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Symplectic structures

Let W be a 4–manifold. A 2–form ω is called a

symplectic structure on W if dω = 0 and if ω is

non–degenerate, i.e. ω ∧ ω 6= 0 everywhere.

Question 1. When does S1 ×N3 support a sym-

plectic structure?



Theorem. (Thurston 1976) If N fibers over S1,

then S1 ×N is symplectic.

Proof. Let p : N → S1 be a fibration. Define

θ = p∗(dt). We can find a metric with respect to

which θ is harmonic. We denote the Hodge dual

of θ by ∗θ.

Then

ω = ds ∧ θ + ∗θ

is a symplectic form on S1 ×N since

ω ∧ ω = 2ds ∧ θ ∧ ∗θ.

Conjecture. S1×N is symplectic if and only if N

fibers over S1.



First fiberedness theorem.

Let ω be a symplectic structure on a 4–manifold,

then let K(ω) ∈ H2(W ; Z) be the associated canon-

ical class (defined as c1 of the tangent bundle

equipped with an almost complex structure com-

patible with ω).

Theorem A (F–Vidussi) If S1 ×N is symplectic

with trivial canonical class, then N fibers over S1.

By a result of Kronheimer a symplectic S1×N has

trivial canonical class if and only if N has vanishing

Thurston norm, e.g. if N is 0–framed surgery on

a knot.



We now only consider the case b1(N) ≥ 2. Given a

3–manifold N we denote its multivariable Alexan-

der polynomial by ∆N ∈ Z[t−1
1 , t1, . . . , tb, t

−1
b ].

Theorem. If S1 × N is symplectic with trivial

canonical class, then for any finite cover Ñ of N

we have

∆Ñ = ±1.

Proof.

(1) Any finite cover is symplectic with trivial canon-

ical class.

(2) By Taubes SWS1×Ñ = ±1.

(3) By Meng–Taubes ∆Ñ = ±1.



The following now implies Theorem A.

Theorem A’. If for any finite cover Ñ of N we

have

∆Ñ = ±1,

then N fibers over S1.

Proof. It follows from Turaev that for any prime

p we have

∆Ñ = ±1⇒ b1(Ñ,Fp) ≤ 3.

We will show that if N does not fiber, then there

exists Ñ with b1(Ñ,Fp) > 3.



First note that if N is covered by a torus bundle,

then N is already a torus bundle.

If N is not fibered we consider the following three

cases.

(1) If N contains an incompressible torus, then by

Kojima and Luecke there exists Ñ with b1(Ñ,Z) >

3.

(2) If N is Seifert fibered without an incompress-

ible torus, then b1(N) ≤ 1.

(3) If N is hyperbolic, then by the Lubotzky al-

ternative either there exists Ñ with b1(Ñ,Fp) > 3

or π1(N) is virtually soluble (but the latter would

imply that a cover Ñ is a torus bundle)

This completes the proof of Theorems A’ and A.



Second fiberedness theorem.

Given a group π we say that a subgroup A ⊂ π is

separable if for any g ∈ π \A there exists a homo-

morphism α : π → G, G a finite group, such that

α(g) 6∈ α(A).

Given a symplectic form ω on S1×N we can assume

that [ω] lies in H2(S1×N ; Z). Under the Künneth

decomposition

H2(S1 ×N ; Z) = H1(S1; Z)⊗H1(N ; Z)⊕H2(N ; Z)
= H1(N ; Z)⊕H2(N ; Z)

we denote the component of [ω] in H1(N ; Z) by

φ = φ(ω). After rescaling if necessary we can as-

sume that φ is primitive.

We say (N,φ) fibers if there exists a fibration p :

N → S1 with φ = p∗(1).



Theorem B (F–Vidussi). Assume S1×N is sym-

plectic. If φ(ω) ∈ H1(N ; Z) is dual to an incom-

pressible connected surface Σ such that π1(Σ) ⊂
π1(N) is separable, then (N,φ) fibers over S1.

Remark.

(1) Torus subgroups are separable, hence we get

Theorem A back.

(2) Thurston conjectured that any f.g. subgroup

of a hyperbolic 3–manifold is separable.

(3) Using work of E. Hamilton we can also show

that for a graph manifold N we have S1 × N is

symplectic iff N fibers.



For a finite cover p : Ñ → N we denote p∗(φ)

by φ again. Given (Ñ, φ) we consider the Alexan-

der module H1(Ñ,Z[t±1]) and the corresponding

Alexander polynomial ∆Ñ,φ ∈ Z[t±1].

Theorem. Assume S1 × N is symplectic. Then

∆Ñ,φ 6= 0 for any finite cover Ñ .

Proof. (1) Taubes: The SW–invariants of S1× Ñ
are non–zero.

(2) Meng–Taubes: The multivariable Alexander

polynomial ∆Ñ 6= 0.

(3) With more care, ∆Ñ,φ (which is a specializa-

tion of ∆Ñ) is non–zero as well.



Theorem B’. Assume ∆Ñ,φ 6= 0 for any finite

cover Ñ . If φ ∈ H1(N ; Z) is dual to an incompress-

ible connected surface Σ such that π1(Σ) ⊂ π1(N)

is separable, then (N,φ) fibers over S1.

Remark. Since ∆N,φ 6= 0 we can, by McMullen,

always find an connected incompressible surface Σ

dual to φ.

Proof. If ∆Ñ,φ 6= 0 for any finite cover Ñ , then

one can use π1(N) residually finite to show that N

is irreducible.

We have two embeddings

i± : Σ→ N \Σ× (−1,1).

Since Σ is Thurston norm minimizing we know

that i± : π1(Σ) → π1(N \ Σ × (−1,1)) is injec-

tive. By Stallings’ theorem Σ is a fiber if π1(Σ)→
π1(N \Σ) is an isomorphism.

What does our condition on Alexander polynomials

tell us?



Given a homomorphism α : π1(N) → G to a finite

group we get a finite cover p : Ñ → N . We let

Σ̃ = p−1(Σ) and Ñ \Σ = p−1(N \Σ).

Consider the long exact sequence

H1(Ñ ; Z[t±1])

→ H0(Σ̃)⊗ Z[t±1]
i−t−i+−−−−−→ H0(Ñ \Σ)⊗ Z[t±1]

→ H0(Ñ ; Z[t±1])

The condition on ∆N̂,φ ensures that

rkZ[t±1](H1(Ñ)⊗Z[t±1])=rkZ[t±1](H0(Ñ)⊗Z[t±1])=0.

Hence

rkZ[t±1](H0Σ̃⊗ZZ[t±1])=rkZ[t±1](H0(Ñ \Σ)⊗ZZ[t±1])

which implies that

rkZ(H0(Σ̃; Z)) = rkZ(H0(Ñ \Σ))

But this implies that

|G|
|Im{π1(Σ)→ G}|

=
|G|

|Im{π1(N \Σ)→ G}|
.



We showed that if ∆Ñ,φ 6= 0 for any finite cover

Ñ , then for any α : π1(N)→ G we have

Im{π1(Σ)→ G} = Im{π1(N \Σ)→ G}.

On the other hand, if Σ is not a fiber, then it fol-

lows from Stallings’ theorem that π1(Σ) 6= π1(N \
Σ). Therefore by separability of π1(Σ) ⊂ π1(N)

we can find α : π1(N)→ G with

Im{π1(Σ)→ G} 6= Im{π1(N \Σ)→ G}.

This concludes the proof of Theorems B’ and B.



Manifolds with free S1–action.

Assume that W is a 4–manifold with free circle

action and orbit space N . We have a map p∗ :

H2(W ; R)→ H1(N ; R) (integration along the fiber).

Theorem C (F–Vidussi). Let W be a symplec-

tic 4–manifold with free circle action such that the

orbit space N is a graph manifold or that W has

trivial canonical class. Then TFAE

(1) c ∈ H2(W ; R) can be represented by a sym-

plectic form.

(2) c2 6= 0 ∈ H4(W ; R) and p∗(c) ∈ H1(N ; R)

can be represented by a non–degenerate closed

1–form.


