L²-invariants and commensurability

Stefan Friedl Université du Québec à Montréal

Columbia University, April 2007

/⊒ > < ≣ >

∃ >

Hilbert **F**-modules

For a (countable) group Γ we have the Hilbert space

$$l^2(\Gamma) = \{ arphi : \Gamma
ightarrow \mathbb{C} | \sum_{g \in \Gamma} |arphi(g)|^2 < \infty \}.$$

æ

Hilbert **F**-modules

For a (countable) group Γ we have the Hilbert space

$$l^2(\Gamma) = \{ arphi : \Gamma o \mathbb{C} | \sum_{g \in \Gamma} |arphi(g)|^2 < \infty \}.$$

Definition. A Hilbert Γ -module V is a Hilbert space with a linear, isometric Γ -action which has a Γ -equivariant isometric embedding

$$V \to H \otimes l^2(\Gamma),$$

for some Hilbert space H with trivial Γ -action.

→ ∃ →

For a (countable) group Γ we have the Hilbert space

$$l^2(\Gamma) = \{ arphi : \Gamma o \mathbb{C} | \sum_{g \in \Gamma} |arphi(g)|^2 < \infty \}.$$

Definition. A Hilbert Γ -module V is a Hilbert space with a linear, isometric Γ -action which has a Γ -equivariant isometric embedding

$$V \to H \otimes l^2(\Gamma),$$

for some Hilbert space H with trivial Γ -action.

Example. Let Γ a finite group, $V = \mathbb{C}$ with the trivial Γ -action, then consider

$$V = \mathbb{C} \rightarrow \mathbb{C} \otimes l^{2}(\Gamma) = \mathbb{C} \otimes \mathbb{C}[\Gamma] = \mathbb{C}[\Gamma]$$

1 $\mapsto \frac{1}{\sqrt{|\Gamma|}} \sum_{g \in \Gamma} g.$

医下子 医下

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an orthonormal basis $\{v_i\}$ for H. Let

$$\Pi: H \otimes l^2(\Gamma) \to V$$

be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

(4) ∃ ≥

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an orthonormal basis $\{v_i\}$ for H. Let

$$\Pi: H \otimes l^2(\Gamma) \to V$$

be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

Example 1. Let $V = (l^2(\Gamma))^n$. We have $V = \mathbb{C}^n \otimes l^2(\Gamma)$. Let v_i be an ONB for \mathbb{C}^n . Then

$$\dim_{\Gamma}((l^{2}(\Gamma))^{n}) = \sum_{i=1}^{n} \langle v_{i} \otimes e, v_{i} \otimes e \rangle = n.$$

伺下 イヨト イヨト

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an ONB $\{v_i\}$ for H. Let $\Pi : H \otimes l^2(\Gamma) \to V$ be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

문 문 문

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an ONB $\{v_i\}$ for H. Let $\Pi : H \otimes l^2(\Gamma) \to V$ be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

Example 2. Let $\Gamma = \{g_1, \ldots, g_n\}$ finite and $V = \mathbb{C}$ with trivial Γ -action. We have

$$V = \mathbb{C} \quad \rightarrow \quad \mathbb{C} \otimes \mathbb{C}[\Gamma] = \mathbb{C}[\Gamma]$$

1 \low \frac{1}{\sqrt{|\Gamma|}} \sum g_i.

with orthogonal projection

$$egin{array}{rcl} \Pi : \mathbb{C}[\Gamma] & o & \mathbb{C} \cdot (\sum g_i) \subset \mathbb{C}[\Gamma] \ g_i & \mapsto & rac{1}{|\Gamma|} \cdot (\sum g_i). \end{array}$$

伺下 イヨト イヨト

2

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an ONB $\{v_i\}$ for H. Let $\Pi : H \otimes l^2(\Gamma) \to V$ be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

Example 2. Let $\Gamma = \{g_1, \ldots, g_n\}$ finite and $V = \mathbb{C}$ with trivial Γ -action. We have

$$V = \mathbb{C} \rightarrow \mathbb{C} \otimes \mathbb{C}[\Gamma] = \mathbb{C}[\Gamma]$$

 $1 \mapsto \frac{1}{\sqrt{|\Gamma|}} \sum g_i.$

with orthogonal projection

$$\begin{array}{rcl} \Pi:\mathbb{C}[\Gamma] & \to & \mathbb{C}\cdot(\sum g_i)\subset\mathbb{C}[\Gamma] \\ g_i & \mapsto & \frac{1}{|\Gamma|}\cdot(\sum g_i). \end{array}$$

2

Then

$$\mathsf{dim}_{\mathsf{\Gamma}}(\mathbb{C}) = \langle \mathsf{\Pi}(e), e \rangle$$

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an ONB $\{v_i\}$ for H. Let $\Pi : H \otimes l^2(\Gamma) \to V$ be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

Example 2. Let $\Gamma = \{g_1, \ldots, g_n\}$ finite and $V = \mathbb{C}$ with trivial Γ -action. We have

$$V = \mathbb{C} \rightarrow \mathbb{C} \otimes \mathbb{C}[\Gamma] = \mathbb{C}[\Gamma]$$

 $1 \mapsto \frac{1}{\sqrt{|\Gamma|}} \sum g_i.$

with orthogonal projection

$$\begin{array}{rcl} \Pi:\mathbb{C}[\Gamma] & \to & \mathbb{C}\cdot(\sum g_i)\subset\mathbb{C}[\Gamma] \\ g_i & \mapsto & \frac{1}{|\Gamma|}\cdot(\sum g_i). \end{array}$$

Then

$$\dim_{\Gamma}(\mathbb{C}) = \langle \Pi(e), e \rangle = \langle \frac{1}{|\Gamma|} (\sum g_i), e \rangle$$

Stefan Friedl Université du Québec à Montréal

 L^2 -invariants and commensurability

Definition. Given a Hilbert Γ -module V pick an embedding $V \subset H \otimes l^2(\Gamma)$ and an ONB $\{v_i\}$ for H. Let $\Pi : H \otimes l^2(\Gamma) \to V$ be the orthogonal projection, then

$$\dim_{\Gamma}(V) := \sum_{i} \langle \Pi(v_i \otimes e), v_i \otimes e \rangle.$$

Example 2. Let $\Gamma = \{g_1, \ldots, g_n\}$ finite and $V = \mathbb{C}$ with trivial Γ -action. We have

$$V = \mathbb{C} \rightarrow \mathbb{C} \otimes \mathbb{C}[\Gamma] = \mathbb{C}[\Gamma]$$

 $1 \mapsto \frac{1}{\sqrt{|\Gamma|}} \sum g_i.$

with orthogonal projection

$$egin{array}{rcl} \Pi:\mathbb{C}[\Gamma]& o&\mathbb{C}\cdot(\sum g_i)\subset\mathbb{C}[\Gamma]\ g_i&\mapsto&rac{1}{|\Gamma|}\cdot(\sum g_i). \end{array}$$

Then

$$\dim_{\Gamma}(\mathbb{C}) = \langle \Pi(e), e \rangle = \langle \frac{1}{|\Gamma|} (\sum g_i), e \rangle = \frac{1}{|\Gamma|}.$$

Stefan Friedl Université du Québec à Montréal

L²-invariants and commensurability

Properties: Restriction and Induction

Restriction. Let $V \subset H \otimes l^2(\Gamma)$ be a Hilbert Γ -module and $\tilde{\Gamma} \subset \Gamma$ a finite index subgroup. Then V is also a $\tilde{\Gamma}$ -module via

$$V \subset H \otimes l^2(\Gamma) \cong H \otimes \mathbb{C}[\Gamma/\tilde{\Gamma}] \otimes l^2(\tilde{\Gamma})$$

and

$$\dim_{\tilde{\Gamma}}(V) = [\Gamma : \tilde{\Gamma}] \dim_{\Gamma}(V).$$

Properties: Restriction and Induction

Restriction. Let $V \subset H \otimes l^2(\Gamma)$ be a Hilbert Γ -module and $\tilde{\Gamma} \subset \Gamma$ a finite index subgroup. Then V is also a $\tilde{\Gamma}$ -module via

$$V \subset H \otimes l^2(\Gamma) \cong H \otimes \mathbb{C}[\Gamma/\tilde{\Gamma}] \otimes l^2(\tilde{\Gamma})$$

and

$$\dim_{\widetilde{\Gamma}}(V) = [\Gamma : \widetilde{\Gamma}] \dim_{\Gamma}(V).$$

Induction. If $\Gamma \subset \widetilde{\Gamma}$ and V is a Γ -module, then
$$\overline{V \otimes_{\mathbb{C}[\Gamma]} \mathbb{C}[\widetilde{\Gamma}]}$$

is a $\tilde{\Gamma}$ -module via

$$\overline{V\otimes_{\mathbb{C}[\Gamma]}\mathbb{C}[\widetilde{\Gamma}]}\subset H\otimes l^2(\widetilde{\Gamma})$$

and

$$\dim_{\widetilde{\Gamma}}(\overline{V\otimes_{\mathbb{C}[\Gamma]}\mathbb{C}[\widetilde{\Gamma}]})=\dim_{\Gamma}(V).$$

Let X be a finite CW–complex together with a homomorphism $\varphi : \pi_1(X) \to \Gamma$. Let \tilde{X} be the φ –cover of X. Then

$$C_*(X; l^2(\Gamma)) = C_*(\tilde{X}) \otimes_{\mathbb{C}[\Gamma]} l^2(\Gamma)$$

is a complex of Hilbert Γ -modules.

Let X be a finite CW–complex together with a homomorphism $\varphi : \pi_1(X) \to \Gamma$. Let \tilde{X} be the φ –cover of X. Then

$$C_*(X; l^2(\Gamma)) = C_*(\tilde{X}) \otimes_{\mathbb{C}[\Gamma]} l^2(\Gamma)$$

is a complex of Hilbert Γ -modules. We define

$$H_p(X; l^2(\Gamma)) = \operatorname{Ker}(\partial_p) / \overline{\operatorname{Im}(\partial_{p+1})}.$$

Let X be a finite CW–complex together with a homomorphism $\varphi : \pi_1(X) \to \Gamma$. Let \tilde{X} be the φ –cover of X. Then

$$\mathcal{C}_*(X; l^2(\Gamma)) = \mathcal{C}_*(\tilde{X}) \otimes_{\mathbb{C}[\Gamma]} l^2(\Gamma)$$

is a complex of Hilbert Γ -modules. We define

$$H_p(X; l^2(\Gamma)) = \operatorname{Ker}(\partial_p) / \overline{\operatorname{Im}(\partial_{p+1})}.$$

This equals

$$H_p(X; l^2(\Gamma)) = \operatorname{Ker}(\partial_p) \cap (\operatorname{Im}(\partial_{p+1}))^{\perp} \subset C_p(X; l^2(\Gamma))$$

→ ∃ →

which is a Hilbert Γ -module.

Let X be a finite CW–complex together with a homomorphism $\varphi : \pi_1(X) \to \Gamma$. Let \tilde{X} be the φ –cover of X. Then

$$\mathcal{C}_*(X; l^2(\Gamma)) = \mathcal{C}_*(\tilde{X}) \otimes_{\mathbb{C}[\Gamma]} l^2(\Gamma)$$

is a complex of Hilbert $\Gamma\text{-modules}.$ We define

$$H_p(X; l^2(\Gamma)) = \operatorname{Ker}(\partial_p) / \overline{\operatorname{Im}(\partial_{p+1})}.$$

This equals

$$H_p(X; l^2(\Gamma)) = \operatorname{Ker}(\partial_p) \cap (\operatorname{Im}(\partial_{p+1}))^{\perp} \subset C_p(X; l^2(\Gamma))$$

which is a Hilbert Γ -module. Now define

$$b_{\rho}^{(2)}(X; l^{2}(\Gamma)) = \dim_{\Gamma} H_{\rho}(X; l^{2}(\Gamma)),$$

the *p*-th L^2 -Betti number of (X, φ) .

Assume we have
$$(X, \varphi : \pi_1(X) \to \Gamma)$$
.
1. If $\Gamma = \{e\}$, then $b_p^{(2)}(X, \varphi) = b_p(X)$.

・ 同・ ・ ヨ・

< ≣ ▶

æ

Assume we have $(X, \varphi : \pi_1(X) \to \Gamma)$. 1. If $\Gamma = \{e\}$, then $b_p^{(2)}(X, \varphi) = b_p(X)$. 2. If Γ is finite and X_{Γ} the φ -cover of X, then

$$b_p^{(2)}(X,\Gamma)=rac{1}{|\Gamma|}b_p(X_{\Gamma}).$$

Assume we have
$$(X, \varphi : \pi_1(X) \to \Gamma)$$
.
1. If $\Gamma = \{e\}$, then $b_p^{(2)}(X, \varphi) = b_p(X)$.
2. If Γ is finite and X_{Γ} the φ -cover of X , then

$$b_p^{(2)}(X,\Gamma)=rac{1}{|\Gamma|}b_p(X_\Gamma).$$

3. If Γ is a subgroup of a group $\tilde{\Gamma}$, then $b_p^{(2)}(X, \pi_1(X) \to \Gamma \to \tilde{\Gamma}) = b_p^{(2)}(X, \pi_1(X) \to \Gamma).$ (Induction)

- ★ 臣 ▶ - - 臣

Assume we have
$$(X, \varphi : \pi_1(X) \to \Gamma)$$
.
1. If $\Gamma = \{e\}$, then $b_p^{(2)}(X, \varphi) = b_p(X)$.
2. If Γ is finite and X_{Γ} the φ -cover of X , then

$$b_p^{(2)}(X,\Gamma)=rac{1}{|\Gamma|}b_p(X_{\Gamma}).$$

3. If Γ is a subgroup of a group $\tilde{\Gamma},$ then

$$b^{(2)}_p(X,\pi_1(X)
ightarrow\Gamma
ightarrow ilde{\Gamma})=b^{(2)}_p(X,\pi_1(X)
ightarrow\Gamma).$$

(Induction)

4. If \tilde{X} is a finite cover of X of order n such that $\operatorname{Ker}(\varphi) \subset \pi_1(\tilde{X})$, then

$$b^{(2)}_p(\tilde{X},\pi_1(\tilde{X})
ightarrow \Gamma)=n\cdot b^{(2)}_p(X,\pi_1(X)
ightarrow \Gamma).$$

(Restriction)

Commensurability (the good news)

Two 3–manifolds are called commensurable if they have diffeomorphic finite covers.

Observation. If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot b_p^{(2)}(M_1, id) = n_2 \cdot b_p^{(2)}(M_2, id).$$

Commensurability (the good news)

Two 3–manifolds are called commensurable if they have diffeomorphic finite covers.

Observation. If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot b_p^{(2)}(M_1, id) = n_2 \cdot b_p^{(2)}(M_2, id).$$

So if two 3-manifolds are commensurable, then their L^2 -Betti numbers are rationally dependent.

3 N

Commensurability (the good news)

Two 3-manifolds are called commensurable if they have diffeomorphic finite covers.

Observation. If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot b_p^{(2)}(M_1, id) = n_2 \cdot b_p^{(2)}(M_2, id).$$

So if two 3-manifolds are commensurable, then their L^2 -Betti numbers are rationally dependent.

Proof. Let \tilde{M} be the common cover, then

$$\begin{array}{ll} n_i b_p^{(2)}(M_i, id) &=& b_p^{(2)}(\tilde{M}, \pi_1(\tilde{M}) \to \pi_1(M)) \\ &=& b_p^{(2)}(\tilde{M}, \pi_1(\tilde{M})), \end{array}$$

by Restriction and Induction.

Unfortunately the L^2 -Betti numbers give meaningless commensurability invariants.

Atiyah conjecture. Let M be a closed manifold, then $b_{\rho}^{(2)}(M, \varphi)$ is rational for any $\varphi : \pi_1(M) \to \Gamma$.

3 × -

Unfortunately the L^2 -Betti numbers give meaningless commensurability invariants.

Atiyah conjecture. Let M be a closed manifold, then $b_p^{(2)}(M, \varphi)$ is rational for any $\varphi : \pi_1(M) \to \Gamma$.

More bad news: If M is a prime 3-manifold with infinite $\pi_1(M)$ and with empty or toroidal boundary, then $b_p^{(2)}(M, id) = 0$.

The vanishing of the L^2 -Betti numbers is perhaps even a blessing in disguise since

"vanishing homology implies existence of Reidemeister torsion" Indeed, "if $b_*^{(2)}(M, \varphi) = 0$, [and if the Novikov–Shubin invariant is positive] then there exists the L^2 -torsion $\tau(M, \varphi) \in \mathbb{R}$ ".

(4) (5) (4) (5) (4)

Properties of the L^2 -torsion

Assume we have $(X, \varphi : \pi_1(X) \to \Gamma)$. 1. If Γ is a subgroup of a group $\tilde{\Gamma}$, then

$$au(X,\pi_1(X)
ightarrow \Gamma
ightarrow \widetilde{\Gamma})= au(X,\pi_1(X)
ightarrow \Gamma).$$

(Induction)

Properties of the L^2 -torsion

Assume we have $(X, \varphi : \pi_1(X) \to \Gamma)$. 1. If Γ is a subgroup of a group $\tilde{\Gamma}$, then

$$au(X,\pi_1(X) o \Gamma o ilde{\Gamma})= au(X,\pi_1(X) o \Gamma).$$

(Induction)

2. If \tilde{X} is a finite cover of X of order n such that $\operatorname{Ker}(\varphi) \subset \pi_1(\tilde{X})$, then

$$au(ilde{X}, \pi_1(ilde{X}) o \Gamma) = n \cdot au(X, \pi_1(X) o \Gamma).$$

(Restriction)

Properties of the L^2 -torsion

Assume we have $(X, \varphi : \pi_1(X) \to \Gamma)$. 1. If Γ is a subgroup of a group $\tilde{\Gamma}$, then

$$au(X,\pi_1(X) o \Gamma o ilde{\Gamma})= au(X,\pi_1(X) o \Gamma).$$

(Induction)

2. If $ilde{X}$ is a finite cover of X of order n such that $\operatorname{Ker}(\varphi) \subset \pi_1(ilde{X})$, then

$$au(ilde{X}, \pi_1(ilde{X}) o \Gamma) = n \cdot au(X, \pi_1(X) o \Gamma).$$

(Restriction)

Immediate consequence: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \tau(M_1, id) = n_2 \cdot \tau(M_2, id).$$

We just saw: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \tau(M_1, id) = n_2 \cdot \tau(M_2, id).$$

물 제 문 제 문 제

We just saw: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \tau(M_1, id) = n_2 \cdot \tau(M_2, id).$$

So the L^2 -torsions of commensurable 3-manifolds are rationally dependent.

• E •

We just saw: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \tau(M_1, id) = n_2 \cdot \tau(M_2, id).$$

So the L^2 -torsions of commensurable 3-manifolds are rationally dependent.

But the invariant $\tau(M, id)$ equals the sum of the volumes of the hyperbolic pieces of M (up to a factor of $-\frac{1}{6\pi}$).

글 아이에 글 아이지

Let M be a closed oriented 3-manifold and $\varphi : \pi_1(M) \to \Gamma$ a homomorphism, then the von Neumann ρ -invariant $\rho(M, \varphi) \in \mathbb{R}$ is defined. The von Neumann ρ -invariant is the L^2 -signature defect, i.e. the difference between the L^2 -signature and the ordinary signature of a bounding 4-manifold.

Let M be a closed oriented 3-manifold and $\varphi : \pi_1(M) \to \Gamma$ a homomorphism, then the von Neumann ρ -invariant $\rho(M, \varphi) \in \mathbb{R}$ is defined. The von Neumann ρ -invariant is the L^2 -signature defect, i.e. the difference between the L^2 -signature and the ordinary signature of a bounding 4-manifold.

Properties.

1. If Γ is a subgroup of a group $\tilde{\Gamma},$ then

$$\rho(M, \pi_1(M) \to \Gamma \to \tilde{\Gamma}) = \rho(M, \pi_1(M) \to \Gamma).$$

3.0

Let M be a closed oriented 3-manifold and $\varphi : \pi_1(M) \to \Gamma$ a homomorphism, then the von Neumann ρ -invariant $\rho(M, \varphi) \in \mathbb{R}$ is defined. The von Neumann ρ -invariant is the L^2 -signature defect, i.e. the difference between the L^2 -signature and the ordinary signature of a bounding 4-manifold.

Properties.

1. If Γ is a subgroup of a group $\tilde{\Gamma},$ then

$$\rho(M, \pi_1(M) \to \Gamma \to \tilde{\Gamma}) = \rho(M, \pi_1(M) \to \Gamma).$$

2. Let $\alpha : \pi_1(M) \to \Gamma$ a homomorphism to a finite group which factors through φ , then

$$\rho(\tilde{M}, \pi_1(\tilde{M}) \to \pi_1(M) \to \Gamma)$$

= $[M : \tilde{M}](\rho(M, \pi_1(M) \to \Gamma) - \rho(M, \alpha)),$

where \tilde{M} is the α -cover of M.

Let M be a closed oriented 3-manifold and $\varphi : \pi_1(M) \to \Gamma$ a homomorphism, then the von Neumann ρ -invariant $\rho(M, \varphi) \in \mathbb{R}$ is defined. The von Neumann ρ -invariant is the L^2 -signature defect, i.e. the difference between the L^2 -signature and the ordinary signature of a bounding 4-manifold.

Properties.

1. If Γ is a subgroup of a group $\tilde{\Gamma},$ then

$$\rho(M, \pi_1(M) \to \Gamma \to \tilde{\Gamma}) = \rho(M, \pi_1(M) \to \Gamma).$$

2. Let $\alpha : \pi_1(M) \to \Gamma$ a homomorphism to a finite group which factors through φ , then

$$egin{aligned} &
ho(ilde{M}, \pi_1(ilde{M}) o \pi_1(M) o \Gamma) \ &= & [M: ilde{M}](
ho(M, \pi_1(M) o \Gamma) -
ho(M, lpha)), \end{aligned}$$

where \tilde{M} is the α -cover of M.

Stefan Friedl Université du Québec à Montréal L^2 -invariants and commensurability

Let M be a closed oriented 3-manifold and $\varphi : \pi_1(M) \to \Gamma$ a homomorphism, then the von Neumann ρ -invariant $\rho(M, \varphi) \in \mathbb{R}$ is defined. The von Neumann ρ -invariant is the L^2 -signature defect, i.e. the difference between the L^2 -signature and the ordinary signature of a bounding 4-manifold.

Properties.

1. If Γ is a subgroup of a group $\tilde{\Gamma},$ then

$$\rho(M, \pi_1(M) \to \Gamma \to \tilde{\Gamma}) = \rho(M, \pi_1(M) \to \Gamma).$$

2. Let $\alpha : \pi_1(M) \to \Gamma$ a homomorphism to a finite group which factors through φ , then

$$egin{aligned} &
ho(ilde{M}, \pi_1(ilde{M}) o \pi_1(M) o \Gamma) \ &= & [M: ilde{M}](
ho(M, \pi_1(M) o \Gamma) -
ho(M, lpha)), \end{aligned}$$

where \tilde{M} is the α -cover of M.

Stefan Friedl Université du Québec à Montréal L^2 -invariants and commensurability

Immediate consequence: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \rho(M_1, id) = n_2 \cdot \rho(M_2, id) \in \mathbb{R}/\mathbb{Q}.$$

• E •

Immediate consequence: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \rho(M_1, id) = n_2 \cdot \rho(M_2, id) \in \mathbb{R}/\mathbb{Q}.$$

The ρ -invariant is neither entirely zero, nor does it equal the hyperbolic volume (e.g. it depends on orientation).

• 3 >

Immediate consequence: If an n_1 -fold cover of M_1 is diffeomorphic to an n_2 -fold cover of M_2 , then

$$n_1 \cdot \rho(M_1, id) = n_2 \cdot \rho(M_2, id) \in \mathbb{R}/\mathbb{Q}.$$

The ρ -invariant is neither entirely zero, nor does it equal the hyperbolic volume (e.g. it depends on orientation). But: its computation is completely beyond the reach of current methods.

We now restrict to cyclic commensurability of knots. For a knot $K \subset S^3$ we denote the *n*-fold cyclic cover of $S^3 \setminus \nu K$ by $X(K)_n$. We denote the 0-surgery on K by M(K). **Theorem.** If $X(K_1)_{n_1} = X(K_2)_{n_2}$ and furthermore $b_1(X(K_i)_{n_i}) = 1$, then

$$\begin{array}{lll} n_1 \cdot \tau(X(K_1),\mathbb{Z}) &=& n_2 \cdot \tau(X(K_2),\mathbb{Z}) \\ n_1 \cdot \rho(M(K_1),\mathbb{Z}) &=& \pm n_2 \cdot \rho(M(K_2),\mathbb{Z}) \in \mathbb{R}/\mathbb{Z}. \end{array}$$

This follows from Induction and Restriction as before since a cover with $b_1 = 1$ has a unique (up to sign) homomorphism to \mathbb{Z} .

向下 イヨト イヨト

L²-invariants of knots

Let K be a knot and A a Seifert matrix. Then

$$\rho(M(K),\mathbb{Z}) = \int_{z\in S^1} \operatorname{sign}(A(1-z) + A^t(1-z^{-1})).$$

This number depends on the zeroes of $\Delta_{\mathcal{K}}(t) = \det(At - A^t)$ on the unit circle and the twisted signatures of \mathcal{K} .

Furthermore $\tau(X(K),\mathbb{Z})$ equals the Mahler measure of $\Delta_K(t)$, i.e.

$$au(X(\mathcal{K}),\mathbb{Z}) = \int_{z\in S^1} \ln |\Delta_{\mathcal{K}}(z)|.$$

Given a Seifert matrix A for K we have

$$egin{array}{rcl} \Delta_{\mathcal{K}}(t) &=& \det(\mathcal{A}t-\mathcal{A}^t) \ &=& (1-t)^{-1}\det(\mathcal{A}(t-1)+\mathcal{A}^t(t^1-1)). \end{array}$$

Hence

$$au(X(\mathcal{K}),\mathbb{Z}) = \int_{z\in S^1} \ln |\det(A(1-z)+A^t(1-ar{z}))|.$$

(here we use that the Mahler measure of t - 1 equals 1). This

The knots $K_1 = 9_{48}$ and $K_2 = 12_{642}^n$ are cyclically commensurable, in fact $X(K_1)_8 = X(K_2)_6$. (examples by W. Neumann).

- ★ 臣 ▶ - - 臣

The knots $K_1 = 9_{48}$ and $K_2 = 12^n_{642}$ are cyclically commensurable, in fact $X(K_1)_8 = X(K_2)_6$. (examples by W. Neumann).We have

$$\begin{array}{rcl} \Delta_{K_1}(t) &=& t^4 - 7t^3 + 11t^2 - 7t + 1, \\ \Delta_{K_2}(t) &=& t^4 + 7t^3 - 15t^2 + 7t + 1. \end{array}$$

∢ 문 ▶ - 문

The knots $K_1 = 9_{48}$ and $K_2 = 12_{642}^n$ are cyclically commensurable, in fact $X(K_1)_8 = X(K_2)_6$. (examples by W. Neumann).We have

$$\begin{array}{rcl} \Delta_{\mathcal{K}_1}(t) &=& t^4 - 7t^3 + 11t^2 - 7t + 1, \\ \Delta_{\mathcal{K}_2}(t) &=& t^4 + 7t^3 - 15t^2 + 7t + 1. \end{array}$$

Using $z = t + t^{-1}$ we can compute the zeros of $\Delta_{K_i}(t)$. We get

$$\tau(X(\mathcal{K}_1),\mathbb{Z}) = \ln\left(\frac{1}{4}\left(7 + \sqrt{13} + \sqrt{46 + 14\sqrt{13}}\right)\right)$$
$$\tau(X(\mathcal{K}_1),\mathbb{Z}) = \ln\left(\frac{1}{4}\left|-7 - 3\sqrt{13} - \sqrt{150 + 42\sqrt{13}}\right|\right)$$

It is now straightforward to check that indeed

$$6\tau(X(K_2),\mathbb{Z})=8\tau(X(K_1),\mathbb{Z}),$$

• 3 > 1

The knots $K_1 = 9_{48}$ and $K_2 = 12_{642}^n$ are cyclically commensurable, in fact $X(K_1)_8 = X(K_2)_6$. (examples by W. Neumann).We have

$$\begin{array}{rcl} \Delta_{K_1}(t) &=& t^4 - 7t^3 + 11t^2 - 7t + 1, \\ \Delta_{K_2}(t) &=& t^4 + 7t^3 - 15t^2 + 7t + 1. \end{array}$$

Using $z = t + t^{-1}$ we can compute the zeros of $\Delta_{\mathcal{K}_i}(t)$. We get

$$\tau(X(\mathcal{K}_1),\mathbb{Z}) = \ln\left(\frac{1}{4}\left(7 + \sqrt{13} + \sqrt{46 + 14\sqrt{13}}\right)\right)$$
$$\tau(X(\mathcal{K}_1),\mathbb{Z}) = \ln\left(\frac{1}{4}\left|-7 - 3\sqrt{13} - \sqrt{150 + 42\sqrt{13}}\right|\right)$$

It is now straightforward to check that indeed

$$6\tau(X(K_2),\mathbb{Z})=8\tau(X(K_1),\mathbb{Z}),$$

We also compute

$$\rho(M(K_1),\mathbb{Z}) \approx 1.645123....$$

$$\rho(M(K_2),\mathbb{Z}) \approx 1.806503....$$

Stefan Friedl Université du Québec à Montréal