; R).

Proposition 1 clearly follows from this theorem. It is also worth mentioning that S1–
invariant symplectic forms on M have first been constructed by Bouyakoub [Bou88].
More precisely, in [Bou88] it was shown that given ψ as in the theorem, there exists
an S1–invariant symplectic form ω with p∗([ω]) = p∗(ψ). In the case that p∗(ψ) is
rational our theorem can also be deduced from [FGM91].

Combining the above results with well–known properties of the Thurston norm ball
we get the following result.

Theorem 5. Let M be a 4–manifold with free S1–action such that the orbit space N
is a graph manifold or has vanishing Thurston norm. Then a class ψ ∈ H2(M ; R)
can be represented by a symplectic form if and only if ψ2 > 0 and p∗(ψ) ∈ H1(N ; R)
lies in the open cone on a fibered face of the Thurston norm ball. Furthermore, we
can represent such ψ by an S1–invariant symplectic.

(Recall that by [Th86] the class φ ∈ H1(N ; R) lies in the open cone on a fibered face
if and only if φ can be represented by a non–singular 1–form. Also, when the Thurston
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norm vanish, every nonzero element of H1(N ; R) is considered to lie in the open cone
on a fibered face.) In particular this determines completely the symplectic cone for
such a class of manifolds, recovering (for the case of vanishing Thurston norm) results
of Geiges (see [Ge92]). Note that we are not claiming that any symplectic form is
isotopic, or even homotopic to an S1–invariant form, although this might be the case.

This paper is structured as follows. In the first part, Sections 2 to 4 cover the
case where the Euler class is nontorsion: Section 2 is devoted to summarizing some
standard results about the topology of M that will be useful in what follows; Sec-
tion 3 discusses Seiberg-Witten theory in this context, and contains the proof of the
Theorem 2 in that case, using the constraints on (twisted) Alexander polynomials
arising from Seiberg-Witten theory on symplectic manifolds; Section 4 is dedicated
to the case of trivial canonical class. Section 5 covers the case where the Euler class
is torsion. Section 6 contains some explicit examples to show the implications of our
results. In the second part, we discuss the construction of symplectic structures on
manifolds M for which the orbit space fibers over the circle, leading to Theorems 4
and 5.

Convention. All maps are assumed to be C∞ unless it says otherwise. All manifolds
are assumed to be connected, compact, closed and orientable. All homology and co-
homology groups are with integral coefficients, unless it says specifically otherwise.

Acknowledgment. We would like to thank Paolo Ghiggini and Ko Honda for helpful
conversations.

2. Algebraic topology of 4–manifolds with a free circle action

The purpose of this section is to recall some elementary facts about 4–manifolds
admitting a free circle action with nontorsion Euler class, as they will frequently be
used in what follows. The existence of a free circle action on M implies that M is a
principal S1–bundle, so that there is a projection map p : M → N where we denote
by N the orbit space of the free circle action. This principal bundle is determined
by its Euler class e ∈ H2(N), and for either integer or real coefficients we have the
Gysin sequence

(2) · · · → Hq−2(N)
∪e−→ Hq(N)

p∗−→ Hq(M)
p∗−→ Hq−1(N)→ · · ·

where p∗ : Hq(M) → Hq−1(N) denotes integration along the fiber. Assuming that e
is not a torsion class it easy to verify, using this sequence, that b1(M) = b1(N) and
b2(M) = 2b1(N) − 2. We want to determine the intersection form on H2(M)/Tor.
We will denote, for either M or N , the pairing 〈α ∪ β, [·]〉 by α · β. It is convenient
to break down the Gysin sequence as

(3) 0→ 〈e〉 → H2(N)
p∗−→ H2(M)

p∗−→ ker(·e)→ 0,



SYMPLECTIC 4–MANIFOLDS WITH A FREE CIRCLE ACTION 5

where we have denoted by 〈e〉 the cyclic subgroup of H2(N) generated by the Euler
class and by ker(·e) the subgroup of H1(N) whose pairing with the Euler class van-
ishes. Choose a basis {φi, i = 1, . . . , b1(N) − 1} for ker(·e) and denote by {ψj, j =
1, . . . , b1(N)− 1} a set of elements of H2(N) with the property that φi ·ψj = δij: the
existence of such a set is granted by the fact that we can identify, using Poincaré du-
ality, H1(N) with Hom(H2(N); Z). By slight abuse of notation, denote by the same
symbol the image of these elements in H2(N)/Tor, and denote by Φi a representative
of the inverse image of φi in H2(M). Note that

{p∗ψj,Φi, j = 1, . . . , b1(N)− 1, i = 1, . . . , b1(N)− 1}
is a basis for H2(M)/Tor. Since p∗ψj · p∗ψk = 0, Φi · p∗ψj = φi · ψj = δij we see that
the intersection form on H2(M)/Tor has the form

(4)

(
0 I
I A

)
where the submatrices have rank b1(N) − 1 and A is some symmetric matrix with
entries Φi · Φj. At this point it is an easy exercise in linear algebra to see that
b±2 (M) = b1(N)− 1 and σ(M) = 0. Finally, the long exact homotopy sequence of the
fibration gives

(5) 0→ π2(M)→ π2(N)→ Z→ π1(M)→ π1(N)→ 1,

while πi(M) = πi(N) for i > 2.
Let α : π1(N)→ G be a homomorphism to a finite group. We denote by π : NG →

N the regular G–cover of N . It is well known that π : H1(NG; Q) → H1(N ; Q) is
surjective, in particular b1(NG) ≥ b1(N). If π : M → N is a circle bundle with Euler
class e ∈ H2(N) then α determines a regular G–cover of M that we will denote (with
slight abuse of notation) π : MG →M . These covers are related by the commutative
diagram

(6)
MG

π−→ M
↓ ↓
NG

π−→ N

where the principal S1–fibration pG : MG → NG has nontorsion Euler class eG = π∗e ∈
H2(NG). Observe that it follows immediately from the fact that π : H1(NG; Q) →
H1(N ; Q) is surjective that e is non–torsion if and only if eG is non–torsion.

3. Constraints from Seiberg-Witten theory

3.1. Seiberg-Witten theory for symplectic manifolds with a circle action.
In this section we will use Seiberg-Witten theory to prove that, under suitable as-
sumptions of subgroup separability, the orbit space N of a symplectic manifold M
admitting a free circle action with nontorsion Euler class is fibered. We will start by
showing that N is Haken, in particular a K(π, 1) space and, because of (5), so is M .
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The argument is a slight variation on [McC01] and [FV06a, Proposition 8.1] (cf. also
[Bow07]).

Proposition 3.1. Let M be a symplectic 4–manifold admitting a free circle action
with nontorsion Euler class e ∈ H2(N), where N is the orbit space. Then N is a
Haken manifold with b1(N) > 1.

Proof. The condition that M is symplectic entails that b+
2 (M) > 0, hence that

b1(N) > 1 by the discussion in the previous section. We now show that N is prime.
As N cannot equal S1 × S2, this is equivalent to irreducibility.. Assume, by contra-
diction, that N = N1#N2, where both Ni 6= S3. Since b1(N) > 0, at least one of
the Ni’s (say, N1) has non–trivial first Betti number. Assuming the geometrization
conjecture, π1(N2) is residually finite (cf. [He87]) and in particular it has non–trivial
finite quotients. Hence, by standard arguments, N has a regular G–cover NG that can
be written as connected sum NG = Q1#Q2 of two 3–manifolds having b1(Qi) large at
will. In correspondence to this, M admits a regular G–cover MG (defined from the
epimorphism π1(M)→ π1(N)→ G) that decomposes along an S1-bundle over S2 in
two manifolds with boundary with b+

2 > 0. As the sphere S2 is homologically trivial,
the bundle is a product S1 × S2. The latter admits a metric of positive scalar cur-
vature, whence MG, that satisfies b+

2 (MG) > 1, must have vanishing Seiberg-Witten
invariants. But by Taubes [Ta94] this is incompatible with the condition that M ,
hence MG, is symplectic. This concludes the proof. �

To further use Seiberg-Witten theory, we need more information on the Seiberg-
Witten invariants of M . The essential ingredient for this is the fact that the Seiberg-
Witten invariants of M are related to the Alexander polynomial of N . Baldridge
proved the following result, that combines Corollaries 25 and 27 of [Bal03] (cf. also
[Bal01]), to which we refer the reader for definitions and results for Seiberg-Witten
theory in this set-up:

Theorem 3.2. (Baldridge) Let M be a 4–manifold admitting a free circle action with
nontorsion Euler class e ∈ H2(N), where N is the orbit space. Then the Seiberg-
Witten invariant SWM(κ) of a class κ = p∗ξ ∈ p∗H2(N) ⊂ H2(M) is given by the
formula

(7) SWM(κ) =
∑

ξ∈(p∗)−1(κ)

SWN(ξ) =
∑

ξ′−ξ≡ 0 (e)

SWN(ξ′) ∈ Z,

in particular when b+
2 (M) = 1 it is independent on the chamber in which it was

calculated. Moreover, if b+
2 (M) > 1, these are the only basic classes.

(For completeness, we remark that if b+
2 (M) = 1, the Seiberg-Witten invariants of

a class of H2(M) that is not a pull-back can be nonzero in one of the two chambers,
and is determined by the wall-crossing contribution.)

In the formula above, SWN(ξ) is the 3–dimensional SW–invariant of a class ξ ∈
H2(N), and the effect of the twisting of the S1–fibration, measured by the class
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e ∈ H2(N), is to wrap up the contribution of all 3–dimensional basic classes of N
that have the same image in H2(M), i.e. that differ by a multiple of e. As usual, we
can package the above invariants in terms of a Seiberg-Witten polynomial.

We will use Taubes’ constraints on the Seiberg-Witten invariants for symplectic
manifolds and Baldridge’s formula to get a constraint on the twisted Alexander poly-
nomials of the orbit space N of a symplectic manifold M admitting a circle action as
above. Before doing so, we need some definitions and results. Recall from [FV06a,
Section 3.1] that, given an epimorphism to a finite group α : π1(N) → G, the 1–
variable twisted Alexander ∆α

N,φ ∈ Z[t±1] associated to a class φ ∈ H1(N) is the

order of the first twisted Alexander module H1(N ; Z[G][t±1]). This polynomial is
defined up to a unit of Z[t±1]; this indeterminacy will be irrelevant (and therefore
omitted) in what follows. If α is the homomorphism to the trivial group then we
denote the resulting polynomial by ∆N,φ. We refer to [FV06a, Section 3.1] for more
details.

Let M be a manifold admitting a free circle action with orbit space N and nontor-
sion Euler class e ∈ H2(N) and assume that M can be endowed with a symplectic
form ω ∈ Ω2(M). As [ω]2 > 0 it follows from Section 2 that [ω] /∈ p∗(H2(N,R)),
and in particular p∗[ω] 6= 0 ∈ H1(N ; R). Using openness of the symplectic condi-
tion, we can assume that [ω] ∈ H2(M ; R) lies in the rational lattice (identified with)
H2(M ; Q). After suitably scaling ω by a rational number if needed, the class p∗[ω]
is then (the image of) a primitive (in particular, nonzero) class in H1(N) that we
denote by φ.

We will also need the following result regarding the canonical class of the symplectic
structure.

Proposition 3.3. Let (M,ω) be a symplectic manifold admitting a free circle action
with nontorsion Euler class e ∈ H2(N), where N is the orbit space. Then the canoni-
cal class K ∈ H2(M) of the symplectic structure is the pull-back of a class ζ ∈ H2(N),
well–defined up to the addition of a multiple of e.

Proof. If b+
2 (M) > 1 this is a straightforward consequence of Theorem 3.2, as the

canonical class by [Ta94] is a basic class of M , hence must be the pull-back of a class
of H2(N). The case of b+

2 (M) = 1 can be similarly obtained with a careful analysis
of the chamber structure of the Seiberg-Witten invariants for classes that are not
pull-back, but it is possible to use a quicker argument. First, observe that, starting
from a closed curve in N representing a suitable element of H1(N), we can identify a
torus T ⊂M of self–intersection zero, representing the generator of a cyclic subgroup
in the image of the map H1(N) → H2(M) in the homology Gysin sequence, that
satisfies ω · [T ] > 0. Second we can assume, by [Liu96], that K · ω ≥ 0. Otherwise,
M would be a rational or ruled surface, which cannot happen as these satisfy π2 6= 0.
As both signature and Euler characteristic of M vanish, K2 = 2χ(M) + 3σ(M) = 0.
Omitting the case of K torsion, where the statement is immediate, we deduce that
both K and (the Poincaré dual of) [T ] lie in the closure of the forward positive cone



8 STEFAN FRIEDL AND STEFANO VIDUSSI

in H2(M,R) determined by ω. The light-cone Lemma (see e.g. [Liu96]) asserts at
this point that K · [T ] ≥ 0. On the other hand, the adjunction inequality of Li and
Liu (see [LL95]) gives K · [T ] ≤ 0, hence K · [T ] = 0. It now follows that K is a
multiple of PD([T ]), in particular the pull-back of a class on N . �

We are in position now to use Equation (7) to obtain the following. (Note that we
use Proposition 3.3 to formulate the statement.)

Theorem 3.4. Let (M,ω) be a symplectic manifold admitting a free circle action
with nontorsion Euler class and let φ = p∗[ω] ∈ H1(N) a primitive class on the orbit
space N . Then for all epimorphisms α : π1(N) → G to a finite group the twisted
Alexander polynomial ∆α

N,φ ∈ Z[t±1] is monic of Laurent degree

deg ∆α
N,φ = |G| ζ · φ+ 2divφG.

Here, ζ ∈ H2(N) is a class whose pull–back to M gives the canonical class of M .
Furthermore φG denotes the restriction of φ : π1(N)→ Z to Kerα and divφG stands
for the divisibility of φG.

Proof. Our goal is to apply Taubes’ results ([Ta94, Ta95]) on the Seiberg–Witten
invariants of M to impose constraints on the twisted Alexander polynomials of N .
We will first analyze the constraints on the ordinary 1–variable Alexander polynomial
∆N,φ. By [FV06a, Proposition 3.6] we can write this polynomial as

(8) ∆N,φ = (tdivφ − 1)2 ·
∑
g∈H

agt
φ(g) ∈ Z[t±1],

where H is the maximal free abelian quotient of π1(N) and ∆N =
∑

g∈H ag ·g ∈ Z[H]
is the ordinary multivariable Alexander polynomial of N . By Meng and Taubes
([MT96]) the latter is related to the Seiberg–Witten invariants of N via the formula

(9)
∑
g∈H

ag · g = ±
∑

ξ∈H2(N)

SWN(ξ) · 1

2
f(ξ) ∈ Z[H],

where f denotes the composition of Poincaré duality with the quotient map f :
H2(N) ∼= H1(N) → H and, as f(ξ) has even divisibility for all 3–dimensional basic
classes ξ ∈ suppSWN , multiplication by 1

2
is well-defined. Using this formula, we can

write

(10) ∆N,φ = ±(tdivφ − 1)2
∑

ξ∈H2(N)

SWN(ξ)t
1
2
φ·ξ.

We will use now Equation (7) to write ∆N,φ in terms of the 4–dimensional Seiberg-
Witten invariants of M . In order to do so, observe that for all classes ξ ∈ H2(N)
we can write ξ · φ = ξ · p∗ω = p∗ξ · ω = κ · ω where κ = p∗ξ. Grouping together the
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contributions of the 3–dimensional basic classes in terms of their image in H2(M),
and using (7) we get

∆N,φ = ±(tdiv φ − 1)2
∑

κ∈p∗H2(N)

∑
ξ∈(p∗)−1(κ)

SWN(ξ)t
1
2
φ·ξ

= ±(tdiv φ − 1)2
∑

κ∈p∗H2(N)

SWM(κ)t
1
2
κ·ω.

Taubes’ constraints, applied to the symplectic manifold (M,ω), assert that if K ∈
H2(M) is the canonical class, then SWM(−K) = 1. Moreover, among all basic classes
κ ∈ H2(M), we have

(11) −K · ω ≤ κ · ω,
with equality possible only for κ = −K. (When b+

2 (M) = 1, this statement applies
to the Seiberg-Witten invariants evaluated in Taubes’ chamber, but as remarked in
Theorem 3.2 this specification is not a concern in our situation.) It now follows
immediately from Proposition 3.3 that ∆N,φ is a monic polynomial, and remembering
the symmetry of SWN (or ∆N,φ), we see that its Laurent degree is d = K ·ω+2divφ =
ζ · φ+ 2divφ.

Consider now any symplectic 4–manifold M satisfying the hypothesis of the state-
ment. Take an epimorphism α : π1(N) → G and denote by π : NG → N the regular
G–cover of N that it determines. We will bootstrap the constraint on the ordi-
nary Alexander polynomials to all twisted Alexander polynomials. The epimorphism
π1(M) → π1(N) → G determines a regular G–cover of M that we will denote (with
slight abuse of notation) π : MG →M . These covers are related by the commutative
diagram

(12)
MG

π−→ M
↓ ↓
NG

π−→ N

where the principal S1–fibration pG : MG → NG has nontorsion Euler class eG =
π∗e ∈ H2(NG). As (M,ω) is symplectic, MG inherits a symplectic form ωG := π∗ω,
with canonical class KG := π∗K, that is easily shown to satisfy the condition φG :=
(pG)∗[ωG] = π∗φ ∈ H1(NG). We can therefore apply the results of the previous
paragraph to the pair (NG, φG) to get a constraint for ∆NG,φG

. This, together with
the relation ∆α

N,φ = ∆NG,φG
proven in [FV06a, Lemma 3.3] and some straightforward

calculations show that ∆α
N,φ is monic of the degree stated. �

Remark. Also, in [FV06a, Proposition 4.4] we obtained a similar result for M = S1×
N3. However, in that case, using results based on the refined adjunction inequality
for S1 × N proved by Kronheimer in [Kr99], we get the additional constraint that
ζ · φ = ‖φ‖T , i.e. altogether that ∆α

N,φ determines the Thurston norm of φ. If (N, φ)

is a fibered class, we can assume ζ ∈ H2(N) to be (up to sign) the Euler class
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of the fibration, and this information is encoded in ∆α
N,φ. It is not clear whether

Kronheimer’s results hold in the case of general circle bundles over 3–manifolds (but
cf. [FV07]).

3.2. Proof of Theorem 2 for non–torsion Euler class. Our goal is to show that
Theorem 3.4 implies that the pair (N, φ) fibers. As stated in the introduction, we will
be able to do so under the same assumptions of subgroup separability that we used in
[FV06b]. More precisely we will assume the separability in π1(N) of the image of the
fundamental group π1(Σ) of an incompressible representative Σ of the class Poincaré
dual to φ.

Theorem 3.5. Let (M,ω) be a symplectic manifold admitting a free circle action
with nontorsion Euler class. If φ = p∗[ω] ∈ H1(N) is a primitive class on the orbit
space N and if the class dual to φ can be represented by a connected incompressible
embedded surface Σ such that π1(Σ) is separable in π1(N), then (N, φ) fibers over S1.

Proof. Assume, by contradiction, that (N, φ) is not fibered. Our goal is to apply The-
orem 3.4 to show that this is inconsistent, assuming separability, with the hypothesis
that M is symplectic.

Consider the exterior N \ νΣ. This is a connected manifold with boundary compo-
nents two copies Σ± of Σ. We choose either copy, that we will denote simply by Σ. By
incompressibility of Σ the inclusion induced maps π1(Σ) → π1(N \ Σ) → π1(N) are
injections, we can therefore view π1(Σ) as a subgroup of π1(N \ νΣ) and π1(N \ νΣ)
as a subgroup of π1(N).

Since N is irreducible by Proposition 3.1 and as φ is not fibered, Stallings’ Theorem
(cf. [St62] and [He76]) asserts that π1(Σ) is in fact a proper subgroup of π1(N \ Σ).
By assumption we can find a homomorphism α : π1(N) → G to a finite group with
α(π1(Σ)) ( α(π1(N \ νΣ)). But it follows from Theorem 4.2 of [FV06b] that the
twisted Alexander polynomial ∆α

N,φ vanishes, which contradicts Theorem 3.4. �

In [FV06b] we have discussed various cases where the separability conditions of
Theorem 3.5 are known to hold true, and we refer to there the interested reader. Two
cases, however, deserve mentioning. The first is that it is has long been conjectured
that for hyperbolic manifolds separability holds with respect to all finitely generated
subgroups (in that case we say that π1(N) is LERF ). The second case, in a sense the
diametrical opposite, covers manifolds with vanishing Thurston norm. We have the
following result (cf. also [Bow07]).

Corollary 3.6. Let (M,ω) be a symplectic manifold admitting a free circle action
with nontorsion Euler class and assume that the orbit space N has vanishing Thurston
norm. Then (N, φ) fibers over S1 for all non–trivial classes φ ∈ H1(N).

Proof. As N is Haken and the Thurston norm of N vanishes, every primitive class
can be represented by an incompressible torus. By [LN91], the fundamental group
of an incompressible torus is separable in a Haken manifold. Hence it follows from
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Theorem 3.5 that N admits a fibration in tori; but then it is well–known that all
nonzero classes are fibered. �

Note for future reference that, for all manifolds of Corollary 3.6, the canonical class
is trivial.

When N is a graph manifold, it is known that, at least in general, π1(N) is not
LERF (while it is still unknown whether it satisfies the surface subgroup separability
conditions of Theorem 3.5). In spite of this potential setback, in [FV06b, Corollary
5.6] we showed, using abelian subgroup separability and the classification of incom-
pressible surfaces in Seifert fibered spaces, that if N is a graph manifold, then (N, φ)
fibers if and only if ∆α

N,φ is non–zero for any epimorphisms α : π1(N)→ G to a finite
group. As a consequence of this and Theorem 3.4 we deduce the following proposition.

Proposition 3.7. Let (M,ω) be a symplectic manifold admitting a free circle action
with nontorsion Euler class and assume that the orbit space N is a graph manifold.
Let φ = p∗[ω] ∈ H1(N) be a primitive class, then (N, φ) fibers over S1.

4. The case of trivial canonical class

Although it is pleasant that Theorem 3.5 reduces the problem of determining which
manifolds with a free circle action admit a symplectic structure to classical conjec-
tures in 3–dimensional topology, it is appropriate to keep a critical approach to this
statement and try to extend its range of applications to results that hold uncondi-
tionally.

In this section we will address the question of which manifolds admitting a free
circle action with nontorsion Euler class can be endowed with a symplectic struc-
ture with trivial canonical class, a problem that, as observed, is strictly related with
Proposition 3.6. In the case of symplectic manifolds of the form S1×N this question
was completely solved, using results from [Vi03], in [FV06b]. One of the main ingre-
dients of that result is the idea, due to Kronheimer, that for manifolds of the form
S1×N the refined adjunction inequality established in [Kr99] allows one to constrain
the Thurston norm of a 3–manifold in terms of the canonical class. When K = 0
this constraint translates into the fact that N must have vanishing Thurston norm,
and at this point a result similar to Corollary 3.6 completes the argument. In the
case we are studying, instead, it is not known whether a refined adjunction inequality
similar to that established in [Kr99] holds, and we are forced to gather information
by other means. We will succeed in doing so by extending the approach of Section
2 of [FV06b], using as new topological ingredient a consequence of the Lubotzky
alternative for finitely generated linear groups.

We remark that, if we assume that Theorem 3.5 holds unconditionally, N must
in fact have vanishing Thurston norm: the condition deg ∆N,φ = 2divφ (that arises
when we specialize Proposition 3.4 to the case K = 0) is possible, for a fibered φ, only
if φ is represented by a torus, as for a fibered class the Thurston and the Alexander
norm must coincide. Even without that assumption, we have the following result.
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Theorem 4.1. Let M be a manifold endowed with a free circle action with nontorsion
Euler class. Then M admits a symplectic structure with trivial canonical class if and
only if it is a T 2–bundle over T 2.

Proof. We will start by showing that the condition K = 0 implies that the virtual
Betti number vb1(N) of the orbit space N (i.e. the sup of the Betti number of all
covers of N) satisfies the condition vb1(N) ≤ 3. Taubes’ constraints imply that K = 0
satisfies SWM(0) = 1 and, using the symmetry of the Seiberg-Witten invariants of N
and Equation (7), we see that this is the only basic class (when b+

2 (M) = 1, this is
true in p∗H2(N), applying the usual caveat for this case). We can then compute the
sum of the coefficients of the Seiberg-Witten invariant of N as

(13)
∑

ξ∈H2(N)

SWN(ξ) =
∑

κ∈p∗H2(N)

SWM(κ) = 1.

Now, for all 3–manifolds with b1(N) > 1, the sum of the coefficients of the Seiberg-
Witten polynomial equals by (9) the sum of the coefficients of the Alexander polyno-
mial, and the latter vanishes when b1(N) > 3 (see [Tu02, Section II.5.2 and Theorem
IX.2.2]). Equation (13) requires therefore that b1(N) ≤ 3. Repeating this argu-
ment for all covers of N (for which the Euler class is necessarily nontorsion and the
canonical zero) gives the desired bound on vb1(N).

We want to show that this condition entails that either N is a torus bundle, or N
is hyperbolic. In fact, if N is a torus bundle, all its finite covers are torus bundles,
so vb1(N) ≤ 3. Otherwise, if N has a non–trivial JSJ decomposition, or is Seifert
fibered, it contains an incompressible torus T that is not a fiber. (This is obvious if
N has a non–trivial JSJ decomposition, but it is true also when N is Seifert fibered,
as Seifert fibered manifolds without incompressible tori must have b1 ≤ 1 (cf. [Ja80,
p. 89ff]).) The fundamental group of T is separable in π1(N), so we can proceed as
follows. If T separates N in two components, up to passing to a suitable cover, it lifts
to a nonseparating torus, so we can restrict ourselves to the latter case. If the torus
T is nonseparating, it cannot be a fiber, as otherwise all nonzero cohomology classes
would be fibered, and so necessarily would be N . Hence, by [Ko87], vb1(N) =∞.

To complete the proof that N is fibered, it remains to show that a case where N is
a hyperbolic manifold with vb1(N) ≤ 3 can be excluded. It is widely expected (and
verified for the arithmetic case, see [CLR06]) that hyperbolic manifolds with positive
Betti number have vb1(N) =∞, so it is quite possible that that case is taken care of
by the previous result, but even if we lack a general proof of this fact, we will be able
to explicitly rule out that case too.

We start by observing that, as consequence of [Tu02, Section II.5.2 and Theorem
IX.2.4], if the homology group H1(N,Fp) has rank b1(N,Fp) > 3, then the sum of
the coefficients of the Alexander polynomial vanishes mod p. Now a consequence
of the Lubotzky alternative (cf. [LS03, Corollary 16.4.18]) asserts that if π1(N)
is a finitely generated linear group, then either π1(N) is virtually soluble or, for
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any prime p, vb1(N,Fp) = ∞, i.e. N admits finite covers with arbitrarily large
first homology with coefficients in Fp (see also [La05, Theorem 1.3]). Since N is
hyperbolic, its fundamental group is of course linear. By [EM72, Theorem 4.5] the
only (orientable) 3–manifolds with positive Betti number and soluble fundamental
group are torus bundles, whence the first condition cannot occur. It follows that
for any prime p, there exists a cover of N (even regular, by [La05, Theorem 5.1])
whose Alexander polynomial has sum of coefficients that vanishes mod p. This entails
that the corresponding cover of M violates Equation (13), hence the possibility of a
hyperbolic N is excluded.

To complete the proof, observe that a torus bundle with b1(N) ≥ 2 is also an S1–
bundle over T 2 (see e.g. [Hat]), so that M is a T 2–bundle over T 2. These manifolds
admit a symplectic structure by [FGM91] (cf. also [Ge92]), and it is not too difficult
to verify that K = 0. �

Remark. (1) Note that the constraint on the virtual Betti number established in
Theorem 4.1 proves Conjecture 1.1 of [Li06a] for the class of manifolds under
question. (This conjecture has been confirmed in full generality in [Bau06]
and [Li06b], using Bauer-Furuta’s refinement of Seiberg-Witten invariants.)

(2) The proof of Theorem 4.1 applies, mutatis mutandis, to the product case,
making it unnecessary there as here to use the refined adjunction inequality
or Donaldson’s theorem on the existence of symplectic representatives of (suf-
ficiently high multiples of) the dual of [ω], that are used instead in [Kr99] and
[Vi03].

(3) Note that the statement of Theorem 4.1 covers in fact all symplectic manifolds
with torsion canonical class (a class that a priori could be broader, when
b+

2 (M) = 1, than the case of trivial canonical class). In fact, if b+
2 (M) = 1,

b1(M) = 2, and K is torsion, McDuff and Salamon show in [MS96] that K
is actually trivial. (This can actually be verified, in the case at hand, using
Taubes’ constraints and the symmetry of SWN .) So Theorem 4.1 covers all
symplectic manifolds with Kodaira dimension 0, in the notation of [Li06a] (M
is symplectically minimal, as it is aspherical).

5. The torsion case

In this section we will treat the case of a symplectic 4-manifold admitting a circle
action with orbit space N such that the Euler class is torsion. We will adopt the
notation of the previous sections, expecting that the minor differences for this case
will provide no inconveniences to the reader.

Observe that, arguing exactly as in the proof of Proposition 3.1, the orbit space N
is either irreducible or N = S1 × S2 in correspondence of which we have the product
symplectic manifold T 2 × S2; in this case N is obviously fibered, and we will omit it
in what follows.
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At this point, we could proceed as in Theorem 3.4, using the results of [Bal03] for
the relation between the Seiberg-Witten invariants ofM andN in case of torsion Euler
class. This does not present particular conceptual difficulties but requires, in the case
of b+

2 (M) = b1(N) = 1, a detailed bookkeeping of the chamber dependence of the
Seiberg-Witten invariants for both M and N , that would impose on us a somewhat
long detour. Instead of following that path, it is simpler to use a straightforward
algebro–topological observation to reduce the problem to the product case treated in
[FV06b]. We have the following

Theorem 5.1. Let (M,ω) be a symplectic manifold admitting a free circle action
with torsion Euler class. Let φ = p∗[ω] ∈ H1(N) be a primitive class on the orbit
space N 6= S1 × S2. Assume that one of the following holds:

(1) the class dual to φ can be represented by a connected incompressible embedded
surface Σ such that π1(Σ) is separable in π1(N), or

(2) N is a graph manifold, or
(3) the canonical class K is trivial,

then (N, φ) fibers over S1.

Proof. Assume, by contradiction, that (N, φ) is not fibered. If the Euler class e ∈
H2(N) is trivial, M is a product S1 × N , and this case is discussed in [FV06b]. So
we assume that e 6= 0, so that in particular Tor(H1(N)) is non–trivial.

We first consider case (1). It follows by assumption that there exists an epi-
morphism α : π1(N) → G onto a finite group with the property that α(π1(Σ)) (
α(π1(N \ νΣ)) (cf. also the proof of Theorem 3.5). This entails by [FV06b, The-
orem 4.2] that ∆α

N,φ = 0, but we cannot use directly this information without
establishing an explicit relation between twisted Alexander polynomials of N and
Seiberg-Witten invariants on M that, as observed above, requires a little work when
b1(N) = 1. This is however only a minor setback, as we can proceed as follows. De-
note by T an abelian group isomorphic to Tor(H1(N)), and pick a map H1(N)→ T
such that the induced map

Tor(H1(N))→ H1(N)→ T

is an isomorphism. Denote by β : π1(N)→ H1(N)→ T the corresponding map from
the fundamental group of N . Out of that, we can define a map

γ : π1(N) −→ G× T
g 7−→ (α(g), β(g)).

Let Γ := γ(π1(N)) ⊂ G × T , and note that there is a well–defined epimorphism
Γ → T . We claim that, denoting as usual by π : NΓ → N the associated regular
cover, and by π : MΓ →M its 4–dimensional counterpart, MΓ is the product S1×NΓ.
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In fact, we have the commutative diagram

1 // π1(NΓ) //

��

π1(N)

��

// Γ

��

// 1

H1(NΓ) // H1(N) // T

Tor(H1(NΓ))

OO

// Tor(H1(N)).

OO
∼=

99sssssssssss

It follows from the commutativity, and from the exactness of the top horizontal se-
quence that the map π∗ : Tor(H1(NΓ))→ Tor(H1(N)), and hence (π∗)

∗ : Ext(H1(N),Z)→
Ext(H1(NΓ),Z) is trivial. It now follows from the naturality of the universal coeffi-
cient short exact sequence that the Euler class eΓ = π∗e of the fibration pΓ : MΓ → NΓ

is zero, i.e. MΓ is the product S1 ×NΓ.
As (M,ω) is symplectic, the manifold S1 × NΓ inherits a symplectic structure

ωΓ = π∗ω which satisfies (pΓ)∗[ωΓ] = φΓ ∈ H1(NΓ) hence, by [FV06a, Proposition 4.4],
∆NΓ,φΓ

must be monic. However, it is immediate to see that the epimorphism γ :
π1(N) → Γ satisfies, just like α, the condition γ(π1(Σ)) ( γ(π1(N \ νΣ)), hence
the corresponding twisted Alexander polynomial ∆γ

N,φ = ∆NΓ,φΓ
vanishes, in contrast

with our hypothesis.
For what concerns (2) and (3), when we apply the above construction with G = {e},

we get a manifold S1 × NΓ for which, respectively, NΓ is a graph manifold or the
canonical class is trivial. By [FV06b] the pair (NΓ, φΓ) is fibered, which implies that
so is (N, φ). �

Corollary 5.2. Let M be a manifold endowed with a free circle action with torsion
Euler class. Then M admits a symplectic structure with trivial canonical class if and
only if it is a T 2–bundle over T 2.

Proof. If the Euler class is trivial, as by [FV06b] N fibers over S1 with torus fiber,
M = S1 × N is obviously a T 2–bundle over T 2. If the Euler class is non–trivial,
keeping the notation in the proof of Theorem 5.1, M is the quotient of the action of
the (abelian) deck transformation group Γ on the product manifold MΓ = S1 × NΓ,
a T 2–bundle over T 2. By construction, this action covers the Γ–action on NΓ whose
quotient is N . The inverse image w.r.t. the projection π : NΓ → N of a fiber Σ of the
torus fibration of N determined by φ ∈ H1(N) is a union of |Γ/γ(π1(Σ))| = 1 fibers of
the fibration of NΓ (where the isomorphism γ(π1(Σ)) ∼= Γ follows from the fact that
the torsion part of H1(N) comes from the invariant homology of the fiber, although
we do not actually need this fact). This means that the group Γ acts through bundle
automorphisms with respect to the torus fibration NΓ → S1, hence the lift of this
action to MΓ acts through bundle automorphisms with respect to the torus fibration
MΓ → T 2. As tori quotients are tori, M is itself a T 2–bundle over T 2. �
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As for the case of Theorem 4.1, [MS96] guarantees that the manifolds above are
the only symplectic manifolds with Kodaira dimension zero.

6. Examples

In this section we will analyze some interesting examples of 4–manifolds admitting
a circle action with nontorsion Euler class, and discuss how the results of the previ-
ous sections allow us to determine whether they admit symplectic structures or not.
Note that the conclusions of this section are not conditional to subgroup separability
assumptions, as they follow from results as Theorem 3.4 and Theorem 4.1 that hold
without such assumptions.

For technical reasons, in this section, given a homomorphism α : π1(N) → G to
a finite group G, it will be convenient to use the multivariable (twisted) Alexander
polynomial of N which is denoted by ∆α

N ∈ Z[H], where H is the maximal free
abelian quotient of π1(N). Its relation with the 1–variable polynomial ∆α

N,φ ∈ Z[t±1]
(essentially given by specialization) is discussed in [FV06a, Section 3].

Consider the 3–torus T 3 and let C be a fiber of a fibration T 3 → T 2, endowed
with the framing induced by the fibration. Pick a meridian µC and the longitude λC
determined by the framing. Next, let K ⊂ S3 be an oriented knot. We denote by
µK and λK its meridian and longitude. Now, splice the two exteriors to form the
3–manifold

(14) T 3
K = (T 3 \ νC) ∪ (S3 \ νK)

where the gluing map on the boundary 2–tori identifies µK with λC and λK with
µC . Note that, if NK is the 0–surgery of S3 along K, and if m is the image of the
canonically framed curve µK in NK , then we can write T 3

K as normal connected sum
of T 3 and NK , i.e. T 3

K = T 3#C=mNK .
As the surgery of Equation (14) amounts to the substitution of a solid torus with a

homology solid torus, respecting the boundary maps, and as the class of C is primitive,
it is easy to see from the Mayer–Vietoris sequence that the inclusion maps induce

isomorphismsH1(T 3)
∼=←− H1(T 3\νC)

∼=−→ H1(T 3
K) which we use to identify these groups

for the remainder of this section. Also, we pick a basis x, y, z for H1(T 3) ∼= H1(T 3
K)

such that z = [C].
Given e ∈ H2(T 3

K) we denote by MK(e) the total space of the S1–bundle over T 3
K

with Euler class e. Out first result covers two classes of examples of 4–manifolds M
with b+

2 (M) > 1 that satisfy SWM = 1 ∈ Z[H2(M)], but do not admit symplectic
structures (that would necessarily have K = 0).

Proposition 6.1. (1) Let K ⊂ S3 be a non–trivial knot with ∆K = 1; then, for
all e 6= 0 ∈ H2(T 3

K) the manifold MK(e) satisfies SWMK(e) = 1 ∈ Z[H2(MK(e)]
and admits no symplectic structures.
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(2) Let K ⊂ S3 be any non–trivial knot; then, for e = ±PD(z) or ±2PD(z) ∈
H2(T 3

K), the manifold MK(e) satisfies SWMK(e) = 1 ∈ Z[H2(MK(e))] and
admits no symplectic structures.

Proof. As b1(T 3) ≥ 3, to compute SWMK(e) we will use Theorem 3.2 and Equation (9).

Using the injection H1(NK)
∼=←− H1(S3 \ K) → H1(T 3

K) we view ∆NK
∈ Z[H1(NK)]

as an element in Z[x±1, y±1, z±1]. With this convention we can write the Alexander
polynomial of T 3

K in terms of the Alexander polynomials of T 3 and NK . Indeed, using
the product formula for Milnor torsion (see e.g. [Tu02]), and the fact that ∆T 3 = 1
we get

(15) ∆T 3
K

(x, y, z) = ∆T 3(x, y, z) ·∆NK
(z) = ∆K(z) ∈ Z[x±1, y±1, z±1].

Using this equation, we obtain the statement on the Seiberg-Witten invariants: in-
deed, for the first class of manifolds, the result follows immediately from Equation
(7), while for the second class it is a consequence of the choice of e, which implies that
0 ∈ H2(MK(e)) is the only basic class with coefficient given by the sum of coefficients
of ∆K , namely 1 for all choices of K.

Note that in both cases the trivial class is the only basic class, in particular if
MK(e) is symplectic its canonical must be trivial. However, it is easy to see that
T 3
K (that is irreducible, as it is obtained by gluing two irreducible manifolds along

incompressible boundaries) does not satisfy the constraints determined in the proof
of Theorem 4.1, namely does not fiber over S1. In fact, it is certainly not a torus
bundle over S1: indeed, T 3

K(e) contains a minimal genus surface of genus g(K)+1 > 1
obtained by gluing a minimal genus Seifert surface of K with a section of the fibration
T 3 \ νC → T 2 \ ν{pt}, hence its Thurston norm does not vanish, in contrast with
torus bundles. �

The third class of examples is somewhat more sophisticated than the previous ones,
and uses implicitly the results of [LN91].

Proposition 6.2. Let K ⊂ S3 be a knot of genus 1 and e 6= 0 ∈ H2(T 3
K). The

manifold MK(e) admits a symplectic structure if and only if K is fibered and e is not
a multiple of PD([C]).

Proof. Recall that we write z = [C]. First assume that K is fibered. Let a 6= 0 ∈
H2(T 3

K), note that

ker(·a) := ker(H1(N)
∪a−→ H3(N)

∩[N ]−−→ Z) = {φ ∈ H1(N) |φ(PD(a)) = 0}
is a rank 2 subspace of H1(N). Furthermore, by Poincaré duality the ray Za is
determined by ker(·a). In particular, if e is not a multiple of PD(z) then

{φ|φ ∪ e = 0} = ker(·e) 6⊂ ker(·PD(z)) = {φ|φ(z) = 0}.
It follows that there exists φ ∈ H1(T 3) = H1(T 3 \ νC) = H1(T 3

K) such that φ(z) 6= 0
and φ ∪ e = 0. Using e.g. [McT99, Theorem 2.3] we see that (T 3 \ νC, φ) fibers
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over S1, and the fibration extends to T 3
K via the fibration of S3 \ νK (while classes

with φ(z) = 0 have trivial Thurston norm and cannot be fibered). The “if” part now
follows from Proposition 1.

We now turn to the proof of the “only if” statement. Observe that by obstruction
theory we can define a proper map T 3 \νC → S1×D2 which realizes the class dual to
z on cohomology and which extends the diffeomorphism ∂(T 3 \νC) ∼= S1×∂D2 given
by identifying λC and µC with S1 and ∂D2 respectively. Out of this we construct a
map

T 3
K = (T 3 \ νC) ∪ (S3 \ νK)→ (S1 ×D2) ∪ (S3 \ νK) = NK

that, since K is non–trivial, induces the short exact sequence

1→ Z ∗ Z→ π1(T 3
K)→ π1(NK)→ 1.

Given an epimorphism α : π1(NK) → G onto a finite group we obtain a corre-
sponding epimorphism of π1(T 3

K) onto G, that we denote for simplicity by α as
well. We now consider the Z[x±1, y±1, z±1]–modules H1(T 3

K ; Z[G][x±1, y±1, z±1]) and
H1(NK ; Z[G][z±1]), where we view the latter as a Z[x±1, y±1, z±1]–module by consid-
ering Z[z±1] as the maximal quotient of Z[x±1, y±1, z±1] invariant under the action of
Z ∗Z determined by the map Z ∗Z→ π1(T 3

K)→ H1(T 3
K), whose image is exactly the

subgroup generated by x and y. It now follows from the 5-terms exact sequence for
group homology with coefficients (cf. [Br94, Section VII.6]) that we have a quotient
map of Z[x±1, y±1, z±1]–modules

H1(T 3
K ; Z[G][x±1, y±1, z±1])→ H1(NK ; Z[G][z±1])→ 0.

This implies (cf. e.g. [Le67, Lemma 5, p. 76]) that there exists a polynomial
p(x, y, z) ∈ Z[x±1, y±1, z±1] such that

∆α
T 3

K
(x, y, z) = p(x, y, z) ·∆α

NK
(z) ∈ Z[x±1, y±1, z±1].

If K is not a fibered knot, it follows as in the proof of Corollary 3.6 that there exists
an epimorphism α : π1(NK)→ G s.t. ∆α

NK
(z) = 0 and hence ∆T 3

K
= 0. This implies,

by Theorem 3.4, that MK(e) does not admit symplectic structures.
It remains to show that, even if K is fibered, MK(e) cannot be symplectic if e =

λPD(z). (Observe that some of these cases have already been excluded in Proposition
6.1.) For all those cases, as p∗PD(z) is torsion, Theorem 3.2 shows that the only 4–
dimensional basic classes are torsion. From this, it is immediate to see that the set
of basic classes will either violate Equation (11) or, when that is satisfied (i.e. when
SWMK(e) = 1 ∈ Z[H2(MK(e))], which happens if |λ| = 1 or 2, or if ∆K = 1) then T 3

K

violates again Theorem 4.1, as in the proof of Proposition 6.1. �

Remark. The proof of Proposition 6.2 can easily be generalized as follows: let Y be any
closed 3–manifold, C ⊂ Y a closed framed curve such that [C] is a primitive element
of H1(Y ) and K any non–fibered genus one knot, then MK(e) is not symplectic for
any e ∈ H2(YK). Here YK is defined analogously to T 3

K , i.e. YK = Y \ νC ∪ S3 \ νK.
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7. Construction of symplectic forms

For the convenience of the reader we recall the statement of Theorem 4, its proof
is given in the subsequent sections.

Theorem 7.1. Let M be a 4–manifold admitting a free circle action. Let ψ ∈
H2(M ; R) such that ψ2 > 0 ∈ H4(M ; R) and such that p∗(ψ) ∈ H1(N ; R) can be
represented by a non–degenerate closed 1–form. Then there exists an S1–invariant
symplectic form ω on M with [ω] = ψ ∈ H2(M ; R).

Combining Theorem 4 with the results of the previous sections, we will obtain
Theorem 5, that characterizes completely the symplectic cone for some classes of
manifolds, and whose statement we recall here for sake of clarity.

Theorem 7.2. Let M be a 4–manifold with free S1–action such that the orbit space
N is a graph manifold or has vanishing Thurston norm. Then a class ψ ∈ H2(M ; R)
can be represented by a symplectic form if and only if ψ2 > 0 and p∗(ψ) ∈ H1(N ; R)
lies in the open cone on a fibered face of the unit ball of the Thurston. Furthermore,
we can assume that the symplectic form is S1–invariant.

In order to prove this theorem, in view of Theorem 4 and the results of the previous
sections we just need to show that whenever ψ ∈ H2(M ; R) can be represented
by a symplectic form, the class p∗(ψ) ∈ H1(N ; R) lies in the open cone on a top–
dimensional face of the unit ball of the Thurston norm. This property is quite likely
to hold in generality (and easy to prove for the case that M = S1 ×N). However, to
provide a proof for the case at hand we will have to assume some extra conditions,
satisfied in our case, that are summarized in the next proposition.

Proposition 7.3. Let M be a 4–manifold with a free circle action. Denote by p :
M → N the projection map to the orbit space. Assume that for any symplectic
form ω with p∗([ω]) ∈ H1(N) primitive the pair (N, p∗([ω])) fibers over S1. Then for
any symplectic form ω the class p∗([ω]) ∈ H1(N ; R) can be represented by a non–
degenerate closed 1–form.

Proof. First let ω be a symplectic form such that p∗([ω]) ∈ H1(N ; Q). The argument
in Section 3 shows that p∗([ω]) 6= 0. Therefore we can find s ∈ Q such that sp∗([ω]) =
p∗([sω]) is a primitive element in H1(N). By assumption (N, sp∗([ω])) fibers over
S1, in particular sp∗([ω]) (and hence p∗([ω]) can be represented by a non–degenerate
closed 1–form.

Now let ω be a symplectic form such that p∗([ω]) ∈ H1(N ; R) \H1(N ; Q), and let
C be the open cone over the face of the unit ball of the Thurston norm in which C
lies. Since the vertices of the Thurston norm ball are rational (cf. [Th86, Section 2]),
and by the openness of the symplectic condition, we can find a symplectic form ω′

on M such that p∗([ω
′]) is in H1(N ; Q) and is contained in the cone C as well. By

the previous observation it follows that there exist at least one element of C (namely
p∗([ω

′]) itself) that can be represented by a non–degenerate closed 1–form. But then
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by [Th86, Theorem 5] all its elements, in particular p∗([ω]), can be represented by
non–degenerate closed 1–forms. �

Proof of Theorem 7.2. By Corollary 3.6, Proposition 3.7, Theorem 5.1 and the results
of [FV06b] we know that for any symplectic form ω with p∗([ω]) ∈ H1(N) primitive
the pair (N, p∗([ω])) fibers over S1. Proposition 7.3 then asserts that for any sym-
plectic form ω the class p∗([ω]) ∈ H1(N ; R) can be represented by a non–degenerate
closed 1–form. This, together with Theorem 4, proves the corollary as stated. �

Let W be a 4–manifold. The set of all elements of H2(W ; R) which can be rep-
resented by a symplectic form is called the symplectic cone of W . Note that the
symplectic cone is closed under multiplication by a scalar. Theorem 7.2 lets us de-
termine the symplectic cone for a significant class of 4–manifolds. This suggests that
the symplectic cone shares the properties of the fibered cone of a 3–manifold. More
precisely we propose the following conjecture.

Conjecture 7.4. Let W be a symplectic 4–manifold. Then there exists a (possibly
non–compact) polytope C ⊂ H2(W ; R) with the following properties:

(1) The dual polytope in H2(W ; R) is compact, symmetric, convex and integral.
(2) There exist open top–dimensional faces F1, . . . , Fs of C such that the symplec-

tic cone coincides with all non–degenerate elements in the cone on F1, . . . , Fs.

It follows immediately from Theorem 7.2 and the results of [Th86] that the conjec-
ture holds for W a circle bundle over a graph manifold or a manifold with vanishing
Thurston norm.

7.1. Outline of the proof of Theorem 7.1. In this section we will give a proof of
Theorem 7.1 modulo some technical lemmas which will be proved in Sections 7.2, 7.3
and 7.4.

For the remainder of this section let M be a 4–manifold admitting a free circle
action. Let ψ ∈ H2(M ; R) such that ψ2 > 0 ∈ H4(M ; R) and such that p∗(ψ) ∈
H1(N ; R) can be represented by a non–degenerate closed 1–form α.

Lemma 7.5. There exists a 1–form β on N such that α ∧ β is closed and [β ∧ α] =
e ∈ H2(N ; R).

In the case that p∗(ψ) is integral this lemma is stated in [FGM91, Lemma 15]. We
give the proof of Lemma 7.5 in Section 7.3.

Now let γ = β ∧ α. Since [γ] = e ∈ H2(N ; R) we can find a 1–form η (namely a
connection 1–form for M → N) on M with the following properties:

(1) η is invariant under the S1–action,
(2) the integral of η over a fiber equals 1, and
(3) dη = p∗(γ).

We refer to [Ni00] and [Ro98] for more details. Note that (1) and (2) imply that η is
non–trivial on any non–trivial vector tangent to a fiber.
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Note that d(p∗(α)∧ η) = p∗(α∧ γ) = p∗(α∧α∧ β) = 0. We can therefore consider
[ψ] − [p∗(α) ∧ η] ∈ H2(M ; R). It follows easily from p∗([ψ]) = [α] and the second
property of η that p∗

(
[ψ]− [p∗(α)∧η]

)
= 0 ∈ H1(N ; R). By the exact sequence (1) we

can therefore find h ∈ H2(N ; R) with p∗(h) = [ψ]−[p∗(α)∧η]. By assumption we have
ψ2 6= 0, it follows now easily from the discussion in Section 2 that p∗(h)∪ [p∗(α)∧η] 6=
0 ∈ H4(M ; R). By the Gysin sequence the map p∗ : H4(M ; R) → H3(N ; R) is an
isomorphism, we therefore also get

h ∪ [α] = p∗(p
∗(h) ∪ [p∗(α) ∧ η]) 6= 0 ∈ H3(N ; R).

We will prove the following lemma in Section 7.4.

Lemma 7.6. Given h ∈ H2(N ; R) with h∪ [α] 6= 0 we can find a representative Ω of
h such that Ω ∧ α 6= 0 everywhere.

It is now clear that the following claim concludes the proof of Theorem 4.

Claim.
ω = p∗(Ω) + p∗(α) ∧ η

is an S1–invariant symplectic form on M .

It is clear that ω is S1–invariant. We compute

dω = d(p∗(Ω) + p∗(α) ∧ η) = p∗(α) ∧ dη = p∗(α ∧ γ) = p∗(α ∧ α ∧ β) = 0.

It remains to show that ω ∧ ω is non–zero everywhere. For any point in M pick a
basis a, b, c, d for the tangent space such that:

(1) p∗(a), p∗(b) are a basis for the tangent space of a leaf of the foliation, put
differently, α(p∗(a)) = α(p∗(b)) = 0 and p∗(a), p∗(b) are linearly independent,

(2) c is tangent to the fibers of the S1–fibration M → N ,
(3) α(p∗(d)) 6= 0.

Note that p∗(c) = 0 and p∗(α) vanishes on a, b, c. It is now easy to see that

(ω ∧ ω)(a, b, c, d) = 2p∗(Ω)(a, b) · p∗(α)(d) · η(c) = 2Ω(p∗(a), p∗(b)) · α(p∗(d)) · η(c),

which is clearly non–zero. This concludes the proof of the claim and hence the proof
of Theorem 7.1

7.2. Non–degenerate closed 1–forms and dual curves. Before we can prove
Lemmas 7.5 and 7.6 we need two lemmas regarding non–degenerate closed 1–forms
and curves representing homology classes. Throughout this section α will be a non–
degenerate closed 1–form on N . Note that α defines a foliation which we denote by
F . In this section we prove the following two lemmas.

Lemma 7.7. Let α be a non–degenerate closed 1–form on N with corresponding
foliation F and let p ∈ N . For every h ∈ H2(N ; Z) with h ∪ [α] = 0 there exists a
smoothly embedded closed (possibly disconnected) curve c with PD([c]) = h which lies
in a leaf of F and goes through p.
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Lemma 7.8. Let α be a non–degenerate closed 1–form on N with corresponding
foliation F . For every h ∈ H2(N ; Z) with h ∪ [α] 6= 0 and for every p ∈ N there
exists a connected, smoothly embedded curve with PD([c]) = h that is transverse to
F and which goes through p.

A proof for Lemma 7.7 is given in [Lt87, Proposition II.2], but we did not find a
reference for Lemma 7.8, even though presumably it is well–known. For completeness’
sake we include the proofs of both lemmas. The proofs will require the remainder of
this section.

Let α be a non–degenerate closed 1–form on N with corresponding foliation F .
We first pick a metric g on N . We let v′ be the unique vector field on N with the
property that for any p ∈ N and any w ∈ TpN we have g(v′(p), w) = α(w). Note
that this implies that α(v′(p)) 6= 0 for all p. We then define a new vector field v by

v(p) =
v′(p)

α(v′(p))
.

Note that α(v(p)) = 1 for all p ∈ N . We denote by F : N × R → N the flow
corresponding to −v, i.e. for any p ∈ N, s ∈ R we have

∂

∂t
F (p, t)|t=s = −v(F (p, s)).

In the following we identify S1 with [0, 1]/0 ∼ 1. Given a curve c we define Φc(t) =∫
c|[0,t]

α, where c|[0,t] denotes the restriction of the map c : [0, 1] → N to the interval

[0, t].

Proof of Lemma 7.7. Let α be a non–degenerate closed 1–form onN and h ∈ H2(N ; Z)
with h ∪ [α] = 0. Let d be any smoothly embedded connected curve dual to h with
d(0) = p. Note that Φd(1) =

∫
d
α = h ∪ [α] = 0.

We consider the following homotopy

H : [0, 1]× [0, 1] → N
(t, s) 7→ F (d(t), sΦd(t)).

This is clearly a smooth map. Since Φd(1) = 0 this descends in fact to a homotopy
H : S1 × [0, 1] → N . Note that H(t, 0) = d(t) for all t. We now consider the closed
curve d′ defined by d′(t) = H(t, 1). This curve is smooth, but it has possibly self–
intersections. Note that d′(0) = p. We claim that d′ lies in a leaf of F , i.e. we claim
that Φd′(s) = 0 for all s ∈ [0, 1]. So let s ∈ [0, 1]. Note that the homotopy H can be
used to show that the curve d′|[0,s] is homotopic to the following curve

d′′ : [0, s] → N

t 7→
{

d(2t), for t ∈ [0, s/2]
F (d(s), (2t− s)Φd(t)), for t ∈ [s/2, s].

Since α is a closed form we see that Φd′(s) = Φd′′(s) = 0.
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We get the required curve c by removing self–intersections of the curve d′ in the
leaf of F . Note that the smoothing can increase the number of components of the
curve. �

Proof of Lemma 7.8. Let α be a non–degenerate closed 1–form onN and h ∈ H2(N ; Z)
with h ∪ [α] = 0. Let d be any smoothly embedded connected curve dual to h with
d(0) = p. Note that Φd(1) =

∫
d
α = h ∪ [α] 6= 0. Let Ψ : [0, 1] → R be a function

with Ψ(1) = Φd(1) such that Ψ′(t) > 0 (respectively Ψ′(t) < 0)) for all t.
We consider the following homotopy

H : [0, 1]× [0, 1] → N
(t, s) 7→ F (d(t), s(Φd(t)−Ψ(t))).

This is clearly a smooth map. Since Φd(1) = Ψ(1) this descends in fact to a homotopy
H : S1 × [0, 1]→ N .

Note that H(t, 0) = d(t) for all t. We now consider the curve d′ defined by d′(t) =
H(t, 1). Note that d′(0) = p. The argument of the proof of Lemma 7.7 shows
that Φd′(t) = Ψ(t). Since Ψ′(t) 6= 0 for all t it follows that d′ is transversal to F .
Furthermore note that d : [0, 1]/0 ∼ 1→ N is smooth everywhere except possibly at
t = 0. Using a homotopy we can turn d′ into a transversal smoothly embedded curve
c dual to h which goes through p. �

7.3. Proof of Lemma 7.5. We are now ready to prove the first of the two auxiliary
lemmas, i.e. we will prove the following claim.

Claim. Let α be a non–degenerate closed 1–form on N and e ∈ H2(N ; Z) such that
e∪ [α] = 0. There exists a 1–form β on N such that α∧ β is closed and [β ∧α] = e ∈
H2(N ; R).

By Lemma 7.7 we can find an oriented smoothly embedded curve c dual to e ∈
H2(N ; Z) such that α|c ≡ 0. We denote the components of c by c1, . . . , cm. We now
consider S1×D2 with the coordinates e2πit, x, y and we orient S1×D2 by picking the
equivalence class of the basis {∂x, ∂y, ∂t}.

Using the orientability of the N and of the leaves of the foliation we use a standard
argument to show that for i = 1, . . . ,m we can pick a map

fi : S1 ×D2 → N

with the following properties:

(1) fi is an orientation preserving diffeomorphism onto its image.
(2) fi restricted to S1 × 0 is an orientation preserving diffeomorphism onto ci.
(3) α((fi)∗(∂t)) = 0.
(4) α((fi)∗(∂x)) = 0.
(5) There exists an ri ∈ (0,∞) such that α((fi)∗(∂y)) = ri everywhere.
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Note that (3), (4) and (5) are equivalent to f ∗i (α) = ri · dy.
For i = 1, . . . ,m we now pick a function ρi : D2 → R≥0 such that the closure of

the support of ρ lies in the interior of D2 and such that
∫
D2 ρi = 1

ri
. We define the

following 1–form on S1 ×D2:

β′i(z, x, y) = ρi(x, y) · dx.

Note that

(16) d(β′i ∧ f ∗i (α)) = d(β′i ∧ ri · dy) = d(riρi(x, y) · dx ∧ dy) = 0.

Furthermore for any z ∈ S1 we have

(17)

∫
z×D2

β′i ∧ f ∗i (α) =

∫
z×D2

riρi(x, y) · dx ∧ dy = 1.

For i = 1, . . . ,m we now define the following 1–form on N :

βi(p) =

{
0, if p ∈ N \ fi(S1 ×D2)

(f−1
i )∗(β′i(q)), if p = fi(q) for some q ∈ S1 ×D2.

Furthermore we let β =
∑m

i=1 βi. We claim that β has all the required properties.
First note that β is C∞ by our condition on the support of ρi. Furthermore it

follows immediately from (16) that β ∧ α is closed. Finally we have to show that
β ∧ α represents e.

In order to show that β ∧ α represents e in H2(N ; R) = Hom(H2(N ; Z),R) it is
enough to show that for any embedded oriented surface S ⊂ N , we have∫

S

β ∧ α = e([S]).

We first note that e([S]) = c ·s. It is therefore enough to show that for any embedded
oriented surface S ⊂ N , we have ∫

S

βi ∧ α = ci · S.

In fact, given such a surface we can isotope S in such a way that S intersects the
curve c ‘vertically’, i.e. we can assume that

fi(S
1 ×D2) ∩ S = ε1 · fi(z1 ×D2), . . . , εk · fi(zk ×D2)

for disjoint zi and εi ∈ {−1, 1}. We view this equality as an equality of oriented
manifolds, where we give zi × D2 the orientation given by the basis {∂x, ∂y}. In
particular S is transverse to ci. In this case we have

ci · S =
k∑
j=1

εj.
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On the other hand it follows from (17) that∫
S

βi ∧ α =
k∑
j=1

∫
εj ·(zj×D2)

f ∗i (βi) ∧ f ∗i (α) =
k∑
j=1

∫
εj ·(zj×D2)

β′i ∧ f ∗i (α) =
k∑
j=1

εj.

This concludes the proof that β has all the required properties.

7.4. Proof of Lemma 7.6. The following claim is the last missing piece in the proof
of Theorem 4.

Claim. Let α be a non–degenerate closed 1–form on N . Given h ∈ H2(N ; R) with
h ∪ [α] 6= 0 we can find a representative Ω of h such that Ω ∧ α 6= 0 everywhere.

We first consider the case that h is represented by an integral class, i.e. by an
element in the image of the map H2(N ; Z) → H2(N ; R). Let F be the foliation
corresponding to α.

Now let p1, p2, . . . a sequence of points in N which is dense everywhere. Using
Lemma 7.8 we can pick for each i a curve ci transverse to F which goes through pi
and which represents h. Since N is orientable we can pick maps

fi : S1 ×D2 → N

such that

(1) fi is an orientation preserving diffeomorphism onto its image (where we again
view S1 ×D2 with the orientation given by {∂x, ∂y, ∂t}).

(2) fi restricted to S1 × 0 is an orientation preserving diffeomorphism onto ci.
(3) α((fi)∗(∂x)) = 0.
(4) α((fi)∗(∂y)) = 0.
(5) α((fi)∗(∂t)) > 0.

Note that (3) and (4) are equivalent to saying that (fi)∗(∂x) and (fi)∗(∂y) are tangent
to the leaves of the foliation F . Also note that on S1×D2 we have dx∧dy∧(fi)

∗(α) 6=
0.

By compactness we can find i1, . . . , ik such that

(18)
k⋃
j=1

fi
(
S1 × 1

2
D2
)

= N.

Without loss of generality we can assume that ij = j.
Now we pick a function ρ : D2 → R≥0 such that the following conditions hold:

(1)
∫
D2 ρ = 1

k
,

(2) ρ is strictly positive on 1
2
D2, and

(3) the closure of the support of ρ lies in the interior of D2.

Let Ω′ be the 2–form on S1 ×D2 given by

Ω′(z, x, y) = ρ(x, y)dx ∧ dy.
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Clearly Ω′ is closed and for any z ∈ S1 we have
∫
z×D2 Ω′ = 1

k
. For i = 1, . . . , n we

now define the following 2–form on N :

Ωi(p) =

{
0, if p ∈ N \ fi(S1 ×D2)

(f−1
i )∗(Ω′(q)), if p = fi(q) for some q ∈ S1 ×D2.

As in the proof of Lemma 7.5 we see that Ωi is smooth, Ωi is closed and [Ωi] = 1
k
h ∈

H2(N ; R). Now let Ω(h) =
∑k

i=1 Ωi. Clearly [Ω(h)] = h ∈ H2(N ; R), and it easily
follows from (18) and all the other conditions that Ω(h) ∧ α > 0 everywhere.

We now turn to the general case, i.e. to the case h ∈ H2(N ; R) is not necessarily
integral.

Lemma 7.9. Let h ∈ H2(N ; R) with h ∪ [α] > 0. Then we can find m ∈ N, integral
h1, . . . , hm and a1, . . . , am ∈ R≥0 such that hi ∪ [α] > 0 for all i and such that h =∑m

i=1 aihi.

We first show that Lemma 7.9 implies Lemma 7.6. Indeed, given h ∈ H2(N ; R)
with h∪ [α] > 0 we pick integral h1, . . . , hm and a1, . . . , am ∈ R≥0 as above. Then we
define Ω(h1), . . . ,Ω(hm) as above. We let

Ω =
m∑
i=1

aiΩ(hi).

We see that

Ω(h) ∧ α =
m∑
i=1

aiΩ(hi) ∧ α > 0

everywhere. This concludes the proof of Lemma 7.6 assuming Lemma 7.9.
We now turn to the proof of Lemma 7.9. It is easy to see that we can pick a

basis e1, . . . , en for H1(N ; Q) such that ei ∪ [α] > 0 for all i = 1, . . . ,m. We use this
basis to identify H2(N ; R) with Rn. We say that h ∈ H2(N ; R) with h ∪ [α] > 0 has
property (*) if there exists m ∈ N, integral h1, . . . , hm and a1, . . . , am ∈ R≥0 such that
hi ∪ [α] > 0 for all i and such that h =

∑m
i=1 aihi. Note that if h1, h2 have property

(*), then h1 + h2 also has property (*).
We now define

P (m) = max{(∗) holds for all g = (g1, . . . , gn) ∈ H2(N ; R) with g1, . . . , gm ∈ Q}

Clearly we have to show that P (0) holds. Note that P (n) holds since any rational
element of H2(N ; R) is a non–negative multiple of an integral element.

We now show that P (m+ 1) implies that P (m) holds as well. So assume P (m+ 1)
holds and that we have

g = (g1, . . . , gm, gm+1, . . . , gn)
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with g1, . . . , gm ∈ Q and h · [α] > 0. By continuity we can find r > 0 such that
gm+1 − r ∈ Q and with the property that

(g1, . . . , gm, gm+1 − r, . . . , gn) · [α] > 0.

We write

(g1, . . . , gm, gm+1, . . . , gn) = (g1, . . . , gm, gm+1 − r, . . . , gn) + rem+1.

The claim now follows from P (m+ 1) and em+1 ∪ [α] > 0.
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