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Symplectic structures

Let W be a 4—manifold. A 2—form w is called a
symplectic structure on W if dw = 0 and if w is
non—degenerate, i.e. w A w #*= 0 everywhere.

Question 1. When does S1 x N3 support a sym-
plectic structure?



Theorem. (Thurston 1976) If N fibers over S1,
then S1 x N is symplectic.

Proof. Let p : N — S! be a fibration. Define
0 = p*(dt). We can find a metric with respect to
which 6 is harmonic. We denote the Hodge dual
of 6 by x0.

Then

w=ds N0+ %0

IS a symplectic form on Sl « N since

wAw = 2ds N\ 6O N *0.

Conjecture. S! x N is symplectic if and only if N
fibers over S1.



First fiberedness theorem.

Let w be a symplectic structure on a 4—manifold,
then let K (w) € H2(W;Z) be the associated canon-
ical class (defined as ¢ of the tangent bundle
equipped with an almost complex structure com-
patible with w).

Theorem A (F—Vidussi) If S x N is symplectic
with trivial canonical class, then N fibers over st

By a result of Kronheimer a symplectic Sl % N has
trivial canonical class if and only if N has vanishing
Thurston norm, e.g. if N is O—framed surgery on
a knot.



We now only consider the case b1(IN) > 2. Given a
3—manifold N we denote its multivariable Alexan-
der polynomial by Ay € Z[tfl,tl,...,tb,tb_l].

Theorem. If S! x N is symplectic with trivial
canonical class, then for any finite cover N of N
we have

Ay = +1.

Proof.

(1) Any finite cover is symplectic with trivial canon-
ical class.

(2) By Taubes SWq1, i = £1.

(3) By Meng—Taubes A 5 = £1.



T he following now implies Theorem A.

Theorem A’. If for any finite cover N of N we
have

Ay = +1,

then N fibers over S!.

Proof. It follows from Turaev that for any prime
p we have

Ay ==+1=b(N,Fp) <3.

We will show that if N does not fiber, then there
exists N with by (N,Fp,) > 3.



First note that if V is covered by a torus bundle,
then N is already a torus bundle.

If V is not fibered we consider the following three
cases.

(1) If N contains an incompressible torus, then by
Kojima and Luecke there exists N with b1(N,Z) >
3.

(2) If N is Seifert fibered without an incompress-
ible torus, then b1(N) < 1.

(3) If N is hyperbolic, then by the Lubotzky al-
ternative either there exists N with b1(N,Fp) > 3
or w1 (IN) is virtually soluble (but the latter would
imply that a cover N is a torus bundle)

T his completes the proof of Theorems A’ and A.



Second fiberedness theorem.

Given a group m we say that a subgroup A C « is
separable if for any g € w \ A there exists a homo-
morphism « : m — G, G a finite group, such that

a(g) & a(A).

Given a symplectic form w on S1x N we can assume
that [w] lies in H2(S1 x N;Z). Under the Kiinneth
decomposition

H2(S' x N;7)

HY(51:72) @ HY(N:Z) ® H?(N:;Z)
HY(N;Z)® H2(N;Z)

we denote the component of [w] in H1(N;Z) by
¢ = ¢(w). After rescaling if necessary we can as-
sume that ¢ is primitive.

We say (N, ¢) fibers if there exists a fibration p :
N — 81 with ¢ = p*(1).



Theorem B (F—Vidussi). Assume S1x N is sym-
plectic. If ¢(w) € HY(N;Z) is dual to an incom-
pressible connected surface X such that m1(X) C
71 (N) is separable, then (N, ¢) fibers over S1.

Remark.

(1) Torus subgroups are separable, hence we get
Theorem A back.

(2) Thurston conjectured that any f.g. subgroup
of a hyperbolic 3—manifold is separable.

(3) Using work of E. Hamilton we can also show
that for a graph manifold N we have S! x N is
symplectic iff N fibers.



For a finite cover p : N — N we denote p*(¢)
by ¢ again. Given (NN, ¢) we consider the Alexan-
der module Hq(N,Z[t*1]) and the corresponding
Alexander polynomial Ag , € Z[t¥1].

Theorem. Assume S! x N is symplectic. Then

~

AKW = 0 for any finite cover N.

Proof. (1) Taubes: The SW—invariants of S x N
are non—zero.

(2) Meng—Taubes: The multivariable Alexander
polynomial A g # 0.

(3) With more care, AN7¢ (which is a specializa-
tion of AN) IS hon—zero as well.



Theorem B’. Assume A]f\w = 0 for any finite
cover N. If p € HY(N:; Z) is dual to an incompress-
ible connected surface 3 such that n1(2X) C m1(N)
is separable, then (N, ¢) fibers over St

Remark. Since AN,(b %= 0 we can, by McMullen,
always find an connected incompressible surface >
dual to ¢.

Proof. If Ag 4 # 0 for any finite cover N, then
one can use w1 (V) residually finite to show that N
IS irreducible.

We have two embeddings
it X >N\ x(—1,1).

Since > is Thurston norm minimizing we know
that i+ : m(X) — w1 (N \ X x (—1,1)) is injec-
tive. By Stallings’ theorem X is a fiber if 711 (X) —
w1 (N \ X) is an isomorphism.

What does our condition on Alexander polynomials
tell us?



Given a homomorphism « : 71 (IN) — G to a finite
group we get a finite cover p : N — N. We let
>=p (X)) and N\ =p~ 1(W\ ).

Consider the long exact sequence
H1(N; Z[t*1])

L Ho(S) 9 Z[tE] T Ho(N N\ 5) @ Z[]
— Ho(N; Z[F1)

The condition on AN¢ ensures that

kg (HL (N @Z[E )=rky 1y (Ho(N)®Z[t1])=0.

Hence

—_— N —

rkZ[tﬂ](Hoi®zz[til])=rkz[til](HO(N \ D)R7Z[tF)

which implies that

—_— N —

rkz(Ho(X; Z)) = rkz(Ho(N \ X))
But this implies that

&l _ G| |
Im{r(Z) — G} Im{m(N\E) — G}




We showed that if AN¢ #= 0 for any finite cover
N, then for any a : 71(N) — G we have

Im{m1(X) - G} =Im{m (N \ X) — G}.

On the other hand, if > is not a fiber, then it fol-
lows from Stallings’ theorem that 71(X) # w1 (IV \
> ). Therefore by separability of m1(3X) C w1(IN)
we can find « : w1 (IN) — G with

Im{m1(X) - G} ZIm{m (N \ X) — G}.

T his concludes the proof of Theorems B’ and B.



Manifolds with free Sl—action.

Assume that W is a 4—manifold with free circle
action and orbit space N. We have a map px
H2(W;R) — HY(N;R) (integration along the fiber).

Theorem C (F—Vidussi). Let W be a symplec-
tic 4—manifold with free circle action such that the
orbit space N is a graph manifold or that W has
trivial canonical class. Then TFAE

(1) ¢ € H2(W:;R) can be represented by a sym-
plectic form.

(2) ¢2 = 0 € HX(W;R) and p«(c) € HI(N;R)
can be represented by a non—degenerate closed
1—form.



