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Hilbert Γ–modules

For a (countable) group Γ we have the Hilbert space

l2(Γ) = {ϕ : Γ → C|
∑
g∈Γ

|ϕ(g)|2 < ∞}.

Definition. A Hilbert Γ–module V is a Hilbert space with a linear,
isometric Γ–action which has a Γ–equivariant isometric embedding

V → H ⊗ l2(Γ),

for some Hilbert space H with trivial Γ–action.
Example. Let Γ a finite group, V = C with the trivial Γ–action,
then consider

V = C → C⊗ l2(Γ) = C⊗ C[Γ] = C[Γ]
1 7→ 1√

|Γ|

∑
g∈Γ

g .
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L2–dimension

Definition. Given a Hilbert Γ–module V pick an embedding
V ⊂ H ⊗ l2(Γ) and an orthonormal basis {vi} for H. Let

Π : H ⊗ l2(Γ) → V

be the orthogonal projection, then

dimΓ(V ) :=
∑

i

〈Π(vi ⊗ e), vi ⊗ e〉.

Example 1. Let V = (l2(Γ))n. We have V = Cn ⊗ l2(Γ). Let vi

be an ONB for Cn. Then

dimΓ((l
2(Γ))n) =

n∑
i=1

〈vi ⊗ e, vi ⊗ e〉 = n.
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∑

i

〈Π(vi ⊗ e), vi ⊗ e〉.

Example 2. Let Γ = {g1, . . . , gn} finite and V = C with trivial
Γ–action. We have

V = C → C⊗ C[Γ] = C[Γ]
1 7→ 1√

|Γ|

∑
gi .

with orthogonal projection

Π : C[Γ] → C · (
∑

gi ) ⊂ C[Γ]
gi 7→ 1

|Γ| · (
∑

gi ).

Then

dimΓ(C) = 〈Π(e), e〉 = 〈 1

|Γ|
(
∑

gi ), e〉 =
1

|Γ|
.
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L2–dimension

Definition. Given a Hilbert Γ–module V pick an embedding
V ⊂ H ⊗ l2(Γ) and an ONB {vi} for H. Let Π : H ⊗ l2(Γ) → V be
the orthogonal projection, then

dimΓ(V ) :=
∑

i

〈Π(vi ⊗ e), vi ⊗ e〉.

Example 2. Let Γ = {g1, . . . , gn} finite and V = C with trivial
Γ–action. We have

V = C → C⊗ C[Γ] = C[Γ]
1 7→ 1√

|Γ|

∑
gi .

with orthogonal projection

Π : C[Γ] → C · (
∑

gi ) ⊂ C[Γ]
gi 7→ 1

|Γ| · (
∑

gi ).

Then

dimΓ(C) = 〈Π(e), e〉 = 〈 1

|Γ|
(
∑

gi ), e〉 =
1

|Γ|
.

Stefan Friedl Université du Québec à Montréal L2–invariants and commensurability



Properties: Restriction and Induction

Restriction. Let V ⊂ H ⊗ l2(Γ) be a Hilbert Γ–module and Γ̃ ⊂ Γ
a finite index subgroup. Then V is also a Γ̃–module via

V ⊂ H ⊗ l2(Γ) ∼= H ⊗ C[Γ/Γ̃]⊗ l2(Γ̃)

and
dimΓ̃(V ) = [Γ : Γ̃]dimΓ(V ).

Induction. If Γ ⊂ Γ̃ and V is a Γ–module, then

V ⊗C[Γ] C[Γ̃]

is a Γ̃–module via

V ⊗C[Γ] C[Γ̃] ⊂ H ⊗ l2(Γ̃)

and
dimΓ̃(V ⊗C[Γ] C[Γ̃]) = dimΓ(V ).
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L2–Betti numbers

Let X be a finite CW–complex together with a homomorphism
ϕ : π1(X ) → Γ. Let X̃ be the ϕ–cover of X . Then

C∗(X ; l2(Γ)) = C∗(X̃ )⊗C[Γ] l2(Γ)

is a complex of Hilbert Γ–modules.

We define

Hp(X ; l2(Γ)) = Ker(∂p)/Im(∂p+1).

This equals

Hp(X ; l2(Γ)) = Ker(∂p) ∩ (Im(∂p+1))
⊥ ⊂ Cp(X ; l2(Γ))

which is a Hilbert Γ–module. Now define

b
(2)
p (X ; l2(Γ)) = dimΓHp(X ; l2(Γ)),

the p–th L2–Betti number of (X , ϕ).
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Properties of L2–Betti numbers

Assume we have (X , ϕ : π1(X ) → Γ).

1. If Γ = {e}, then b
(2)
p (X , ϕ) = bp(X ).

2. If Γ is finite and XΓ the ϕ–cover of X , then

b
(2)
p (X , Γ) =

1

|Γ|
bp(XΓ).

3. If Γ is a subgroup of a group Γ̃, then

b
(2)
p (X , π1(X ) → Γ → Γ̃) = b

(2)
p (X , π1(X ) → Γ).

(Induction)

4. If X̃ is a finite cover of X of order n such that
Ker(ϕ) ⊂ π1(X̃ ), then

b
(2)
p (X̃ , π1(X̃ ) → Γ) = n · b(2)

p (X , π1(X ) → Γ).

(Restriction)
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Commensurability (the good news)

Two 3–manifolds are called commensurable if they have
diffeomorphic finite covers.
Observation. If an n1–fold cover of M1 is diffeomorphic to an
n2–fold cover of M2, then

n1 · b(2)
p (M1, id) = n2 · b(2)

p (M2, id).

So if two 3–manifolds are commensurable, then their L2–Betti
numbers are rationally dependent.

Proof. Let M̃ be the common cover, then

nib
(2)
p (Mi , id) = b

(2)
p (M̃, π1(M̃) → π1(M))

= b
(2)
p (M̃, π1(M̃)),

by Restriction and Induction.
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Commensurability (the bad news)

Unfortunately the L2–Betti numbers give meaningless
commensurability invariants.

Atiyah conjecture. Let M be a closed manifold, then b
(2)
p (M, ϕ)

is rational for any ϕ : π1(M) → Γ.

More bad news: If M is a prime 3–manifold with infinite π1(M)

and with empty or toroidal boundary, then b
(2)
p (M, id) = 0.
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The L2–torsion

The vanishing of the L2–Betti numbers is perhaps even a blessing
in disguise since
“vanishing homology implies existence of Reidemeister torsion”

Indeed, “if b
(2)
∗ (M, ϕ) = 0, [and if the Novikov–Shubin invariant is

positive] then there exists the L2–torsion τ(M, ϕ) ∈ R”.
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Properties of the L2–torsion

Assume we have (X , ϕ : π1(X ) → Γ).

1. If Γ is a subgroup of a group Γ̃, then

τ(X , π1(X ) → Γ → Γ̃) = τ(X , π1(X ) → Γ).

(Induction)

2. If X̃ is a finite cover of X of order n such that
Ker(ϕ) ⊂ π1(X̃ ), then

τ(X̃ , π1(X̃ ) → Γ) = n · τ(X , π1(X ) → Γ).

(Restriction)

Immediate consequence: If an n1–fold cover of M1 is diffeomorphic
to an n2–fold cover of M2, then

n1 · τ(M1, id) = n2 · τ(M2, id).
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Properties of the L2–torsion

Assume we have (X , ϕ : π1(X ) → Γ).

1. If Γ is a subgroup of a group Γ̃, then

τ(X , π1(X ) → Γ → Γ̃) = τ(X , π1(X ) → Γ).

(Induction)

2. If X̃ is a finite cover of X of order n such that
Ker(ϕ) ⊂ π1(X̃ ), then

τ(X̃ , π1(X̃ ) → Γ) = n · τ(X , π1(X ) → Γ).

(Restriction)

Immediate consequence: If an n1–fold cover of M1 is diffeomorphic
to an n2–fold cover of M2, then

n1 · τ(M1, id) = n2 · τ(M2, id).
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Commensurability and L2–torsion

We just saw: If an n1–fold cover of M1 is diffeomorphic to an
n2–fold cover of M2, then

n1 · τ(M1, id) = n2 · τ(M2, id).

So the L2–torsions of commensurable 3–manifolds are rationally
dependent.
But the invariant τ(M, id) equals the sum of the volumes of the
hyperbolic pieces of M (up to a factor of − 1

6π ).
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The von Neumann ρ–invariant

Let M be a closed oriented 3–manifold and ϕ : π1(M) → Γ a
homomorphism, then the von Neumann ρ–invariant ρ(M, ϕ) ∈ R is
defined. The von Neumann ρ–invariant is the L2–signature defect,
i.e. the difference between the L2–signature and the ordinary
signature of a bounding 4–manifold.

Properties.

1. If Γ is a subgroup of a group Γ̃, then

ρ(M, π1(M) → Γ → Γ̃) = ρ(M, π1(M) → Γ).

2. Let α : π1(M) → Γ a homomorphism to a finite group which
factors through ϕ, then

ρ(M̃, π1(M̃) → π1(M) → Γ)

= [M : M̃](ρ(M, π1(M) → Γ)− ρ(M, α)),

where M̃ is the α–cover of M.
3. If Γ is finite, then ρ(M, ϕ) ∈ Q.
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The von Neumann ρ–invariant and commensurability

Immediate consequence: If an n1–fold cover of M1 is diffeomorphic
to an n2–fold cover of M2, then

n1 · ρ(M1, id) = n2 · ρ(M2, id) ∈ R/Q.

The ρ–invariant is neither entirely zero, nor does it equal the
hyperbolic volume (e.g. it depends on orientation).
But: its computation is completely beyond the reach of current
methods.
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Cyclic commensurability of knots

We now restrict to cyclic commensurability of knots. For a knot
K ⊂ S3 we denote the n–fold cyclic cover of S3 \ νK by X (K )n.
We denote the 0–surgery on K by M(K ).
Theorem. If X (K1)n1 = X (K2)n2 and furthermore
b1(X (Ki )ni ) = 1, then

n1 · τ(X (K1), Z) = n2 · τ(X (K2), Z)
n1 · ρ(M(K1), Z) = ±n2 · ρ(M(K2), Z) ∈ R/Z.

This follows from Induction and Restriction as before since a cover
with b1 = 1 has a unique (up to sign) homomorphism to Z.
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L2–invariants of knots

Let K be a knot and A a Seifert matrix. Then

ρ(M(K ), Z) =

∫
z∈S1

sign(A(1− z) + At(1− z−1)).

This number depends on the zeroes of ∆K (t) = det(At − At) on
the unit circle and the twisted signatures of K .
Furthermore τ(X (K ), Z) equals the Mahler measure of ∆K (t), i.e.

τ(X (K ), Z) =

∫
z∈S1

ln |∆K (z)|.

Given a Seifert matrix A for K we have

∆K (t) = det(At − At)
= (1− t)−1 det(A(t − 1) + At(t1 − 1)).

Hence

τ(X (K ), Z) =

∫
z∈S1

ln | det(A(1− z) + At(1− z̄))|.

(here we use that the Mahler measure of t − 1 equals 1). This
number only depends on the zeroes of ∆K (t) outside of the unit
circle.
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Examples

The knots K1 = 948 and K2 = 12n
642 are cyclically commensurable,

in fact X (K1)8 = X (K2)6. (examples by W. Neumann).

We have

∆K1(t) = t4 − 7t3 + 11t2 − 7t + 1,
∆K2(t) = t4 + 7t3 − 15t2 + 7t + 1.

Using z = t + t−1 we can compute the zeros of ∆Ki
(t). We get

τ(X (K1), Z) = ln

(
1

4

(
7 +

√
13 +

√
46 + 14

√
13

))
τ(X (K1), Z) = ln

(
1

4

∣∣∣∣−7− 3
√

13−
√

150 + 42
√

13

∣∣∣∣)
It is now straightforward to check that indeed

6τ(X (K2), Z) = 8τ(X (K1), Z),

We also compute

ρ(M(K1), Z) ≈ 1.645123....
ρ(M(K2), Z) ≈ 1.806503....

Then
6ρ(M(K2), Z) + 8ρ(M(K1), Z)

≈ 8 ∗ 1.645123 + 6 ∗ 1.806503

≈ 24.000002.
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