[?—invariants and commensurability

Stefan Fried|
Université du Québec a Montréal

Columbia University, April 2007

Stefan Friedl Université du Québec a Montréal [2—invariants and commensurability



Hilbert —modules

For a (countable) group ' we have the Hilbert space

PN ={p:T—=C|Y_ lp(g)l? < oo}.

ger
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Hilbert —modules

For a (countable) group ' we have the Hilbert space

PN ={p:T—=C|Y_ lp(g)l? < oo}.

ger

Definition. A Hilbert '-module V is a Hilbert space with a linear,
isometric I—action which has a I'—equivariant isometric embedding

V — H® (I,

for some Hilbert space H with trivial I'—action.
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Hilbert —modules

For a (countable) group ' we have the Hilbert space
PN ={p:T = C|Y_lo(g)l* < oo}.
gerl

Definition. A Hilbert '-module V is a Hilbert space with a linear,
isometric I—action which has a I'—equivariant isometric embedding

V — H® (I,

for some Hilbert space H with trivial I'—action.
Example. Let [ a finite group, V = C with the trivial '—action,
then consider

V=C — C®/P=C&C[r=C[r
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[ 2—dimension

Definition. Given a Hilbert -module V pick an embedding
V C H® I2(T) and an orthonormal basis {v;} for H. Let

N:He P -V
be the orthogonal projection, then

dimr(V) =) (N(vi®e),vi®e).

i
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[ 2—dimension

Definition. Given a Hilbert -module V pick an embedding
V C H® I2(T) and an orthonormal basis {v;} for H. Let

N:He P -V
be the orthogonal projection, then
dimr(V) =) (N(vi®e),vi®e).

Example 1. Let V = (/2([))". We have V = C"® I2(T). Let v;
be an ONB for C". Then

n

dimr((P(N)") =) (vi®e,vi®e)=n.

i=1
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[ 2—dimension

Definition. Given a Hilbert -module V pick an embedding
V CH®/?(T) and an ONB {v;} for H. Let M: H® I*(T) — V be
the orthogonal projection, then

dimr(V):=> (N(vi®e),v; @ e).

i
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[ 2—dimension

Definition. Given a Hilbert -module V pick an embedding
V CH®/?(T) and an ONB {v;} for H. Let M: H® I*(T) — V be
the orthogonal projection, then
dimr(V):=> (N(vi®e),v; @ e).

Example 2. Let I = {g1,...,gn} finite and V = C with trivial
[—action. We have

V=C

1

C® (C[r] = (C[F]
1 .
i 8

11

with orthogonal projection
n:Crr] — C-(x&)cCr]
g — (e

1
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[ 2—dimension

Definition. Given a Hilbert -module V pick an embedding
V CH®/?(T) and an ONB {v;} for H. Let M: H® I*(T) — V be
the orthogonal projection, then
dimr(V):=> (N(vi®e),v; @ e).

Example 2. Let I = {g1,...,gn} finite and V = C with trivial
[—action. We have

V=C

1

C® (C[r] = (C[F]
1 .
i 8

11

with orthogonal projection
n:Crr] — C-(x&)cCr]
g — (e

1

Then
dimr(C) = (MN(e), e)
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Definition. Given a Hilbert -module V pick an embedding
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[ 2—dimension

Definition. Given a Hilbert -module V pick an embedding
V CH®/?(T) and an ONB {v;} for H. Let M: H® I*(T) — V be
the orthogonal projection, then
dimr(V):=> (N(vi®e),v; @ e).

Example 2. Let I = {g1,...,gn} finite and V = C with trivial
[—action. We have

V=C

1

C® (C[r] = (C[F]
1 .
i 8

11

with orthogonal projection
n:Crr] — C-(x&)cCr]
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1

Then
dimr(C) = (M(e), e m O g e m
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Properties: Restriction and Induction

Restriction. Let V C H® /(') be a Hilbert I'-module and Fcr
a finite index subgroup. Then V is also a l-module via

VCcHe RN =HeCr /o 3

and
dimg(V) = [I": Fldimp(V).
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Properties: Restriction and Induction

Restriction. Let V C H® /(') be a Hilbert I'-module and Fcr
a finite index subgroup. Then V is also a l-module via

VCcHe RN =HeCr /o 3

and
dimg(V) = [I": Fldimp(V).

Induction. If I T and V is a T-module, then
V @cry CIT
is a —module via
V @gn CIf] ¢ He A(F)

and _
dimf(V ey C[r]) = dimp(V).
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[2—Betti numbers

Let X be a finite CWN—compIex together with a homomorphism
¢ :m(X) —T. Let X be the p—cover of X. Then

Co(X; A1) = Cu(X) ®¢yry 12(T)

is a complex of Hilbert M'-modules.

2 . . T
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[2—Betti numbers

Let X be a finite CW~—compIex together with a homomorphism
¢ :m(X) —T. Let X be the p—cover of X. Then

C.(X: (1)) = C(R) @y ()
is a complex of Hilbert -modules. We define

Hp(X; 12(T)) = Ker(9p)/Im(Dp-1).

2 . . T
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[2—Betti numbers

Let X be a finite CW~—compIex together with a homomorphism
¢ :m(X) —T. Let X be the p—cover of X. Then

C.(X: () = C.(R) @qry AT
is a complex of Hilbert -modules. We define
Hol(X: (1)) = Ker(9,)/im(@p11)-
This equals
Hol(X: (1)) = Ker(95) N (Im(3p41))- € Go(X: (1))

which is a Hilbert N'-module.

Stefan Friedl Université du Québec a Montréal [2—invariants and commensurability



[2—Betti numbers

Let X be a finite CW~—compIex together with a homomorphism
¢ :m(X) —T. Let X be the p—cover of X. Then

C.(X: (1)) = C(R) @y ()
is a complex of Hilbert -modules. We define
Ho(X: 12(T)) = Ker(9,)/Im(Fp11)-
This equals
Hol(X: (1)) = Ker(95) N (Im(3p41)) € Go(X: (1))
which is a Hilbert '-module. Now define
b (X: (1)) = dimr Ho(X; (1)),

the p—th L°-Betti number of (X, ©).
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Properties of [?>~Betti numbers

Assume we have (X, ¢ : m1(X) —T).
1. IfF T = {e}, then B (X, ) = by(X).
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Properties of [?>~Betti numbers

Assume we have (X, ¢ : m1(X) —T).
1. IfF T = {e}, then B (X, ) = by(X).
2. If T is finite and X the ¢—cover of X, then
1

2
BT =

bp(XF)-

Stefan Friedl Université du Québec a Montréal [2—invariants and commensurability



Properties of [?>~Betti numbers

Assume we have (X, ¢ : m1(X) —T).
1. IfF T = {e}, then B (X, ) = by(X).
2. If T is finite and X the ¢—cover of X, then
1

2
BT =

bp(XF)-

3. If T is a subgroup of a group T, then
b (X, m(X) = T — 1) = B (X, m(X) = T).

(Induction)
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Properties of [?>~Betti numbers

Assume we have (X, ¢ : m1(X) —T).
1. IfF T = {e}, then B (X, ) = by(X).
2. If T is finite and X the ¢—cover of X, then
1

2
BT =

bp(XF)-

3. If T is a subgroup of a group T, then
b (X, m(X) = T — 1) = B (X, m(X) = T).

(Induction)
4. If X is a finite cover of X of order n such that

Ker(yp) C m1(X), then
b (X, m(X) = T) = n- P (X, m(X) — T).

(Restriction)

Stefan Friedl Université du Québec a Montréal [2—invariants and commensurability



Commensurability (the good news)

Two 3—-manifolds are called commensurable if they have
diffeomorphic finite covers.

Observation. If an n;—fold cover of M is diffeomorphic to an
no—fold cover of M», then

ny - B (M, id) = ny - B (Ms, id).
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Commensurability (the good news)

Two 3—-manifolds are called commensurable if they have
diffeomorphic finite covers.

Observation. If an n;—fold cover of M is diffeomorphic to an
no—fold cover of M», then

ny - B (M, id) = ny - B (Ms, id).

So if two 3—manifolds are commensurable, then their L2—Betti
numbers are rationally dependent.
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Commensurability (the good news)

Two 3—-manifolds are called commensurable if they have
diffeomorphic finite covers.

Observation. If an n;—fold cover of M is diffeomorphic to an
no—fold cover of M», then

ny - B (M, id) = ny - B (Ms, id).

So if two 3—manifolds are commensurable, then their L2—Betti
numbers are rationally dependent.

Proof. Let M be the common cover, then

mbS (Miyid) = B (M, 7 (1) — m1(M))
= B (1, m(W)),

by Restriction and Induction.
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Commensurability (the bad news)

Unfortunately the L?-Betti numbers give meaningless
commensurability invariants.

Atiyah conjecture. Let M be a closed manifold, then b,(,2)(M,g0)
is rational for any ¢ : m (M) — T.
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Commensurability (the bad news)

Unfortunately the L?-Betti numbers give meaningless
commensurability invariants.

Atiyah conjecture. Let M be a closed manifold, then b,(,2)(M,g0)
is rational for any ¢ : m (M) — T.

More bad news: If M is a prime 3—-manifold with infinite 71 (M)
and with empty or toroidal boundary, then b,(,z)(M, id) = 0.
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The vanishing of the L?>-Betti numbers is perhaps even a blessing
in disguise since

“vanishing homology implies existence of Reidemeister torsion”
Indeed, “if b£2)(/\/l, ¢) =0, [and if the Novikov—Shubin invariant is
positive] then there exists the L?~torsion 7(M, ) € R".
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Properties of the L?—torsion

Assume we have (X, ¢ : m1(X) —T).
1. If [ is a subgroup of a group [, then

(X, m(X) = T = 1) =7(X,m(X) = T.

(Induction)
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Properties of the L?—torsion

Assume we have (X, ¢ : m1(X) —T).
1. If [ is a subgroup of a group [, then

(X, m(X) = T = 1) =7(X,m(X) = T.

(Induction)
2. If X is a finite cover of X of order n such that

Ker(y) C m1(X), then
(X, m(X) =) =n-7(X,m(X) = T).

(Restriction)
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Properties of the L?—torsion

Assume we have (X, ¢ : m1(X) —T).
1. If [ is a subgroup of a group [, then

(X, m(X) = T = 1) =7(X,m(X) = T.

(Induction)
2. If X is a finite cover of X of order n such that

Ker(y) C m1(X), then
(X, m(X) =) =n-7(X,m(X) = T).

(Restriction)

Immediate consequence: If an n;—fold cover of Mj is diffeomorphic
to an np—fold cover of M», then

n - T(Ml, Id) = nNno - T(Mg, Id)
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Commensurability and L?~torsion

We just saw: If an ni—fold cover of M; is diffeomorphic to an
no—fold cover of M,, then

ny - T(Ml, id) = Nno - T(Mg, id).
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Commensurability and L?~torsion

We just saw: If an ni—fold cover of M; is diffeomorphic to an
no—fold cover of M,, then

ny - T(Ml, id) = Nno - T(Mg, id).

So the L?~torsions of commensurable 3-manifolds are rationally
dependent.
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Commensurability and L?~torsion

We just saw: If an ni—fold cover of M; is diffeomorphic to an
no—fold cover of M,, then

ny - T(Ml, id) = Nno - T(Mg, id).

So the L?~torsions of commensurable 3-manifolds are rationally
dependent.

But the invariant 7(M, id) equals the sum of the volumes of the
hyperbolic pieces of M (up to a factor of —%).
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The von Neumann p—invariant

Let M be a closed oriented 3—manifold and ¢ : 1 (M) — T a
homomorphism, then the von Neumann p—invariant p(M, ) € R is
defined. The von Neumann p—invariant is the L%—signature defect,
i.e. the difference between the L?-signature and the ordinary
signature of a bounding 4-manifold.
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The von Neumann p—invariant

Let M be a closed oriented 3—manifold and ¢ : 1 (M) — T a
homomorphism, then the von Neumann p—invariant p(M, ) € R is
defined. The von Neumann p—invariant is the L%—signature defect,
i.e. the difference between the L?-signature and the ordinary
signature of a bounding 4-manifold.
Properties.

1. If [ is a subgroup of a group [, then

p(M, (M) =T — I:) =p(M,m (M) —=T).
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The von Neumann p—invariant

Let M be a closed oriented 3—manifold and ¢ : 1 (M) — T a
homomorphism, then the von Neumann p—invariant p(M, ) € R is
defined. The von Neumann p—invariant is the L%—signature defect,
i.e. the difference between the L?-signature and the ordinary
signature of a bounding 4-manifold.
Properties.

1. If [ is a subgroup of a group [, then

p(M, (M) =T — I:) =p(M,m (M) —=T).

2. Let a: m(M) — I a homomorphism to a finite group which
factors through ¢, then

p(M, w1 (M) — 71 (M) —T)
= [M: M)(p(M, 71 (M) — T) = p(M, ),

where M is the a—cover of M.
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The von Neumann p—invariant

Let M be a closed oriented 3—manifold and ¢ : 1 (M) — T a
homomorphism, then the von Neumann p—invariant p(M, ) € R is
defined. The von Neumann p—invariant is the L%—signature defect,
i.e. the difference between the L?-signature and the ordinary
signature of a bounding 4-manifold.
Properties.

1. If [ is a subgroup of a group [, then

p(M, (M) =T — I:) =p(M,m (M) —=T).

2. Let a: m(M) — I a homomorphism to a finite group which
factors through ¢, then

p(M, w1 (M) — 71 (M) —T)
= [M: M)(p(M, 71 (M) — T) = p(M, ),

where M is the a—cover of M.
| 10y ol A (@)

ath =) a¥=Ya o
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The von Neumann p—invariant

Let M be a closed oriented 3—manifold and ¢ : 1 (M) — T a
homomorphism, then the von Neumann p—invariant p(M, ) € R is
defined. The von Neumann p—invariant is the L%—signature defect,
i.e. the difference between the L?-signature and the ordinary
signature of a bounding 4-manifold.
Properties.

1. If [ is a subgroup of a group [, then

p(M, (M) =T — I:) =p(M,m (M) —=T).

2. Let a: m(M) — I a homomorphism to a finite group which
factors through ¢, then

p(M, w1 (M) — 71 (M) —T)
= [M: M)(p(M, 71 (M) — T) = p(M, ),

where M is the a—cover of M.
| 10y ol A (@)

ath =) a¥=Ya o
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The von Neumann p—invariant and commensurability

Immediate consequence: If an ni—fold cover of My is diffeomorphic
to an np—fold cover of M5, then

n - p(Ml, id) =no- p(MQ, id) € R/Q
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The von Neumann p—invariant and commensurability

Immediate consequence: If an ni—fold cover of My is diffeomorphic
to an np—fold cover of M5, then

n - p(Ml, id) =no- p(/\/’z, id) € R/Q

The p—invariant is neither entirely zero, nor does it equal the
hyperbolic volume (e.g. it depends on orientation).
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The von Neumann p—invariant and commensurability

Immediate consequence: If an ni—fold cover of My is diffeomorphic
to an np—fold cover of M5, then

n - p(Ml, id) =no- p(/\/’z, id) € R/Q

The p—invariant is neither entirely zero, nor does it equal the
hyperbolic volume (e.g. it depends on orientation).

But: its computation is completely beyond the reach of current
methods.
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Cyclic commensurability of knots

We now restrict to cyclic commensurability of knots. For a knot
K C S3 we denote the n—fold cyclic cover of S3\ vK by X(K),.
We denote the O—surgery on K by M(K).

Theorem. If X(K1)n, = X(K2)n, and furthermore

b]_(X(K,‘)ni) =1, then

n - T(X(Kl),Z) = np- T(X(Kz), Z)
n - p(M(K1),Z) = =£m-p(M(Kz),Z) € R/L.

This follows from Induction and Restriction as before since a cover
with by = 1 has a unique (up to sign) homomorphism to Z.
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[2—invariants of knots

Let K be a knot and A a Seifert matrix. Then
p(M(K), Z) = / sign(A(L — ) + A'(1 — 2 1)).
zeSt
This number depends on the zeroes of Ak(t) = det(At — A?) on
the unit circle and the twisted signatures of K.
Furthermore 7(X(K),Z) equals the Mahler measure of Ak(t), i.e.

T(X(K),Z) = / . In|Ak(z)].

zeS
Given a Seifert matrix A for K we have

Ak(t) = det(At — AY)
= (1 —t)"tdet(A(t — 1) + A(t! - 1)).

7(X(K),Z) = /651 In | det(A(1 — z) + AL(1 — 2))].

(here we use that the Mahler measure of t — 1 equals 1). This
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The knots K1 = 948 and K> = 12¢,, are cyclically commensurable,
in fact X(Ki)s = X(K2)s. (examples by W. Neumann).
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The knots K1 = 948 and K> = 12¢,, are cyclically commensurable,
in fact X(Ki)s = X(K2)6. (examples by W. Neumann).We have
Ay, (t) = t4 =73+ 1182 -7t +1,
Ay, (t) = t4+73 - 152 + Tt + 1.
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The knots K1 = 948 and K> = 12¢,, are cyclically commensurable,
in fact X(Ki)s = X(K2)6. (examples by W. Neumann).We have

Ay, (t) = t4 =73+ 1182 -7t +1,
Ay, (t) = t4+73 - 152 + Tt + 1.

Using z = t + t~! we can compute the zeros of Ak, (t). We get

7(X(K1),Z) = In (1 (7 +V134+1/46 + 14\/ﬁ>>
7(X(K1),Z) = In (i ‘—7 —3v13 — /150 + 42@’)

It is now straightforward to check that indeed

67(X(K2),Z2) = 87(X(K1),Z),
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The knots K1 = 948 and K> = 12¢,, are cyclically commensurable,
in fact X(Ki)s = X(K2)6. (examples by W. Neumann).We have

Ay, (t) = t4 =73+ 1182 -7t +1,
Ay, (t) = t4+73 - 152 + Tt + 1.

Using z = t + t~! we can compute the zeros of Ak, (t). We get

7(X(K1),Z) = In (1 (7 +V134+1/46 + 14\/ﬁ>>
7(X(K1),Z) = In (i ‘—7 —3v13 — /150 + 42@’)

It is now straightforward to check that indeed
67(X(K2),Z2) = 87(X(K1),Z),
We also compute

p(M(K1),Z) =~ 1.645123....
p(M(K2),Z) ~ 1.806503....
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