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Abstract. We define a torsion invariant T for every balanced sutured manifold
(M, γ), and show that it agrees with the Euler characteristic of sutured Floer ho-
mology SFH. The invariant T is easily computed using Fox calculus. With the help
of T, we prove that if (M, γ) is complementary to a Seifert surface of an alternating
knot, then SFH(M, γ) is either 0 or Z in every Spinc structure. T can also be
used to show that a sutured manifold is not disk decomposable, and to distinguish
between Seifert surfaces.

The support of SFH gives rise to a norm z on H2(M, ∂M ;R). The invariant T
gives a lower bound on the norm z, which in turn is at most the sutured Thurston
norm xs. For closed three-manifolds, it is well known that Floer homology deter-
mines the Thurston norm, but we show that z < xs can happen in general. Finally,
we compute T for several wide classes of sutured manifolds.

1. Introduction

Sutured Floer homology is an invariant of balanced sutured manifolds introduced by
the second author [Ju06]. It is an offshoot of the Heegaard Floer homology of Ozsváth
and Szabó [OS04a], and contains knot Floer homology [OS04c, Ra03] as a special
case. The Euler characteristics of these homologies are torsion invariants of three–
manifolds. For example, the Euler characteristic of the Heegaard Floer homology
HF+ is given by Turaev’s refined torsion [Tu97, Tu02] and the Euler characteristic
of knot Floer homology is given by the Alexander polynomial. In this paper, we
investigate the torsion invariant which is the Euler characteristic of sutured Floer
homology.

To make a more precise statement, we recall some basic facts about sutured Floer
homology. Given a balanced sutured manifold (M, γ) and a relative Spinc structure
s ∈ Spinc(M, γ), the sutured Floer homology is a finitely generated abelian group
SFH(M,γ, s). A priori, SFH(M, γ, s) is relatively Z/2 graded. To fix an absolute
Z/2 grading, we must specify a homology orientation ω of the pair (M, R−(γ)); i.e.,
an orientation of the vector space H∗(M,R−(γ);R). We denote the resulting invariant
by SFH(M, γ, s, ω).

Following Turaev, we define a torsion invariant T(M,γ) for weakly balanced sutured
manifolds, which is essentially the maximal abelian torsion of the pair (M, R−(γ)).
Our construction is generally very close to Turaev’s, but we use handle decompositions
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of sutured manifolds in place of triangulations. This makes it easier to define a
correspondence between lifts and Spinc structures. T(M,γ) is a function which assigns
an integer to each s ∈ Spinc(M,γ). The torsion function is well-defined up to a
global factor of ±1. Again, to fix the sign, we must specify a homology orientation ω
of (M, R−(γ)). Then we obtain a function T(M,γ,ω) : Spinc(M, γ) → Z.

Theorem 1. Let (M, γ) be a balanced sutured manifold. Then for any s ∈ Spinc(M,γ)
and homology orientation ω of (M,R−(γ)),

T(M,γ,ω)(s) = χ(SFH(M,γ, s, ω)).

Related invariants have also been studied by Benedetti and Petronio [BP01] using
a slightly different approach and terminology, and by Goda and Sakasai [GS08] in the
case of homology products.

It is often convenient to combine the torsion invariants of (M,γ) into a single
generating function, which we view as an element of the group ring Z[H1(M)]. To do
so, we fix an affine H1(M)–isomorphism ι : Spinc(M, γ) → H1(M), and write

τ(M, γ) =
∑

s∈Spinc(M,γ)

T(M,γ)(s) · ι(s).

The invariant τ(M,γ) is best thought of as a generalization of the Alexander polyno-
mial to sutured manifolds. Like the classical Alexander polynomial, it is well defined
up to multiplication by elements of the form ±[h] for h ∈ H1(M). Many properties
of the Alexander polynomial have analogues for τ(M, γ).

For example, if Y is a three-manifold with toroidal boundary, then its Alexander
polynomial ∆(Y ) is by definition an invariant of π1(Y ). Similarly, for τ(M, γ) the
following holds. Note that by Lemma 3.20 we can always assume that both R+(γ)
and R−(γ) are connected for the purpose of computing τ(M, γ).

Proposition 2. Let (M, γ) be a balanced sutured manifold such that M is irreducible
and both R+(γ) and R−(γ) are connected. Then the invariant τ(M,γ) can be com-
puted from the map π1(R−(γ)) → π1(M) using Fox calculus.

A well-known theorem of McMullen [Mc02] says that ∆(Y ) gives a lower bound
on the Thurston norm of Y . There is a natural extension of the Thurston norm to
sutured manifolds due to Scharlemann [Sc89]; we recall its definition in Section 7.
For α ∈ H2(M, ∂M ;R), let xs(α) denote this sutured Thurston norm.

Proposition 3. Suppose that (M,γ) is a balanced sutured manifold such that M is
irreducible. Let S ⊂ H1(M) be the support of τ(M,γ). Then

maxs,t∈S〈s− t, α〉 ≤ xs(α).

Proposition 3 can be proved analogously to McMullen [Mc02] and Turaev [Tu02].
However, we will not do that here since it is an immediate consequence of Theorem 1
and the following result.
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Theorem 4. Suppose that (M,γ) is a balanced sutured manifold such that M is
irreducible. Let S ⊂ Spinc(M,γ) be the support of SFH(M, γ). Then

maxs,t∈S〈s− t, α〉 ≤ xs(α).

Furthermore, equality holds if ∂M consists only of tori.

In analogy with the situation for closed manifolds, it is tempting to guess that one
always has equality in Theorem 4, but using an example of Cantwell and Conlon in
[CC06] (cf. Proposition 7.16) we show that this is not the case.

The unit Thurston norm ball of a link complement is always centrally symmetric.
We demonstrate in Example 8.5 that S and S can be centrally asymmetric in general.

One final property of τ is that its “evaluation” under the map Z[H1(M)] →
Z[H1(M,R−(γ))] is very simple. More precisely, we show the following.

Proposition 5. Let p∗ : H1(M) → H1(M,R−(γ)) be the natural map. Then

p∗(τ(M, γ)) = ±IH1(M,R−(γ)),

where given a group G we define IG ∈ Z[G] to be

IG =

{∑
g∈G g |G| < ∞,

0 |G| = ∞.

For example, suppose K is a knot in a homology sphere, and let (M,γ) be the
sutured manifold whose total space is the complement of K and whose boundary
contains two sutures parallel to the meridian of K. Then it can be shown that
τ(M,γ) = ∆K(t). On the other hand, H1(M,R−(γ)) = 0, so IH1(M,R−(γ)) = 1. Thus
in this case the proposition reduces to the fact that ∆K(1) = ±1.

Definition 1.1. A balanced sutured manifold (M, γ) is a sutured L-space if the group
SFH(M,γ) is torsion-free and is supported in a single Z/2 homological grading.

Examples of such manifolds are easy to find; e.g., if R ⊂ S3 is a Seifert surface of
an alternating link, then we will show in Corollary 6.11 that the sutured manifold
complementary to R is a sutured L-space. The next result follows from Proposition 5.

Corollary 6. If (M,γ) is a sutured L-space, then for each s ∈ Spinc(M,γ) the group
SFH(M,γ, s) is either trivial or isomorphic to Z.

In the last section, we compute the torsion for a variety of examples, including
pretzel surface complements, and for all sutured manifolds complementary to Seifert
surfaces of knots with ≤ 9 crossings. In all these examples, the sutured Floer ho-
mology is easily determined from the torsion. As an application, we give a simple
example of a phenomenon first demonstrated by Goda [Go94]: There exist sutured
manifolds whose total space is a handlebody, but which are not disk decomposable.
In fact, such examples are not difficult to come by; we found this one by writing a
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computer program which calculates τ(M,γ) when M is a genus two handlebody, and
looking at the output in some simple cases.

The paper is organized as follows. In Section 2, we recall the relevant facts about
sutured Floer homology. We furthermore show how sutured Floer homology behaves
under orientation reversal. Section 3 contains the definition of the torsion, and sec-
tion 5 explains how to compute it using Fox calculus. Section 4 contains the proof
of Theorem 1. In Section 6, we discuss some algebraic properties of the torsion, in-
cluding Proposition 5. Section 7 discusses the relation between SFH and the sutured
Thurston norm. Finally, Section 8 is devoted to examples.

The authors would like to thank Marc Lackenby for pointing out the connection
to reference [GS08]. The second author would also like to thank IHÉS for its hospi-
tality during the course of this work, and the Herchel Smith Fund for their generous
support. Finally, we would like to thank the anonymous referee for carefully reading
our manuscript and for many helpful comments.

Conventions. All 3–manifolds are understood to be oriented and compact. All
homology groups are with integral coefficients unless otherwise specified. Given a
3-manifold Y with boundary, we routinely identify Hi(M) with H3−i(M, ∂M). If X
is a submanifold of Y, then N(X) denotes an open tubular neighborhood of X in Y.

2. Sutured Floer homology

In this section, we recall some relevant facts about sutured manifolds and sutured
Floer homology. For full details, we refer the reader to [Ju06].

2.1. Balanced sutured manifolds. For our purposes, a sutured manifold (M,γ) is
a compact oriented 3-manifold M with boundary together with a set s(γ) of oriented
simple closed curves on ∂M , called sutures. We fix a closed tubular neighborhood
γ ⊂ ∂M of the sutures, hence γ is a union of pairwise disjoint annuli. Finally,
we require that each component of R(γ) = ∂M \ Int(γ) be oriented, and that this
orientation is coherent with respect to s(γ). I.e., if δ is a component of ∂R(γ) and
is given the boundary orientation, then δ must represent the same homology class in
H1(γ) as some suture. Define R+(γ) to be the union of those components of R(γ)
whose orientation is consistent with the orientation on ∂M induced by M, and let
R−(γ) = R(γ) \R+(γ).

The notion of a sutured manifold is due to Gabai [Ga83]. The description given
above is slightly less general than Gabai’s, in that we have omitted the possibility of
toroidal sutures.

Example 2.1. Let R be a compact oriented surface with no closed components. Then
there is an induced orientation on ∂R. Let M = R× [−1, 1], define γ = ∂R× [−1, 1],
finally put s(γ) = ∂R× {0}. Such a pair (M,γ) is called a product sutured manifold.
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Example 2.2. Suppose Y is a closed connected oriented three-manifold. Let M =
Y \ Int(B3), and let s(γ) be an oriented simple closed curve on ∂B3. We denote the
resulting sutured manifold by Y (1).

Example 2.3. Suppose that L is a link in the oriented three-manifold Y. Then the
sutured manifold Y (L) = (M,γ) is given by M = Y \N(L), and for each component
L0 of L we take s(γ) ∩ ∂N(L0) to be two oppositely oriented meridians of L0.

Example 2.4. Let L be a null-homologous link in a closed oriented three-manifold Y ,
and let R be a Seifert surface for L. If U ' Int(R)×(−1, 1) is a regular neighborhood
of Int(R), then the complement M = Y \U is a sutured manifold with γ = ∂R×[−1, 1].
The curve s(γ) is ∂R×{0}. Then (M,γ) is called the sutured manifold complementary
to R, and is denoted by Y (R).

Definition 2.1. A weakly balanced sutured manifold is a sutured manifold (M,γ)
such that for each component M0 of M we have

χ(R+(γ) ∩M0) = χ(R−(γ) ∩M0).

A balanced sutured manifold is a weakly balanced sutured manifold (M, γ) such that
M has no closed components and the map π0(γ) → π0(∂M) is surjective. Finally,
we say that (M,γ) is strongly balanced if it is balanced and for each component V of
∂M we have χ(R+(γ) ∩ V ) = χ(R−(γ) ∩ V ).

Balanced sutured manifolds were defined in [Ju06] and strongly balanced sutured
manifolds in [Ju08]. The examples given above are all strongly balanced. Since
2χ(M) = χ(∂M) = χ(R−(γ)) + χ(R+(γ)), for a weakly balanced sutured manifold

χ(M, R−(γ)) = χ(M, R+(γ)) = 0.

Sutured Floer homology is only defined for balanced sutured manifolds. However,
we can define the torsion for any weakly balanced sutured manifold.

2.2. Spinc–structures on sutured manifolds. Suppose that (M, γ) is a sutured
manifold. Let v0 be a nowhere zero vector field along ∂M that points into M along
Int R−(γ), points out of M along Int R+(γ), and on γ is given by the gradient of a
height function s(γ)× [−1, 1] → [−1, 1].

Definition 2.2. Let v and w be nowhere zero vector fields on M that agree with v0

on ∂M . We say that v and w are homologous if in each component M ′ of M there is
an open ball B ⊂ Int(M ′) such that v|(M ′ \ B) is homotopic to w|(M ′ \ B) rel ∂M
through nowhere zero vector fields. We define Spinc(M,γ) to be the set of homology
classes of nowhere zero vector fields v on M such that v|∂M = v0.

A priori, this definition appears to depend on the choice of v0. However, the space
of such vector fields is contractible, so there is a canonical identification between
equivalence classes coming from different choices of v0. In the case of a closed, oriented
3–manifold the definition is equivalent to the standard definition given in terms of
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bundles (cf. [Tu97]). We expect that there is a bundle theoretic interpretation of
Spinc(M, γ), but we have not explored this question. Note that Spinc structures on
sutured manifolds were first introduced by Benedetti and Petronio [BP01], and they
called them smooth Euler structures.

Lemma 2.3. Spinc(M, γ) 6= ∅ if and only if (M, γ) is weakly balanced. Further-
more, there exists a free and transitive action of H2(M, ∂M) ∼= H1(M) on the set
Spinc(M,γ).

Proof. An analogous argument as in the proof of [Ju10, Proposition 3.6] implies that
Spinc(M, γ) 6= ∅ if and only if (M,γ) is weakly balanced. It follows from obstruc-
tion theory that Spinc(M,γ) is an affine space over H2(M, ∂M ;Z), since nowhere
zero vector fields can be thought of as sections of the unit sphere bundle STM. If
s1, s2 ∈ Spinc(M,γ), then s1 − s2 is the first obstruction to homotoping vector fields
representing s1 and s2.

If v is a representative of s and the simple closed curve c represents h ∈ H1(M),
then an explicit representative of s + h can be obtained by Reeb turbularization,
which is described in [Tu90, p.639]. ¤
2.3. Sutured Floer homology. We now sketch the construction of SFH(M,γ).
Our starting point is a Heegaard diagram adapted to the pair (M,γ).

Definition 2.4. A balanced sutured Heegaard diagram, in short a balanced diagram,
is a triple (Σ, α,β), where Σ is a compact oriented surface with boundary and α =
{α1, . . . , αd} and β = {β1, . . . , βd} are two sets of pairwise disjoint simple closed
curves in Int(Σ) such that π0(∂Σ) → π0(Σ\

⋃
α) and π0(∂Σ) → π0(Σ\

⋃
β) are both

surjective.

Note that the restrictions on α and β are equivalent to the conditions that Σ has
no closed components and that the elements of α and β are both linearly independent
in H1(Σ).

Every balanced diagram (Σ,α, β) uniquely defines a sutured manifold (M,γ) using
the following construction. Let M be the 3-manifold obtained from Σ × [−1, 1] by
attaching 2–handles along the curves αi×{−1} for i = 1, . . . , d and along βj×{1} for
j = 1, . . . , d. The sutures are defined by taking γ = ∂Σ× [−1, 1] and s(γ) = ∂Σ×{0}.

Equivalently, (M,γ) can be constructed from the product sutured manifold R−(γ)×
I by first adding d one–handles to R−(γ)×{1}, and then d two–handles. The Heegaard
surface Σ is the upper boundary of the manifold obtained by adding the one–handles.
The α curves are the belt circles of the one–handles, and the β curves are the attaching
circles of the two–handles.

The following proposition combines [Ju06, Proposition 2.9] and [Ju06, Proposi-
tion 2.13].

Proposition 2.5. The sutured manifold defined by a balanced diagram is balanced,
and for every balanced sutured manifold there exists a balanced diagram defining it.
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If (Σ,α, β) is a balanced diagram for (M, γ), then the α and β curves define the
tori Tα = α1 × . . . × αd and Tβ = β1 × . . . × βd in the symmetric product Symd(Σ).
We can suppose that

⋃
α and

⋃
β intersect transversally. Then SFH(M, γ) is the

homology of a chain complex whose generators are the intersection points of Tα and
Tβ. More concretely, an element of Tα∩Tβ is a set x = {x1, . . . , xd}, where each xi is
in some αj ∩ βk, and each α and β curve is represented exactly once among the xi’s.
Still more concretely, for each permutation σ ∈ Sd we define

(Tα ∩ Tβ)σ = {(x1, . . . , xd) : xi ∈ αi ∩ βσ(i), i = 1, . . . , d}.
Then

Tα ∩ Tβ =
⋃

σ∈Sd

(Tα ∩ Tβ)σ.

The differential in the chain complex is defined by counting rigid holomorphic disks
in Symd(Σ). Since we are mostly interested in the Euler characteristic of SFH, we
will have little need to understand these disks; in fact, the only place they appear is in
the proof of Proposition 2.14. For the full definition of the differential, the interested
reader is referred to [Ju06].

2.4. Orientations and Grading. Next, we consider the homological grading on
the sutured Floer chain complex. In its simplest form, this grading is a relative Z/2
grading given by the sign of intersection in Symd(Σ) — two generators have the same
grading if the corresponding intersection points in Tα ∩ Tβ have the same sign. To
fix the sign of intersection, or equivalently, to turn this relative Z/2 grading into an
absolute one, we must orient Symd(Σ), and the tori Tα and Tβ.

The orientation of Σ is determined by the orientation of the sutures, as we require
that ∂Σ = s(γ). Equivalently, Σ is always oriented as the boundary of the compres-
sion body determined by the α curves (the part of M \ Σ containing R−(γ)), which
we view as a submanifold of M. Using this orientation of Σ, we get the product ori-
entation on Symd(Σ). If Σ is endowed with a complex structure compatible with its
orientation, then the complex orientation on Symd(Σ) agrees with the product ori-
entation. However, to get a well-defined Z/2 grading on SFH(M,γ), we will always
consider Symd(Σ) with (−1)d(d−1)/2 times the product orientation.

Choosing an orientation of Tα is the same as choosing a generator of Λd(A), where
A ⊂ H1(Σ;R) is the d-dimensional subspace spanned by the α’s. Similarly, an orien-
tation of Tβ is specified by a choice of generator for Λd(B), where B is the subspace of
H1(Σ;R) spanned by the β’s. To fix the sign of intersection, we must orient the ten-
sor product Λd(A)⊗ Λd(B). This turns out to be equivalent to choosing a homology
orientation of (M,R−(γ)).

Definition 2.6. Suppose we are given a balanced Heegaard diagram (Σ,α,β) for
(M, γ). Then we define a bijection o from the set of orientations of H∗(M, R−(γ)) to
the set of orientations of Λd(A)⊗ Λd(B).
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For simplicity, write R− = R−(γ). The balanced diagram (Σ,α,β) gives a relative
handle decomposition of M built on R−×I : attach one-handles A1, . . . , Ad to R−×I
with belt circles α1, . . . , αd, followed by two-handles B1, . . . , Bd with attaching circles
β1, . . . , βd. Let C∗ = C∗(M,R−×I;R) be the handle homology complex corresponding
to this handle decomposition.

An orientation ω of H∗(M, R−;R) determines an orientation ω′ of C∗ as follows.
First, choose an ordered basis h1

1, . . . h
1
m, h2

1, . . . h
2
m of H∗(M,R−;R) compatible with

ω such that hi
j ∈ Hi(M,R−;R), and pick chains ci

j representing the hi
j. Next, choose

chains b1, . . . , bd−m ∈ C2(M, R−;R) such that c2
1, . . . , c

2
m, b1, . . . , bd−m is a basis of

C2(M,R−;R). Then

c1
1, . . . c

1
m, ∂b1, . . . ∂bd−m, c2

1, . . . c
2
m, b1, . . . , bd−m

is an oriented basis of C∗. The reader can easily verify that the corresponding orien-
tation ω′ of C∗ does not depend on the choice of ci

j and bk.

Given the orientation ω′ of C∗, we orient Λd(A)⊗ Λd(B) as follows. Suppose that
the handles A1, . . . , Ad, B1, . . . , Bd give an ordered basis of C∗ compatible with ω′.
This gives rise to an orientation and ordering α1, . . . , αd, β1, . . . , βd of the α and β
curves. Let o(ω) be the orientation of Λd(A)⊗ Λd(B) given by

[α1] ∧ · · · ∧ [αd] ∧ [β1] ∧ · · · ∧ [βd].

It is easy to see that o(−ω) = −o(ω), hence o is indeed a bijection.

Definition 2.7. Suppose that (Σ, α,β) is a balanced diagram such that both Σ and
Λd(A) ⊗ Λd(B) are oriented. Then for x = (x1, . . . , xd) ∈ Tα ∩ Tβ let m(x) be the
intersection sign of Tα and Tβ at x.

Now assume that each α ∈ α and each β ∈ β is oriented. If x ∈ α ∩ β, then let
m(x) denote the intersection sign of α and β at x.

Lemma 2.8. Let (Σ,α,β) be a balanced diagram such that Λd(A) ⊗ Λd(B) is ori-
ented. Suppose that each α ∈ α and each β ∈ β is oriented such that the product
orientations on Tα and Tβ are consistent with the orientation on Λd(A) ⊗ Λd(B). If
x = (x1, . . . , xd) ∈ Tα ∩ Tβ, and xi ∈ αi ∩ βσ(i) for some σ ∈ Sd, then

m(x) = sign(σ) ·
d∏

i=1

m(xi).

Proof. For 1 ≤ i ≤ d, let ai ∈ Txi
αi and bσ(i) ∈ Txi

βσ(i) be positive tangent vectors.

Furthermore, let si be a positive basis of Txi
Σ. Then s = (−1)d(d−1)/2 · s1 × · · · × sd

is a positive basis of TxSymd(Σ). Following the notation of [Tu01], we have

d∏
i=1

m(xi) =
d∏

i=1

sign[aibσ(i)/si] = (−1)d(d−1)/2 · sign[a1bσ(1) . . . adbσ(d)/s] =

= sign[a1 . . . adbσ(1) . . . bσ(d)/s] = sign(σ)sign[a1 . . . adb1 . . . bd/s] = sign(σ) ·m(x).
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Definition 2.9. A homology orientation ω on H∗(M, R−) determines an absolute Z/2
grading on the sutured Floer chain complex. Under this grading, the sign assigned
to a generator x is (−1)b1(M,R−)m(x).

Remark 2.10. If Y is a closed oriented three-manifold, then SFH(Y (1)) ∼= ĤF (Y ).
In this case, the manifold Y (1) admits a canonical homology orientation ω, defined
as follows. If b1, . . . , bm is any basis for H1(Y ;R), let b∗1, . . . , b

∗
m be the dual basis

for H2(M ;R), which satisfies bi · b∗j = δij. Then ω is given by the ordered basis
b1, . . . , bm, b∗1, . . . , b

∗
m. For this orientation, the Z/2 grading defined above differs from

the canonical Z/2 grading on ĤF (Y ) defined in Section 10.4 of [OS04b] by a factor
of (−1)b1(M). Although this choice is less natural from the perspective of intersections
in the symmetric product, it is better behaved with respect to surgery formulas and
the surgery exact triangle. For example, consider the exact triangle for surgery on a
knot K ⊂ S3:

ĤF (S3) → ĤF (Kn) → ĤF (Kn+1) → ĤF (S3).

For n 6= −1, 0, the first map in this sequence reverses the absolute Z/2 grading on

ĤF , and the other two maps preserve it. However, in the case where n = 0 and
K is the unknot, the reader can easily check that the second map reverses grading
and the other two preserve it. In contrast, if we use the orientation convention of
Definition 2.9, the maps in the triangle have the same grading regardless of n.

2.5. Generators and Spinc structures. An important property of the sutured
Floer chain complex is that it decomposes as a direct sum over Spinc structures.
Definition 4.5 of [Ju06], and also Remark 3.15 of the present paper, explain how
to assign a Spinc structure s(x) to each x ∈ Tα ∩ Tβ such that if the boundary
∂x =

∑
aiyi, where each ai is non-zero, then s(x) = s(yi) for all i. The exact

mechanics of this assignment do not concern us at the moment, but we will need to
know how to compute the difference between the Spinc structures assigned to two
generators.

Given x,y ∈ Tα ∩ Tβ, pick a path θ along the α’s from x to y. More precisely,

θ is a singular 1-chain supported on the α’s with ∂θ =
∑d

i=1 yi −
∑d

i=1 xi. Similarly,
choose a path η from x to y along the β’s. The difference θ−η represents an element
of H1(Σ). If θ′ is a different path from x to y along the α’s, then the difference θ− θ′

is a linear combination of the α’s in H1(Σ). Similarly, if η′ is another path from x
to y, then η′ − η is a linear combination of β’s. Thus θ − η represents a well defined
element of H1(Σ)/L, where L is the subspace spanned by the α’s and β’s. We write

x− y = [θ − η] ∈ H1(Σ)/L ∼= H1(M).

Lemma 2.11. [Ju06, Lemma 4.7] We have s(x)− s(y) = x− y in H1(M).
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Let (M, γ) be a balanced sutured manifold, s ∈ Spinc(M,γ) a relative Spinc struc-
ture, and choose a homology orientation ω for (M,R−(γ)). If (Σ, α,β) is a balanced
diagram for (M, γ), then with the absolute grading of Definition 2.9, we have

χ(CF (Σ,α,β, s, ω)) =
∑

{x∈Tα∩Tβ : s(x)=s}
(−1)b1(M,R−)m(x).

Lemma 2.12. If (Σ,α, β) and (Σ′,α′,β′) both represent (M,γ), then

χ(CF (Σ,α,β, s, ω)) = χ(CF (Σ′,α′,β′, s, ω)).

Proof. Recall that (Σ,α,β) and (Σ′, α′,β′) can be connected by a sequence of iso-
topies, handleslides, and stabilizations/destabilizations. By [Pe07], both isotopies and
handleslides correspond to isotopies of Tα and Tβ inside Symd(Σ). If a pair of intersec-
tion points x and y of Tα and Tβ appear/disappear during such an isotopy, then x and
y can be connected by a topological Whitney disk, and hence s(x) = s(y). Invariance
under stabilization/destabilization follows immediately from Lemma 2.8. ¤

Definition 2.13. Let (M,γ) be a balanced sutured manifold, s ∈ Spinc(M, γ), and
ω a homology orientation of (M,R−(γ)). Then define

χ(SFH(M, γ, s, ω)) = χ(CF (Σ,α, β, s, ω)),

where (Σ,α,β) is any balanced diagram representing (M, γ).

In practice, it is convenient to combine the Euler characteristics corresponding
to different Spinc structures into a single generating function, which we view as
an element of the group ring Z[H1(M)]. For this, fix an affine isomorphism ι :
Spinc(M, γ) → H1(M), and let

χ(SFH(M,γ, ω)) =
∑

s∈Spinc(M,γ)

χ(SFH(M, γ, s, ω))[ι(s)](1)

= (−1)b1(M,R−)
∑

x∈Tα∩Tβ

m(x)[ι(s(x))].

Then χ(SFH(M, γ, ω)) is well-defined up to multiplication by an element of H1(M),
viewed as a unit in Z[H1(M)].

2.6. Duality. Let (M, γ) be a balanced sutured manifold, and denote by (M,−γ)
the same manifold, but with the orientation of the suture s(γ) reversed. The effect
of this is to reverse the roles of R+(γ) and R−(γ), more precisely, R±(−γ) = R∓(γ).
The same happens if we reverse the orientation of M. In this subsection, we show that
the groups SFH(M,γ) and SFH(M,−γ) are isomorphic, and that they are ‘dual’
to SFH(−M,γ) and SFH(−M,−γ). This essentially follows the same way as for
ordinary Heegaard Floer homology, though it has not appeared in print before in the
case of sutured Floer homology.
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If s ∈ Spinc(M,γ) is represented by a nowhere vanishing vector field v, then we also
denote by s the homology class of v on (−M,−γ). Furthermore, −v defines a Spinc

structure on both (M,−γ) and (−M,γ). In both cases, we denote the homology class
of −v by −s.

Proposition 2.14. Let (M, γ) be a balanced sutured manifold, and choose a Spinc

structure s ∈ Spinc(M,γ). Then

SFH(M, γ, s) ∼= SFH(M,−γ,−s)

as relatively graded groups, and hence

SFH(−M,−γ, s) ∼= SFH(−M, γ,−s).

Moreover, SFH(M, γ, s) and SFH(−M,−γ, s) are the homologies of dual chain com-
plexes, so by the universal coefficient theorem

SFH(−M,−γ, s) ∼= Hom(SFH(M, γ, s),Z)⊕ Ext(SFH(M,γ, s)[1],Z).

Proof. Choose an admissible balanced diagram (Σ,α,β) for (M,γ). Recall our orien-
tation conventions from Section 2.4. The surface Σ is oriented such that s(γ) = ∂Σ,
and divides M into two compression bodies. The α curves bound disks in the com-
pression body containing R−(γ), the β curves in the compression body containing
R+(γ).

First, consider (−M,−γ). Since s(−γ) = −s(γ) = ∂(−Σ), the Heegaard surface
is now −Σ. As R− and R+ are the same in (M,γ) and (−M,−γ), the α and β
compression bodies also coincide. So (−Σ, α,β) is a balanced diagram for (−M,−γ).

Now flip the orientation of M. For (−M, γ), the surface Σ serves as a Heegaard
surface, since the orientation of the sutures are the same. However, changing the
orientation of M results in flipping R− and R+, and hence the α and β compression
bodies are also reversed. So (Σ,β,α) is a balanced diagram for (−M, γ).

Finally, in (M,−γ), the orientations of the sutures are reversed, and R− and R+

are also flipped. Combining the observations of the previous two paragraphs, we see
that (−Σ,β, α) is a balanced diagram for (M,−γ).

The chain complexes CF (Σ,α,β), CF (−Σ,α, β), CF (Σ,β,α), and CF (−Σ,β,α)
all have the same generators, namely Tα ∩Tβ. Let x,y be generators of CF (Σ,α,β)
that are connected by a rigid pseudo-holomorphic Whitney disc u : D → Symd(Σ).
Then z 7→ u(z) is a rigid pseudo-holomorphic disc connecting y to x in CF (−Σ,α,β).
Furthermore, z 7→ u(−z) is a rigid pseudo-holomorphic disk connecting y to x in
CF (Σ,β, α). Finally, z 7→ u(−z) is a rigid pseudo-holomorphic disk connecting x to
y in CF (−Σ, β,α). Thus

CF (Σ,α,β) = CF (−Σ,β, α)

and
CF (−Σ,α,β) = CF (Σ, β,α),

while the chain complex CF (−Σ,α,β) is dual to CF (Σ,α,β).
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To get the refined statement involving the Spinc structures, observe that if x is a
generator of CF (Σ, α,β) and x′ is the corresponding generator of CF (Σ,β,α), then
s(x′) = −s(x). On the other hand, the Spinc structure assigned to x in CF (Σ,α,β)
and in CF (−Σ,α,β) can be represented by the same vector field on M. So Spinc

structures of corresponding generators of CF (Σ, α,β) and CF (−Σ,β, α) can be rep-
resented by opposite vector fields on M. ¤

3. The definition of the torsion function

In this section, we first review the torsion of a based chain complex and the maximal
abelian torsion of a pair of finite CW complexes. Then we define the torsion invariant
for weakly balanced sutured 3–manifolds. Our approach follows closely the ideas of
Turaev exposed in [Tu97, Tu98, Tu01, Tu02], see also Benedetti and Petronio [BP01]
for a related approach.

3.1. Torsion of based complexes. In this subsection, we quickly recall the defini-
tion of the torsion of a based complex. We refer to Milnor’s classic paper [Mi66] and
Turaev’s books [Tu01, Tu02] for details. Note that we follow Turaev’s convention;
Milnor’s definition gives the multiplicative inverse of the torsion that we consider.

Throughout this section, let F be a field. Let V be a vector space over F, and let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be two ordered bases for V . Then we can write
xi =

∑n
j=1 aijyj, and we define [x/y] = det(aij).

Now let

0 → Cn
∂n−1−−−→ Cn−1

∂n−2−−−→ . . .
∂1−→ C1

∂0−→ C0 → 0

be a complex of F-vector spaces. We write Hi = Hi(C) = Ker ∂i−1/Im ∂i. For each i,
we pick an ordered basis ci for Ci and an ordered basis hi for Hi.

We write Bi = Im{∂i : Ci+1 → Ci}, and we pick an ordered basis bi for Bi. Finally,
we pick an ordered set of vectors b′i in Ci+1 such that ∂ib

′
i = bi as ordered sets. By

convention, we define b′−1 to be the empty set. Note that for i = 0, . . . , n, the ordered
set bihib

′
i−1 defines an ordered basis for Ci. We now define the torsion of the based

complex C as

τ =
n∏

i=0

[bihib
′
i−1/ci]

(−1)i+1 ∈ F∗.

An elementary argument shows that τ does not depend on the choice of b0, . . . , bn−1,
and it does not depend on the choice of lifts b′0, . . . , b

′
n−1, see for example [Tu01,

Section 1]. Put differently, this number only depends on the choice of the complex and
the choice of the ordered bases for C∗ and H∗. We henceforth denote this invariant by
τ(C∗, c∗, h∗) ∈ F∗. If C∗ is acyclic; i.e., if H∗(C) = 0, then we just write τ(C∗, c∗) ∈ F∗.

If c′∗ is an ordered basis obtained from c∗ by swapping two basis vectors, then it is
straightforward to see that

τ(C∗, c′∗, h∗) = −τ(C∗, c∗, h∗) ∈ F∗.
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Given a chain complex C∗ as above, consider the numbers

βi(C) =
i∑

j=0

(−1)i−jdim(Hj),

γi(C) =
i∑

j=0

(−1)i−jdim(Cj),

N(C) =
n∑

i=0

βi(C)γi(C).

Then we define

τ̌(C∗, c∗, h∗) = (−1)N(C)τ(C∗, c∗, h∗) ∈ F∗.
If C∗ is acyclic, then βi(C) = 0 for all i, and so τ̌(C∗, c∗) = τ(C∗, c∗).

3.2. Lifts and Euler structures. Let (X, Y ) be a pair of finite dimensional CW
complexes with Y ⊂ X and X connected. We write H = H1(X) and view H as a

multiplicative group. Denote by C the set of cells in X \ Y. Let π : X̂ → X be the

universal abelian cover of X and write Ŷ = π−1(Y ).

Definition 3.1. A lift l from (X,Y ) to (X̂, Ŷ ) is a choice for every c ∈ C of a cell

l(c) in X̂ lying over c. Note that if l′ is any other lift, then for every c ∈ C there is an
element g(c) ∈ H such that l′(c) = g(c) · l(c). We say that l and l′ are equivalent if

∏
c∈C

g(c)(−1)dim c ∈ H

is trivial. We denote the set of equivalence classes of lifts by Lift(X, Y ).

We now define an action of H on Lift(X, Y ). First, suppose that X 6= Y. Let
h ∈ H and suppose that l ∈ Lift(X, Y ) is represented by a lift l. Fix an arbitrary cell
c0 ∈ C and suppose that dim c0 = i. Then h · l is represented by the lift l′ such that
l′(c0) = h(−1)i · l(c0) and l′(c) = l(c) for c ∈ C \ {c0}. If X = Y, then |Lift(X, Y )| = 1.
Then the action of H is trivial on Lift(X,Y ).

The above definition is independent of the choice of c0. If X 6= Y, then H acts
freely and transitively on Lift(X,Y ). In particular, given l1, l2 ∈ Lift(X, Y ), we get a
well-defined element l1 − l2 ∈ H.

Definition 3.2. For each cell c ∈ C, pick a point p(c) in c. An Euler chain for (X,Y )
is a one-dimensional singular chain θ in X with

∂θ =
∑
c∈C

(−1)dim c p(c).

Given two Euler chains θ, η, we define θ − η ∈ H to be the homology class of the
1-cycle θ − η. Two Euler chains θ, η are equivalent if θ − η is trivial in H. We call
an equivalence class of Euler chains an Euler structure, and denote the set of Euler
structures by Eul(X, Y ).
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Note that Eul(X, Y ) 6= ∅ if and only if χ(X, Y ) = 0. Furthermore, if Eul(X,Y ) 6= ∅,
then H acts freely and transitively on Eul(X,Y ).

Definition 3.3. Suppose that χ(X, Y ) = 0 and X 6= Y. Then we define a map

E : Lift(X, Y ) → Eul(X, Y )

as follows. Pick a point p̂ ∈ X̂. Suppose that l ∈ Lift(X,Y ), and choose a lift l
representing l. For every c ∈ C, connect p̂ and a point p̂(c) ∈ l(c) with an oriented

path θ̂(c) such that ∂θ̂(c) = (−1)dim c(p̂(c)− p̂). If θ̂ =
∑

c∈C θ̂(c), then θ = π(θ̂) is an
Euler chain since χ(X,Y ) = 0. The Euler structure e represented by θ only depends
on l, so we define E(l) = e.

If X 6= Y, then the map E is an H-equivariant bijection. If X = Y, then Eul(X,Y )
is canonically isomorphic to H, and the image of the unique element of Lift(X,Y )
under E is 0 ∈ H.

3.3. Torsion of CW complexes. We continue with the notation from Section 3.2.
In particular, let (X,Y ) be a pair of finite dimensional CW complexes with Y ⊂ X
and X connected. We write H = H1(X) and view H as a multiplicative group.
Let l ∈ Lift(X,Y ) be a lift represented by l. Furthermore, let ϕ : Z[H] → F be a
ring homomorphism to a field F. Finally, let ω be a homology orientation; i.e., an
orientation of the vector space H∗(X,Y ;R) = ⊕i≥0Hi(X,Y ;R). In this section, we
recall the definition of the sign-refined Reidemeister–Turaev torsion τϕ(X, Y, l, ω) ∈ F.
We refer to [Tu01, Tu02] for details.

Consider the chain complex

C∗(X, Y ;F) = C∗(X̂, Ŷ ;Z)⊗Z[H] F.

Here H acts via deck transformations on X̂, and hence on C∗(X̂, Ŷ ;Z), and H acts on
F via ϕ. If this complex is not acyclic; i.e., if the twisted homology groups H∗(X, Y ;F)
do not vanish, then we set τϕ(X, Y, l, ω) = 0 ∈ F. If the complex is acyclic, then we
can define the torsion τϕ(X,Y, l, ω) ∈ F \ {0} as follows.

We first pick an ordering of the cells of X\Y , and for each cell we pick an orientation.
We thus obtain an ordered basis c∗ for C∗(X, Y ;R). The cells { l(c) : c ∈ C } also define

an ordered basis of C∗(X̂, Ŷ ;Z) as a complex of free Z[H]–modules. This gives rise

to an ordered basis ĉ∗ of C∗(X,Y ;F) = C∗(X̂, Ŷ ;Z)⊗Z[H] F in a natural way.
Finally, pick ordered bases hi for Hi(X, Y ;R) with the property that h0h1 . . . hn is

a positive basis for the oriented vector space H∗(X, Y ;R). We now consider

τ(C∗(X,Y ;F), ĉ∗) · sign(τ̌(C∗(X,Y ;R), c∗, h∗)).

It follows easily from the definitions that this number is independent of the choices
we made; i.e., it is independent of the choice of representative lift corresponding to
l ∈ Lift(X, Y ), the ordering of the cells of X \ Y , their orientations and the choice
of h∗. We refer to [Tu01, Section 18] for details. Put differently, this number only
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depends on the CW pair (X, Y ), the lift l ∈ Lift(X,Y ), the homology orientation ω
and the ring homomorphism ϕ. We can thus define

τϕ(X,Y, l, ω) := τ(C∗(X, Y ;F), ĉ∗) · sign(τ̌(C∗(X, Y ;R), c∗, h∗)) ∈ F \ {0}.
Now suppose that χ(X, Y ) = 0. If X 6= Y, then for e ∈ Eul(X, Y ) let

τϕ(X, Y, e, ω) = τϕ(X, Y, E−1(e), ω).

If X = Y, then recall that Eul(X, Y ) is canonically identified with H. For h ∈ H =
Eul(X,Y ), let τϕ(X,Y, h, ω) = h if ω is the positive orientation of H∗(X,Y ;R) = 0,
and τϕ(X, Y, h, ω) = −h otherwise.

3.4. The maximal abelian torsion of a CW complex. We continue with the
notation from the previous sections. In particular, let (X, Y ) be a pair of finite
CW complexes such that X is connected. Furthermore, let l ∈ Lift(X, Y ) and ω a
homology orientation.

Again, we write H = H1(X) and think of H as a multiplicative group. We let
T = Tor(H) be the torsion subgroup. Given a ring R, we denote by Q(R) the ring
which is given by inverting all elements of R that are not zero divisors. We write
Q(H) = Q(Z[H]).

A character χ : T → C∗ extends to a ring homomorphism χ : Q[T ] → C, its image
is a cyclotomic field Fχ. Two characters χ1, χ2 are called equivalent if Fχ1 = Fχ2

and if χ1 is the composition of χ2 with a Galois automorphism of Fχ1 over Q. For
any complete family of representatives χ1, . . . , χn of the set of equivalence classes of
characters, the homomorphism

(χ1, . . . , χn) : Q[T ] →
n⊕

i=1

Fχi

is an isomorphism of rings. We will henceforth identify Q[T ] with
⊕n

i=1 Fχi
. Note

that under this isomorphism 1 ∈ Q[T ] corresponds to (1, . . . , 1).
Now let F be the free abelian group H/T, and pick a splitting H = F × T . Then

we have the identifications

Q[H] =
n⊕

i=1

Fχi
[F ] and Q(H) =

n⊕
i=1

Q(Fχi
[F ]).

We denote by ϕi the ring homomorphism

Z[H] →
n⊕

i=1

Fχi
[F ] → Fχi

[F ] → Q(Fχi
[F ]).

Following Turaev, we now let

τ(X, Y, l, ω) =
n∑

i=1

τϕi(X, Y, l, ω) ∈
n⊕

i=1

Q(Fχi
[F ]) = Q(H).
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Note that τ(X,Y, l, ω) ∈ Q(H) is independent of the choices we made, cf. [Tu02,
Section K]. Also note that

(2) τ(X, Y, h · l,±ω) = ±h · τ(X, Y, l, ω).

In the following, we write τ(X,Y, l) for the set of torsions corresponding to all possible
homology orientations. Also, if χ(X, Y ) = 0 and X 6= Y , then for e ∈ Eul(X,Y ) we
define

τ(X, Y, e, ω) = τ(X,Y,E−1(e), ω).

If X = Y and e ∈ Eul(X,Y ) corresponds to h ∈ H under the canonical isomorphism
Eul(X,Y ) = H, then we define τ(X,Y, e, ω) = ±h, depending on whether ω is the
positive or negative orientation of the zero space. Finally, if χ(X, Y ) 6= 0, then we
set τ(X, Y, e, ω) = 0.

In the coming sections, we will often make use of the following two lemmas.

Lemma 3.4. Let (X,Y ) be a pair of finite CW–complexes, and let ω be a homology
orientation for (X, Y ). Assume that (X ′, Y ′) is a CW–pair obtained from (X,Y ) by
a simple homotopy s. Since s∗ : H∗(X ′, Y ′;R) → H∗(X, Y ;R) is an isomorphism, the
orientation ω of (X,Y ) induces an orientation ω′ = s∗(ω) of (X ′, Y ′). Then there
exists an H–equivariant bijection bs : Eul(X,Y ) → Eul(X ′, Y ′) such that for every
e ∈ Eul(X, Y )

s∗ (τ(X, Y, e, ω)) = τ(X ′, Y ′, bs(e), ω
′).

Proof. It is sufficient to show the result if X ′ is obtained from X using an elementary
expansion. Suppose that we added an i-cell c and an (i + 1)-cell d to X to get
X ′. Choose an Euler chain θ representing e. Let δ ⊂ c ∪ d be a curve such that
∂δ = (−1)i(p − q), where p is the center of c and q is the center of d. Then define
bs(e) to be the equivalence class of the Euler chain s(θ) + δ. From here, a standard
argument shows that s∗ (τ(X, Y, e, ω)) = τ(X ′, Y ′, bs(e), ω

′). ¤
In practice, we are mostly interested in the simple case where Ci(X,Y ) = 0 for

i 6= 1, 2. We will explain how to compute the torsion in this situation, but first we
digress to discuss homology orientations.

Let C∗ be a chain complex with Ci = 0 for i 6= 1, 2 and χ(C∗) = 0. Suppose we
are given a homology orientation ω for H∗(C∗ ⊗ R). As in Section 3.1, we let h1 and
h2 be ordered bases of H1(C∗⊗R) and H2(C∗⊗R) compatible with ω. Furthermore,
choose an ordered basis b1 for Im(∂1) ≤ C1 ⊗ R, and an ordered set of chains b′1 in
C2 ⊗ R such that b1 = ∂1b

′
1. Then h2b

′
1 is a basis of C2 ⊗ R.

Definition 3.5. Let c1 and c2 be ordered bases of C1 and C2, respectively. We say
c1 and c2 are compatible with ω if they induce the same orientation of C∗ ⊗R as the
bases h1b1 and h2b

′
1.

A standard argument shows that the notion of a compatible basis depends only on
the homology orientation ω, and not on the various choices involved in the definition.
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Lemma 3.6. Suppose that X is a 2–complex, that Y 6= ∅, and that χ(X, Y ) =
0. Denote by C the set of cells in X \ Y. Fix a homology orientation ω of (X,Y ).
Furthermore, choose a lift l ∈ Lift(X, Y ), together with a representative l. Let c∗ be

an ordering of C such that l∗ = l(c∗) is a basis of the free Z[H]-module C∗(X̂, Ŷ ;Z)
compatible with the homology orientation ω, and let A be the matrix representing the
boundary map

C2(X̂, Ŷ ;Z) → C1(X̂, Ŷ ;Z)

with respect to the basis l∗. Then

τ(X,Y, l, ω) = (−1)b1(X,Y ) det A.

Proof. The space X is connected and Y 6= ∅, so after collapsing 1-cells and using
Lemma 3.4, we can assume without loss of generality that X \ Y contains no 0-

cells. Our assumptions then imply that Ci(X̂, Ŷ ;Z) = 0 for any i 6= 1, 2. For any

ring homomorphism ϕ : Z[H] → F, the basis l∗ of C∗(X̂, Ŷ ;Z) induces a basis ĉ∗ of
C∗(X,Y ;F), and we have

τ(C∗(X,Y ;F), ĉ∗) = det(ϕ(A)) = ϕ(det A).

Consider c∗ as a basis of C∗ = C∗(X,Y ;R). Furthermore, let h∗ be a basis of H∗ =
H∗(X, Y ;R) compatible with ω. Note that dim C1 = dim C2 as χ(X, Y ) = 0, so
N(C) ≡ (dim H1)(dim C1) modulo 2. Then

sign τ̌(C∗(X, Y ;R), c∗, h∗) = (−1)N(C)sign[b1h1/c1] · sign[h2b
′
1/c2]

= (−1)(dimH1)(dimC1)sign[b1h1/c1] · sign[h2b
′
1/c2]

= (−1)(dimH1)2sign[h1b1/c1] · sign[h2b
′
1/c2]

= (−1)dimH1sign[h1b1h2b
′
1/c1c2]

= (−1)dimH1 ,

since ĉ∗ is compatible with ω. Thus τϕ(X, Y, l, ω) = (−1)dimH1ϕ(det A) for all ϕ. The
lemma now follows immediately from the definition of the maximal abelian torsion.

¤

Corollary 3.7. Suppose that X is a 2–complex and that Y 6= ∅. Then for any l ∈
Lift(X, Y ) we have τ(X, Y, l) ∈ Z[H].

3.5. Torsion for sutured manifolds. Throughout this section, (M,γ) will be a
connected weakly balanced sutured manifold.

Definition 3.8. A sutured handle complex A is a triple (A, S × I, E), where

(1) A is a compact oriented three-manifold with boundary,
(2) S × {0} ⊂ ∂A is a compact subsurface with boundary,
(3) S × I is a submanifold of A such that ∂S × I ⊂ ∂A, and
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(4) E = (e1, . . . , en) is a decomposition of A \ (S × I) into 3-dimensional handles
e1, . . . , en, attached to the top of S × I one after another.

More precisely, for 0 ≤ i ≤ n, we write Ai = (S × I) ∪ (e1 ∪ · · · ∪ ei) and Si =
∂Ai \ (S×{0}∪ ∂S× I). Then the handle ei is smoothly attached to Ai−1 along Si−1

via a gluing map fi.
Let I(r) denote the index of the handle er. We say that A is nice if I is non-

decreasing, and ei ∩ ej = ∅ whenever I(i) = I(j) and i 6= j. A homology orientation
for A is an orientation of the vector space H∗(A, S × {0};R) = H∗(A, S × I;R).

Notice that if A = (A, S × I, E) is a sutured handle complex, then (A, ∂S × I) is
a sutured manifold. Given a sutured handle complex A, we can define Lift(A) and
Eul(A) in a way completely analogous to the case of a CW pair (X,Y ). Just use the
following dictionary:

CW pairs sutured handle complexes
X A
Y S × I
C E
cell handle

For the reader’s convenience, we translate Definitions 3.1 and 3.2 to sutured handle
complexes. Given a sutured handle complex A = (A, S × I, E), let π : Â → A be

the universal abelian cover of A, and we write Ŝ × I = π−1(S × I). Suppose that
E = (e1, . . . , en).

Definition 3.9. A lift l is a choice for every 1 ≤ i ≤ n of a handle l(i) in Â lying
over ei. Note that if l′ is any other lift, then for every 1 ≤ i ≤ n there is an element
g(i) ∈ H1(A) such that l′(i) = g(i) · l(i). We say that l and l′ are equivalent if

n∏
i=1

g(i)(−1)I(i) ∈ H1(A)

is trivial. We denote the set of equivalence classes of lifts by Lift(A).

Definition 3.10. For 1 ≤ i ≤ n, pick a point p(i) in ei. An Euler chain for A is a
one-dimensional singular chain θ in A with

∂θ =
n∑

i=1

(−1)I(i) p(i).

Given two Euler chains θ, η, we define θ− η ∈ H1(A) to be the homology class of the
1-cycle θ − η. Two Euler chains θ, η are called equivalent if θ − η is trivial in H1(A).
We call an equivalence class of Euler chains an Euler structure, and denote the set of
Euler structures by Eul(A).

From now on, suppose that A is connected and χ(A, S × I) = χ(A, S × {0}) = 0.
As in Definition 3.3, we also have a map EA : Lift(A) → Eul(A). Finally, if ω is an
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orientation of H∗(A, S×I;R) and e ∈ Eul(A), then we define the maximal abelian tor-

sion τ(A, e, ω) ∈ Q(H1(A)) = Q(Z[H1(A)]) using the chain complex C∗(Â, Ŝ × I;Z)
arising from the handle decomposition E .

Remark 3.11. The reader should keep in mind that τ(A, e, ω) is a relative torsion
corresponding to the pair of spaces (A, S × I). Notice that if A is nice, then we can
collapse each handle to its core, starting from en and proceeding to e1, and finally
S × I to S × {0}, to obtain a relative CW complex built upon S × {0}. Extend
this to a CW decomposition Y of S × {0} such that we obtain a CW pair (X,Y ).
Then there are canonical bijections Lift(A) = Lift(X, Y ) and Eul(A) = Eul(X,Y )
such that given e ∈ Eul(A) = Eul(X, Y ) and a homology orientation ω, we have
τ(A, e, ω) = τ(X, Y, e, ω).

Definition 3.12. A handle decomposition Z of a sutured manifold (M,γ) consists of
a sutured handle complex A = (A, S × I, E) and a diffeomorphism d : A → M such
that d(S × {0}) = R−(γ) and d(∂S × I) = γ. We say that Z is nice if A is nice.

The set Eul(A) is an affine copy of H1(A), while Spinc(M,γ) is an affine copy of
H1(M). We will show that there is a canonical isomorphism between them corre-
sponding to d∗ : H1(A) → H1(M).

Claim. Given a handle decomposition Z = (A, d) of the sutured manifold (M, γ), let
v0 be a vector field along ∂M as in Subsection 2.2. Then there exists a vector field vA

on A with the following properties: vA vanishes exactly at the centers of e1, . . . , en;
the index of vA at the center of ei is (−1)I(i); finally, vA|∂A = d∗(v0).

Proof. First, let vA|(S × I) = ∂/∂t, where t is the coordinate on I. If ei = D3 is a
0–handle with coordinates (x, y, z), then let

vA(x, y, z) = x · ∂

∂x
+ y · ∂

∂y
+ z · ∂

∂z
.

On a 3–handle, take vA to be the negative of the previous vector field. If ej = D1×D2

is a 1–handle with coordinates x on D1 and (y, z) on D2, then we define vA(x, y, z)
to be

−x · ∂

∂x
+ y · ∂

∂y
+ z · ∂

∂z
.

This vector field points out of ej along D1×S1 and it lies on the same side of S0×D2

as {0}×D2. We can glue vA|(D1×D2) to vA|(S×I)∪(0–handles) by a smooth handle
attachment. Similarly, on a 2–handle D2 × D1 with coordinates (x, y, z), we choose
vA to be −x · ∂/∂x− y · ∂/∂y + z · ∂/∂z. One can also think of vA as the gradient-like
vector field for a Morse function compatible with the handle decomposition E . This
concludes the proof of the claim. ¤

We will use the notation vZ for the vector field on M obtained by pushing forward
vA along d.
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Definition 3.13. Let Z = (A, d) be a relative handle decomposition of the sutured
manifold (M, γ). For e ∈ Eul(A), let sZ(e) ∈ Spinc(M,γ) be the homology class of
the vector field d∗(v) that is obtained as follows. Pick an Euler chain θ representing e
that is a union of pairwise disjoint smoothly embedded arcs and circles inside Int(A).
Choose an open regular neighborhood N(θ) of θ. Then let v = vA on A \ N(θ). If
N0 is a component of N(θ) diffeomorphic to B3, then extend v to N0 as a nowhere
zero vector field. This is possible since vA has exactly one index 1 and one index
−1 singularity inside N0. The homology class of v is independent of the choice of
extension. If N1 is a component of N(θ) diffeomorphic to S1 ×B2, then we get v|N1

from vA|N1 using Reeb turbularization, as described in [Tu90, p.639]. Finally, we
push forward v along d to obtain d∗(v).

Note that we can avoid closed components of θ in the above definition except if
(M, γ) is a product and A = S × I.

Lemma 3.14. Let Z = (A, d) be a handle decomposition of (M,γ). For e1, e2 ∈
Eul(A), we have

sZ(e1)− sZ(e2) = d∗(e1 − e2).

Proof. An analogous obstruction theoretic argument as in the proof of [OS04a, Lemma
2.19] works here too. Also see [Tu90]. ¤

Consequently, sZ gives an isomorphism between the affine spaces Eul(A) and
Spinc(M, γ).

Remark 3.15. Note that if the handle decomposition Z arises from a balanced
diagram (Σ, α,β), then every x = (x1, . . . , xd) ∈ Tα ∩ Tβ defines a unique Euler
structure e(x) ∈ Eul(Z) as follows. Suppose that xi ∈ αj ∩ βk, and let aj be the 1–
handle corresponding to αj and bk the 2–handle corresponding to βk. Then let θi be a
curve that connects the center of aj to xi inside aj and then goes from xi to the center
of bk inside bk. The Euler chain θ1 + · · · + θd defines e(x). Then the Spinc-structure
s(x) assigned to x is exactly sZ(e(x)).

Proposition 3.16. Suppose that Z = (A, d) and Z ′ = (A′, d′) are nice handle decom-
positions of the connected weakly balanced sutured manifold (M, γ). Suppose that ω
and ω′ are homology orientations for A and A′, respectively, such that d∗(ω) = d′∗(ω

′).
Furthermore, pick a Spinc structure s ∈ Spinc(M, γ), and write e = s−1

Z (s) and
e′ = s−1

Z′ (s). Then

d∗(τ(A, e, ω)) = d′∗(τ(A′, e′, ω′)) ∈ Q(H1(M)).

Proof. By [Ce70], one can get from Z to Z ′ through a finite sequence of nice handle
decompositions, each one obtained from the previous by one of the following basic
operations:

(1) an isotopy of d through diffeomorphisms dt : A → M such that dt(S × {0}) =
R−(γ) and dt(∂S × I) = γ,
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(2) an isotopy of a handle,
(3) a handle slide,
(4) or adding/cancelling a pair of handles.

So it suffices to show the claim when Z and Z ′ are related by one of these operations.
Suppose that A = A′ and d is isotopic to d′, as in (1). Then we claim that e = e′.

Indeed, pick a submanifold θ ⊂ A that represents e. As in Definition 3.13, let v be the
vector field obtain by modifying vA along θ. Then sZ(e) is the homology class of the
vector field d∗(v), while sZ′(e) is represented by d′∗(v). Since d is isotopic to d′ through
diffeomorphisms dt : A → M such that dt(S × {0}) = R−(γ) and dt(∂S × I) = γ,
the vector fields d∗(v) and d′∗(v) are homotopic through vector fields that satisfy
the appropriate boundary conditions along ∂M. In particular, d∗(v) and d′∗(v) are
homologous, hence sZ′(e) = sZ(e) = s. From this, e = s−1

Z′ (s) = e′, as claimed.
Since d and d′ are isotopic, they induce the same maps from H∗(A, S × {0};R) to
H∗(M, R−(γ);R), so ω = ω′. Similarly, d∗ = d′∗ : H1(A) → H1(M). Consequently,

d∗(τ(A, e, ω)) = d′∗(τ(A′, e′, ω′)).

Now we consider cases (2) and (3). Actually, Z and Z ′ are related by isotoping a
handle in both cases. This means the following. We choose a handle ei of A and
isotope its attaching map fi to some other map f ′i inside Si−1. Then we extend this
isotopy to a diffeotopy {ϕt : t ∈ I } of Si−1 such that f ′i = ϕ1 ◦ fi. We define the A′

j

recursively, together with diffeomorphisms νj : Aj → A′
j for j ≥ i − 1. If j ≤ i − 1,

then let A′
j = Aj. To define νi−1, choose a collar Si−1 × I ⊂ Ai−1 of Si−1 such that

Si−1 × {1} is identified with Si−1. For x ∈ Ai−1 \ (Si−1 × I), let νi−1(x) = x, and set
νi−1(s, t) = (ϕt(s), t) for (s, t) ∈ Si−1×I. If A′

j−1 and νj−1 are already defined, then we
obtain A′

j by gluing e′j = ej to S ′j−1 along νj ◦ fj. Then νj−1 naturally extends to Aj,

call this extension νj. This defines the handle complex A′, and we set d′ = d ◦ (νn)−1,
where n is the number of handles.

Define ν = νn, this is a diffeomorphism from A to A′. For 1 ≤ j ≤ n, let pj be
the center of ej and p′j the center of e′j. Then ν(pj) = p′j. Hence ν induces a natural
bijection N : Eul(A) → Eul(A′) via the formula N([θ]) = [ν(θ)], where θ is an Euler
chain in A. We claim that

sZ(e) = sZ′(N(e)).

Indeed, suppose that [θ] = e for some Euler chain θ ⊂ A. Then N(e) is represented by
the Euler chain ν(θ) ⊂ A′. Let v be the vector field obtained by modifying vA along θ.
The vector field ν∗(vA) agrees with vA′ , except on ν(Si−1 × I) = Si−1 × I (recall that
A′

i−1 = Ai−1). But along Si−1× I they both point up with respect to ∂/∂t, so ν∗(vA)
and vA′ are isotopic on this collar through nowhere zero fields rel boundary. Hence,
if we modify vA′ along ν(θ), we obtain a vector field v′ isotopic to ν∗(v) rel ∂A′. So
sZ(e) = [d∗(v)], while sZ(N(e)) = [d′∗(v

′)] = [d′∗(ν∗(v))] = [d∗(v)], which proves the
claim. Consequently,

e′ = s−1
Z′ (s) = s−1

Z′ (sZ(e)) = N(e).
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Let π : Â → A and π′ : Â′ → A′ be the maximal abelian covers of A and A′,
respectively. Fix an arbitrary lift ν̂ : Â → Â′ of the diffeomorphism ν : A → A′. Let
θ be an Euler chain representing e which is a submanifold of A. We can assume that
θ has no closed components. Then ν(θ) represents e′ = N(e). Let θ̂ be an arbitrary

lift of θ to Â. Then ∂θ̂ defines a lift l that represents E−1
A (e). Similarly, ν̂(θ̂) is a lift

of ν(θ), hence ν̂(∂θ̂) gives a lift l′ representing E−1
A′ (e

′). The handle decomposition

E of A \ (S × I) gives rise to a handle decomposition Ê of Â \ (Ŝ × I). Similarly,

E ′ induces a handle decomposition Ê ′ of Â′ \ (Ŝ ′ × I). We obtain chain complexes

C∗(Â, Ŝ × I) and C∗(Â′, Ŝ ′ × I) generated by Ê and Ê ′, respectively. Since ν(pj) = p′j
for 1 ≤ j ≤ n, we see that ν̂ maps the centers of the handles of Ê to the centers of the

handles of Ê ′. So ν̂ induces a bijection B : C∗(Â, Ŝ × I) → C∗(Â′, Ŝ ′ × I) that takes
the generator l(j) to l′(j).

We are now ready to prove invariance under move (2). So suppose that the isotopy
connecting fi and f ′i avoids every other handle of index I(i), including the attaching
map of ej if j > i and I(j) = I(i). Then B is an isomorphism of based complexes.
Indeed, isotoping the attaching map of l(i) does not change the algebraic intersection
number with belt circles of handles of index I(i)−1. More precisely, if I(j) = I(i)−1,
then we have the equality of matrix coefficients

〈 ∂l(i), l(j) 〉 = 〈 ∂l′(i), l′(j) 〉.
So ν∗(τ(A, e, ω)) = τ(A′, e′, ω′). Together with d = d′ ◦ ν, this implies the result in
case (2).

Now we consider operation (3). Suppose that we handleslide ei over a handle er

such that I(i) = I(r). Consider the new basis b = (b1, . . . , bn) of C∗(Â, Ŝ × I) given
by bj = l(j) when j 6= i, and bi = l(i) + l(r). Note that this change of basis does not

change the torsion. Then B is an isomorphism of based complexes from C∗(Â, Ŝ × I)

with the basis b to C∗(Â′, Ŝ ′ × I) with the basis (l′(1), . . . , l′(n)). The result follows
for case (3).

Finally, we consider operation (4). So suppose that Z ′ is obtained from Z by
adding a canceling pair of handles e and f between ei−1 and ei such that Z ′ is also
nice (this is not necessarily the case if I(i) = 1, but that can be avoided by isotoping
the 2-handles beforehand). Similarly to the case of an isotopy, we recursively define
A′, together with a sequence of diffeomorphisms νj : Aj → A′

j+2 for j ≥ i − 1. Let
A′

j = Aj for j ≤ i − 1. To define νi−1, choose a collar Si−1 × I ⊂ Ai−1 of Si−1 as
before. For x ∈ Ai−1 \ (Si−1 × I), let νi−1(x) = x, while

νi−1(Si−1 × I) = (Si−1 × I) ∪ e ∪ f.

We set e′i = e and e′i+1 = f. If j ≥ i, and if the attaching map of ej in A is fj, then let
e′j+2 = ej attached to Aj−1 along νj−1 ◦ fj. Finally, set ν = νn and define d′ = d ◦ ν−1.
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The CW complexes corresponding to A and A′ are related by an elementary ex-
pansion s, so by Lemma 3.4 there is a bijection bs : Eul(A) → Eul(A′) such that

s∗ (τ(A, e, ω)) = τ(A′, bs(e), ω
′)

for every e ∈ Eul(A), where ω′ = s∗(ω). We claim that sZ(e) = sZ′(bs(e)). Indeed,
let p′j denote the center of e′j. If the Euler chain θ represents e and δ is an arc inside

e′i ∪ e′i+1 such that ∂δ = (−1)i(p′i − p′i+1), then θ′ = ν(θ) + δ represents bs(e). Let

K = (Si−1 × I) ∪ e′i ∪ e′i+1 ⊂ A′,

then K = ν(Si−1 × I). If v′ is a nowhere vanishing vector field on A′ extending
vA′ |(A′\N(θ′)), then v′|K is isotopic to ν∗(∂/∂t). On the other hand, if v is the nowhere
zero vector field obtained from vA and θ, then v|(Si−1 × I) = ∂/∂t. Furthermore,

ν∗ (v|(A \ (Si−1 × I))) = v′|(A′ \K).

So ν∗(v) is homotopic to v′ rel ∂A, hence

sZ(e) = [d∗(v)] = [d′∗ ◦ ν∗(v)] = [d′∗(v
′)] = sZ′(bs(e)).

This implies that e′ = bs(e), and the claim follows for case (4), concluding the proof
of Proposition 3.16. ¤
Definition 3.17. Let Z = (A, d) be a nice handle decomposition of the connected
weakly balanced sutured manifold (M, γ). Given an element s ∈ Spinc(M,γ) and a
homology orientation ω for the pair (M, R−(γ)), we define

τ(M, γ, s, ω) = d∗
(
τ

(A, s−1
Z (s), d−1

∗ (ω)
)) ∈ Q(H1(M)),

where sZ is the identification between Eul(A) and Spinc(M, γ) defined in Defini-
tion 3.13. By Proposition 3.16, the torsion τ(M, γ, s, ω) is independent of the choice
of Z.

We would like to emphasize that Z is a relative handle decomposition, hence
τ(M,γ, s, ω) is essentially the torsion of the pair (M, R−(γ)). We now extend Defini-
tion 3.17 to disconnected weakly balanced sutured manifolds.

Definition 3.18. Suppose that (M, γ) is a weakly balanced sutured manifold whose
components are (M1, γ1), . . . , (Mn, γn). Fix a homology orientation ω for (M, R−(γ))
and a Spinc structure s ∈ Spinc(M,γ). For 1 ≤ i ≤ n, let si = s|Mi and ωi = ω|Mi.
Then define

τ(M,γ, s, ω) =
n⊗

i=1

τ(Mi, γi, si, ωi) ∈
n⊗

i=1

Q(H1(Mi)) ⊂ Q(H1(M)),

where we take the tensor product over Z.

Now suppose that R+(γ) ∩Mi 6= ∅ and R−(γ) ∩Mi 6= ∅ for every 1 ≤ i ≤ n. This
is true for example if (M,γ) is balanced. Then (M,γ) has a handle decomposition
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with no 0 and 3–handles. From Corollary 3.7, we get that τ(M,γ, s, ω) ∈ Z[H1(M)].
Following Turaev, we define the torsion function as

T(M,γ,ω) : Spinc(M, γ) → Z
s 7→ τ(M,γ, s, ω)1

where τ(M,γ, s, ω)1 denotes the constant term of τ(M, γ, s, ω) ∈ Z[H1(M)]. Note that
in light of (2), we can recover τ(M,γ, s, ω) ∈ Z[H1(M)] from the function T(M,γ,ω).

Remark 3.19. For proving that the torsion τ(M,γ, s, ω) is independent of the chosen
handle decomposition Z = (A, d) of (M,γ), it was important to differentiate between
the sutured manifolds (A, ∂S × I) and (M, γ). Indeed, if we perform a handle slide,
or if we add or remove a canceling pair of handles, then we obtain from A a different
(though diffeomorphic) three-manifold A′. These operations would be more difficult
to describe only in terms of M.

However, from now on we will identify (A, ∂S × I) and (M, γ) via d, and we will
also identify the handles e1, . . . , en with their images d(e1), . . . , d(en) in M. We will
often use the notation Lift(Z), Eul(Z), EZ , and τ(Z, e, ω) for Lift(A), Eul(A), EA, and
τ(A, e, ω), respectively.

3.6. Making γ connected. Let (M, γ) be a connected balanced sutured manifold
and fix a homology orientation ω. In the future, it will often be convenient to assume
that γ, and hence R±(γ) are connected. This can be arranged by adding product
1–handles to (M,γ) to produce a new sutured manifold (M ′, γ′). In this section, we
describe the effect of this operation on the sutured Floer homology and the torsion.
In particular, we show that SFH(M,γ) can be recovered from SFH(M ′, γ′), and
likewise for the torsion.

In terms of Heegaard diagrams, this operation of adding a product 1–handle can
be described as follows. Suppose (Σ,α, β) is a balanced sutured Heegaard diagram
for (M, γ), and let Σ′ be the result of attaching a 2–dimensional 1–handle h to Σ.
Then (Σ′,α, β) is a Heegaard diagram representing a sutured manifold (M ′, γ′) which
is obtained from M by attaching the 3–dimensional 1–handle h × [−1, 1]. We can
recover (M, γ) from (M ′, γ′) by decomposing along the product disk c× [−1, 1], where
c is the cocore of h. If h joins two different components of γ, then γ′ will have one
less component than γ.

The embedding (M, R−(γ)) ↪→ (M ′, R−(γ′)) induces an isomorphism

H∗(M, R−(γ);R) → H∗(M ′, R−(γ′);R).

Hence ω induces an orientation ω′ of H∗(M ′, R−(γ′);R).
From [Ju06, Lemma 9.13], we know that SFH(M ′, γ′) ∼= SFH(M, γ). To be more

precise, by [Ju10, Prop. 5.4], there is an injection i : Spinc(M,γ) → Spinc(M ′, γ′) for
which

SFH(M, γ, s) ∼= SFH(M ′, γ′, i(s)).
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Moreover, SFH(M ′, γ′, s′) = 0 if s′ is not in the image of i. The same proof shows
that using the homology orientations ω and ω′ we get an isomorphism of Z/2 graded
groups.

The injection i is most easily described by observing that the generating sets Tα∩Tβ

and Tα′ ∩Tβ′ are naturally identified, and setting i(s(x)) = s(x′), where x ∈ Tα ∩Tβ

and x′ ∈ Tα′ ∩Tβ′ are corresponding intersection points. This map extends to a map
on Spinc(M, γ) using the free and transitive H1(M)–action, which extends to a free
action on Spinc(M ′, γ′) using the injection H1(M) → H1(M

′).
More intrinsically, i can be defined as follows. Suppose that s ∈ Spinc(M,γ) is

represented by some vector field v. By definition, v|γ is the gradient of a height
function γ → [−1, 1]. So we get a smooth vector field v′ on M ′ if we let v′|M = v
and v′|(h× [−1, 1]) = p∗(∂/∂t), where p : h× [−1, 1] → [−1, 1] is the projection. We
define i(s) as the homology class of v′.

To see that the latter description coincides with the former, let Z and Z ′ be the
handle decompositions arising from (Σ, α,β) and (Σ′, α,β), respectively. The inclu-
sion M ↪→ M ′ naturally induces an affine injection i0 : Eul(Z) → Eul(Z ′), and i is
the composition sZ′ ◦ i0 ◦ s−1

Z . It is easy to see that i0(e(x)) = e(x′), and this implies
that i(s(x)) = s(x′).

An analogous statement is satisfied by the torsion:

Lemma 3.20. Suppose that (M ′, γ′) is obtained from the connected balanced sutured
manifold (M, γ) by adding a product 1–handle. Then T(M,γ,ω)(s) = T(M ′,γ′,ω′)(i(s)) for
every s ∈ Spinc(M, γ). Moreover, T(M ′,γ′,ω′)(s

′) = 0 if s′ is not in the image of i.

Proof. In this proof, we use the conventions of Remark 3.19. Let Z be the handle
decomposition of (M, γ) given by (Σ,α, β), and Z ′ the decomposition of (M ′, γ′) given

by (Σ′,α,β). The universal abelian cover p′ : M̂ ′ → M ′ can be constructed as follows.

Start with a disjoint union ti∈ZM̂i, where each M̂i is homeomorphic to the universal
abelian cover M̂ of M . Now join M̂i to M̂i+1 by 1–handles, one for each element of
H1(M). These 1–handles are all thickenings of 1–handles in R̂′

− = (p′)−1(R−(γ′)), so

they do not contribute to C∗(M̂ ′, R̂′
−). Choose a basis for C∗(M̂ ′, R̂′

−), all of whose

handles are contained in M̂0; let l and l′ be the associated lifts for M and M ′. With
respect to such a basis,

C∗(M̂ ′, R̂′
−) ∼= C∗(M̂, R̂−)⊗Z Z[t, t−1].

It follows that τ(Z ′, l′, ω′) = i∗(τ(Z, l, ω)), where i∗ : H1(M) → H1(M
′) is the inclu-

sion. It is easy to see that i0(EZ(l)) = EZ′(l
′). Since i = sZ′ ◦ i0 ◦ s−1

Z , it follows that
τ(M ′, γ′, i(s), ω′) = i∗(τ(M,γ, s, ω)). It is now straightforward to see that this implies
the statement of the lemma. ¤
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4. The proof of Theorem 1

We are now in a position to prove that the Euler characteristic of SFH(M, γ, s, ω)
coincides with the torsion T(M,γ,ω)(s). Before giving the proof, we recall some basic
facts about handle decompositions, presentations of π1, and Fox calculus.

4.1. Balanced diagrams and presentations. We begin by explaining how to find
a presentation of π1(M) compatible with a nice handle decomposition Z having no 0
and 3-handles, or equivalently, with a balanced diagram (Σ,α,β) representing (M,γ).
Choose a 2-dimensional handle decomposition of R− consisting of one 0-handle and
l 1-handles; this naturally gives a 3-dimensional handle decomposition of R− × I,
again with one 0-handle and l 1-handles. Without loss of generality, we may assume
that the attaching disks of the 1-handles of Z are disjoint from the belt circles of the
1-handles of R−× I, and thus (after an isotopy) that the 1-handles of Z are attached
to the 0-handle of R− × I.

Fix a basepoint p ∈ R−×{0} which is contained in the 0-handle. Then π1(M, p) is
generated by loops α∗1, . . . , α

∗
d, c

∗
1, . . . , c

∗
l , where α∗i runs through the i-th 1-handle of

Z, and c∗k runs through the k-th 1-handle of R− × I. (Note that α∗i depends on the
choice of handle decomposition for R− as well as on Z.) Each 2-handle in Z gives rise
to a relation as follows. Choose a path qj from p to the attaching circle βj of the j-th

2-handle; then βj = qjβjq
−1
j is a loop which represents a trivial element of π1(M, p).

We have a presentation

π1(M, p) = 〈α∗1, . . . , α∗d, c∗1, . . . , c∗l | β1, . . . , βd〉.
To read off this presentation from a sutured Heegaard diagram (Σ,α,β) compatible

with Z, we proceed as follows. First, surger S along the α-curves to produce a surface
homeomorphic to R− and containing 2d marked disks (the traces of the surgery).
Next, choose a system of disjoint properly embedded arcs c1, . . . , cl in R− whose
complement is homeomorphic to a disk. (This amounts to choosing a handlebody
decomposition of R−.) Without loss of generality, we may assume that the ck’s are
disjoint from the marked disks, so they lift to arcs c1, . . . , cl in Σ. To write down the
word βj, we simply traverse βj and record its intersections with the αi’s and the ck’s
as we go.

More precisely, an intersection point x between αi and βj is recorded by α∗i if the

sign of intersection αi ·βj at x is positive, and by (α∗i )
−1 if the sign of the intersection

is negative. Note that in doing this, we have implicitly chosen orientations on the
αi’s , the βj’s, and the ck’s.

In what follows, it will be convenient to choose the path qj such that its image in Σ
does not intersect any of the αi or ck. (This is always possible, since the complement
of the α’s and c’s is connected.) In this case, we write the resulting relation as βj;
it is obtained by traversing the curve βj and recording the intersections with the α’s
and the c’s.
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4.2. Torsion from a balanced diagram. Given a nice handle decomposition of
(M, γ) as in the previous section, the torsion τ(M,γ) can be computed as follows.

As usual, let H = H1(M). Pick a lift p̂ ∈ M̂ of the basepoint p. Then the based

curves c∗1, . . . , c
∗
l give rise to a basis Ĉ∗

1 , . . . , Ĉ
∗
l of the free Z[H]-module C1(R̂−;Z).

Similarly, the based curves α∗1, . . . , α
∗
d give a basis Â∗

1, . . . , Â
∗
d of the free Z[H]-module

C1(M̂, R̂−;Z). Let Bj denote the 2-handle attached along βj. Then the basings

q1, . . . , qn give rise to a choice of lifts B̂1, . . . , B̂d of B1, . . . , Bd. These give a basis for
the free Z[H]-module C2(M̂ ;Z).

Proposition 4.1. Let l ∈ Lift(Z) be the element corresponding to the bases Â∗
1, . . . , Â

∗
d

and B̂1, . . . , B̂d, and let ω be the compatible homology orientation. Then

τ(M,γ, l, ω) = (−1)b1(M,R−) det

(
ϕ

(
∂βj

∂α∗i

))
∈ Z[H],

where ϕ : Z[π1(M, p)] → Z[H] is the homomorphism induced by abelianization.

Proof. Consider the following diagram of free Z[H]–modules. We write our choice of
basis under the free modules.

0 → C2(M̂ ;Z) → C2(M̂, R̂−;Z) → 0

B̂1, . . . , B̂d B̂1, . . . , B̂d

↓ ↓ ↓
0 → C1(R̂−;Z) → C1(M̂ ;Z) → C1(M̂, R̂−;Z) → 0

Ĉ∗
1 , . . . , Ĉ

∗
l → Â∗

1, . . . , Â
∗
d

Ĉ∗
1 , . . . , Ĉ

∗
l

Â∗
1, . . . , Â

∗
d

↓ ↓ ↓
0 → C0(R̂−;Z) → C0(M̂ ;Z) → 0.

p̂ p̂

Fox calculus tells us that the boundary map C2(M̂ ;Z) → C1(M̂ ;Z) is given by

ϕ

(
∂βj

∂α∗i

)

ϕ
(

∂βj

∂c∗k

)

 .

The proposition now follows from Lemma 3.6. ¤

4.3. Equality in Z[H]/±H. We now turn to the proof of Theorem 1. First, observe
that it is enough to prove the equality in the case where R−(γ) is connected. Indeed, if
R−(γ) is not connected, then we can add product one-handles to obtain a new sutured
manifold (M ′, γ′) with R−(γ′) connected. Lemma 3.20 and the discussion preceding
it show that if χ(SFH(M ′, γ′, i(s), ω′)) = T(M ′,γ′,ω′)(i(s)), then χ(SFH(M, γ, s, ω)) =
T(M,γ,ω)(s).
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For the rest of this section, we assume R−(γ) is connected. Our next step is to
show that the torsion and the Euler characteristic of SFH agree up to multiplication
by ±[h] for some h ∈ H. In light of Proposition 4.1, it suffices to prove the following.

Proposition 4.2.

χ(SFH(M,γ)) ∼ det ϕ

(
∂βj

∂α∗i

)
,

where ϕ : Z[π1(M)] → Z[H1(M)] is the homomorphism induced by abelianization and
where ∼ indicates equality up to multiplication by ±[h].

Proof. We argue along the lines of Chapter 3 in [Ra03]. First, observe that there are
natural bijections

{elements of αi ∩ βj} ↔ {appearances of α∗i in βj} ↔
{

monomials in ϕ

(
∂βj

∂α∗i

)}
,

where the free derivative ∂βj/∂α∗i has been expanded without canceling any terms.
Equivalently,

(3) ϕ

(
∂βj

∂α∗i

)
=

∑

x∈αi∩βj

m(x)[A(x)],

where each m(x) = ±1 and each A(x) is an element of H1(M). The sign m(x) is
given by the exponent of the corresponding appearance of α∗i in βj, or equivalently,
by the sign of intersection αi · βj at x.

Recall that the chain complex computing SFH is generated by d-tuples of inter-
section points x = {x1, . . . , xd}, where xi ∈ αi ∩ βσ(i) for some permutation σ ∈ Sd.
On the other hand, the determinant of a d× d matrix (Bij) can be expanded as

det(Bij) =
∑
σ∈Sd

sign(σ)B1σ(1) · · ·Bdσ(d).

Thus we get a bijection

Tα ∩ Tβ ←→
{

monomials in det ϕ

(
∂βj

∂α∗i

)}
.

Again, all terms in the determinant are to be expanded without cancelation.
Together with Lemma 2.8, these imply that

τ(M,γ) ∼ det ϕ

(
∂βj

∂α∗i

)
=

∑

x∈Tα∩Tβ

m(x)[A(x)].

Here A(x) =
∑d

i=k A(xk) and m(x) is the sign of the intersection Tα · Tβ at x. The
orientations on Tα and Tβ are induced by the orderings 〈α1, . . . , αd〉 and 〈β1, . . . , βd〉.
On the other hand, we know from Equation (1) at the end of Section 2.5 that

χ(SFH(M,γ)) ∼
∑

x∈Tα∩Tβ

m(x)[ι(s(x))],
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where ι : Spinc(M,γ) → H1(M) is an affine isomorphism. Comparing this with
Lemma 2.11, we see that the two expressions will agree up to multiplication by ±[h]
if we can show the following.

Lemma 4.3. A(x)− A(y) = x− y.

Proof. The coefficients A(x) appearing in Equation (3) can be interpreted geometri-

cally as follows. In the universal abelian cover M̂ , we have fixed lifts α̂i of αi and β̂j

of βj coming from the basings. An intersection point x ∈ αi ∩ βj lifts to a unique

x̂ ∈ β̂j, and this point x̂ is contained in (A(x) · α̂i) ∩ β̂j.

More generally, suppose that β̃j is an arbitrary lift of βj and that x ∈ αi ∩ βj and

x′ ∈ αi′ ∩ βj. Let x̃ and x̃′ be the lifts of x and x′ which lie on β̃j. If we choose h and

h′ so that x̃ ∈ (h · α̂i) ∩ β̃j and x̃′ ∈ (h′ · α̂i′) ∩ β̃j, then it is easy to see that

h− h′ = A(x)− A(x′).

Now suppose we are given generators x = {x1, . . . , xd} and y = {y1, . . . , yd} in
Tα ∩ Tβ. To compute the difference x− y, we choose a 1–cycle θ which runs from x
to y along the α curves and a 1–cycle η which runs from x to y along the β curves.
Let δ be one component of the closed 1–cycle θ − η. After relabeling the α’s, β’s,
x’s and y’s, we may assume that x1 ∈ δ, and that if we traverse δ starting at x1, we
successively encounter α1, y1, β1, x2, α2, . . . , αr, yr and βr before returning to x1.

Let δ̃ be the lift of δ to M̂ which starts at x̂1. As we traverse δ̃, we successively
encounter α̃1, ỹ1, β̃1, x̃2, α̃2, . . . , α̃r, ỹr before arriving at the endpoint x̃r+1 = [δ] · x̂1.
Here α̃i denotes some lift of αi, etc. Let us write α̃i = hi · α̂i. To compute the
difference hi+1 − hi, we observe that ỹi (which lies on α̃i) and x̃i+1 (which lies on

α̃i+1) both lie on β̃i. It follows that

hi+1 − hi = A(xi+1)− A(yi).

We now compute

[δ] = hr+1 − h1

=
r∑

i=1

(hi+1 − hi)

=
r∑

i=1

(A(xi+1)− A(yi))

=
r∑

i=1

(A(xi)− A(yi)) ,
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since x̃r+1 is a lift of x1. A similar relation holds for each component of θ−η. Adding
them all together, we find that

x− y = [θ − η] =
n∑

i=1

(A(xi)− A(yi)) = A(x)− A(y).

¤

This completes the proof of Proposition 4.2. ¤

4.4. Spinc structures. Our next step is to show that χ(SFH(M,γ, s)) = ±T(M,γ)(s)
for every s ∈ Spinc(M,γ). To see this, fix a single generator x = {x1, . . . , xd} ∈ Tα∩Tβ

and consider the associated lift l(x) = E−1
Z (e(x)) ∈ Lift(Z). We will show that the

term in

det ϕ

(
∂βj

∂α∗i

)

corresponding to x contributes to T(M,γ)(s(x)), or equivalently, that it contributes ±1
to the torsion τ(M,γ, l(x)). It will then follow from Proposition 4.2 that the same
relation holds for every generator y ∈ Tα ∩ Tβ.

Without loss of generality, we may assume xi ∈ αi ∩ βi. Consider the matrix

Fij = ϕ

(
∂βj

∂α∗i

)

of Fox derivatives. Fix lifts Ã∗
i of the 1-handles to the universal abelian cover. Then

after an appropriate normalization (multiplying each column in the matrix by a unit
in Z[H1(M)]), the column vector

(
ϕ

(
∂βj

∂α∗1

)
, . . . , ϕ

(
∂βj

∂α∗d

))T

expresses the boundary of a lift B̃j of the two-handle Bj in terms of the lifts Ã∗
i . It is

well-defined up to multiplication by a unit in Z[H1(M)], corresponding to changing
the lift B̃j. Let us choose the B̃j such that the monomial in Fii which corresponds to
xi is ±1.

The lifts Ã∗
i and B̃j determine an element l ∈ Lift(Z). We claim that l = l(x). To

see this, we construct an Euler chain for l. We fix a point p̂ ∈ M̂ , and choose paths θ1
i

from p̂ to the center of Ã∗
i . Next, we should choose paths θ2

j from p̂ to the centers of

the 2-cells B̃j. Now the basis B̃j was chosen so that the lift x̃i of xi which lies in Ã∗
i

is also contained in B̃j. Thus there is a path θi from the center of Ã∗
i to the center of

B̃i passing through x̃i which is contained in Ã∗
i ∪ B̃i. We let θ2

i be the join of θi with
θ1

i . Then the Euler chain associated to l is
∑

(θ2
i − θ1

i ) =
∑

θi. By Remark 3.15, this
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is exactly the Euler chain which determines the lift l(x). Applying Proposition 4.1,
we see that

τ(M,γ, l(x)) = ± det ϕ

(
∂βj

∂α∗i

)
,

and the monomial A(x) contributes to τ(M, γ, l(x)) with coefficient ±1. In other
words, it is assigned to the Spinc structure s(x).

4.5. Homology orientations. To complete the proof of Theorem 1, it remains to
check that if we fix a homology orientation ω for H∗(M, R−(γ);R), then we have
χ(SFH(M,γ, s, ω)) = T(M,γ,ω)(s). By Proposition 4.1, we know that the torsion is
given by

τ(M, γ, l, ω) = (−1)b1(M,R−) det

(
ϕ

(
∂βj

∂α∗i

))
.

On the other hand, by Definition 2.6, ω determines an orientation on Λd(A)⊗Λd(B).
By Lemma 2.8, with respect to this orientation, the local intersection sign Tα ∩ Tβ

at a generator x is

sign(σ) ·
d∏

i=1

m(xi).

This is the sign of the term in the determinant corresponding to x. Finally, we recall
(Definition 2.9) that the Z/2 grading induced by ω on the sutured Floer homology was
defined to be (−1)b1(M,R−) times the intersection sign in the symmetric product. ¤

5. The torsion function via Fox calculus

In this section, we explain how to compute T(M,γ) using Fox calculus. We assume
throughout that (M, γ) is balanced and that the subsurfaces R±(γ) are connected.
In light of Lemma 3.20, this restriction is a very mild one. For brevity, we write R±
for R±(γ) and H for H1(M).

Suppose we are given a basepoint p ∈ R− and a presentation

π1(M, p) ∼= 〈a1, . . . , am | b1, . . . , bn〉.
We say that the presentation is geometrically balanced if m−n = g(∂M). For example,
any presentation coming from a handle decomposition of M is geometrically balanced.

We now consider the map ι∗ : π1(R−, p) → π1(M, p) induced by the embedding
ι : R− → M. Since R− is connected and has nonempty boundary, π1(R−, p) is free.
Choose elements d1, . . . , dl which freely generate π1(R−, p), and let ek = ι∗(dk) be
their images in π1(M, p) for 1 ≤ k ≤ l. Expressing each ek as a word in the ai, we
have the Fox derivatives ∂ek

∂ai
∈ Z[π1(M)]. Denote by ϕ : Z[π1(M)] → Z[H1(M)] the

homomorphism induced by abelianization. Then we can form the matrix

A =

(
ϕ

(
∂bj

∂ai

)
ϕ

(
∂ek

∂ai

))
.
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If our presentation of π1(M, p) and the sutured manifold (M, γ) are both balanced,
then 1− l = χ(R−) = 1−g(∂M) = 1−m+n, so m = n+ l, and A is a square matrix.
The main result of this section is the following proposition.

Proposition 5.1. Let (M, γ) be a balanced sutured manifold such that M is irre-
ducible. If A is a square matrix, then

τ(M, γ) = det(A)

up to multiplication by an element in ±H.

Remark 5.2. The above proposition was already proved by Goda and Sakasai in
[GS08, Proposition 4.6] when (M,γ) is a homology cylinder. Recall that a sutured
manifold (M,γ) is called a homology cylinder (or homology product) if the map
H∗(R−) → H∗(M) is an isomorphism, and a rational homology cylinder (or rational
homology product) if the map H∗(R−;Q) → H∗(M ;Q) is an isomorphism.

Proof. If M = D3, then the proposition is obviously true. Otherwise, since M is
irreducible, no component of ∂M can be homeomorphic to S2, thus b1(M) > 0.

As in Section 4.1, pick a nice handle decomposition Z for (M,γ), and another
handle decomposition for R−. Again, denote by c∗1, . . . , c

∗
l the corresponding curves in

R− based at a point p. Let Y be the 1–complex given by the 0–cell p and the 1–cells
c∗1, . . . , c

∗
l . Let X be the 2–complex given by collapsing the handles of Z to cells. Note

that X is homotopy equivalent to M and that Y is a subcomplex of X. Furthermore,
τ(X, Y ) = τ(M,γ), cf. Remark 3.11.

Now let Π = 〈a1, . . . , am | b1, . . . , bn〉 be a geometrically balanced presentation of
π1(M, p), and let d1, . . . , dl be any basis for the free group π1(R−). A classical theorem
of Nielsen in [Ni24] on automorphisms of free groups implies that any two bases
〈e1, . . . , el〉 and 〈f1, . . . , fl〉 of a free group π1(R−) are related by a sequence of the
following moves. We either 1) replace ek by (ek)

−1 or 2) replace ek by ekek′ for some
k 6= k′. Move 1) simply multiplies the n + k-th column of A by −ϕ(e−1

k ), while move
2) adds ϕ(ek) times the n + k′-th column to the n + k-th column. In both cases, the
determinant of A changes only by multiplication by an element of ±[H]. Thus we
may assume that dk = [c∗k] for k = 1, . . . , l.

Let D be the 2–complex with one 0–cell p and 1–cells A1, . . . , Am corresponding to
a1, . . . , am, finally 2–cells B1, . . . , Bn glued along b1, . . . , bn, respectively. We denote by
X ′ the 2–complex obtained from D by adding extra 1–cells C∗

1 , . . . , C
∗
l corresponding

to c∗1, . . . , c
∗
l , and by adding 2–cells W1, . . . ,Wl such that ∂Wi is glued along e∗([c∗i ]) ·

(C∗
i )−1. Note that X ′ is a 2–complex that is simple homotopy equivalent to D. We

can and will view Y as a subcomplex of X ′.
We have an obvious isomorphism ψ : π1(X

′) → π1(X) which induces the identity
on π1(Y ), viewed as a subgroup of both π1(X

′) and π1(X). Since M is irreducible
and π1(M) is infinite, M , and hence X, are aspherical. It follows that there exists a
map f : X ′ → X with f∗ = ψ and such that f |Y = idY .
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Claim. The map f : X ′ → X induces an isomorphism H2(X
′) → H2(X).

Let F be the homotopy fiber corresponding to the map f : X ′ → X. Note that
π1(F ) = 0, since f∗ : π1(X

′) → π1(X) is an isomorphism and π2(X) = 0. It follows
that H1(F ) = 0. Now consider the Leray-Serre spectral sequence corresponding to
the fibration F → X ′ → X: We have a spectral sequence with E2

p,q = Hp(X; Hq(F ))
where the degree of the n-th boundary map dn equals (n, 1 − n) which converges to
H∗(X ′). Note that E2

p,q = 0 for p > 2 since X is a 2–complex, and we also have

E2
p,1 = 0 since H1(F ) = 0. It follows that there is a short exact sequence

0 → H0(X; H2(F )) → H2(X
′) → H2(X) → 0,

it is well-known that the right hand map is the canonical map induced by the pro-
jection. In particular, the map H2(X

′) → H2(X) is surjective. Since X and X ′

are 2–complexes, both H2(X) and H2(X
′) are free abelian groups. We also have

Hi(X
′) ∼= Hi(X) for i = 0, 1, and

χ(X ′) = 1− (m + l) + n + l = 1−m + n = χ(R−) = χ(M) = χ(X).

Hence the map H2(X
′) → H2(X) is an epimorphism between torsion free abelian

groups of the same rank, so it is an isomorphism.

Claim. The map f : X ′ → X induces a homotopy equivalence of pairs (X ′, Y ) →
(X, Y ).

First note that f∗ : π1(X
′) → π1(X) is an isomorphism. We write π = π1(X) and

identify π1(X
′) with π via f∗. Recall that πi(X) = 0 for i > 1 since X is aspherical.

By the Hurewicz theorem this implies that Hi(X;Z[π]) = 0 for i > 1, so it suffices to
show that Hi(X

′;Z[π]) = 0 for all i > 1.
Let U be the mapping cylinder of f : X ′ → X. Then U is a 3–complex which is ho-

motopy equivalent to X and contains X ′. We can identify π with π1(U). From the long
exact sequence of the pair (U,X ′) we now obtain that H2(X

′;Z[π]) ∼= H3(U,X ′;Z[π]).
So it remains to show that H3(U,X ′;Z[π]) = 0.

By the previous claim, the map f∗ : H2(X
′) → H2(U) = H2(X) is an isomor-

phism. It follows that H3(U,X ′) = 0. In particular, the map of free Z[π]–modules
C3(U,X ′;Z[π]) → C2(U,X ′;Z[π]) becomes injective after tensoring over Z[π] with Z.
On the other hand, by [Ho82, Corollary 6.2] the group π is locally indicable. Ac-
cording to [HS83, Theorem 1], this implies that C3(U,X ′;Z[π]) → C2(U,X ′;Z[π]) is
injective, and in particular H3(U,X ′;Z[π]) is trivial. This concludes the proof of the
claim.

By hypothesis, M is irreducible and b1(M) > 0, so M is Haken. By a theorem of
Waldhausen [Wa78, Theorem 5], the Whitehead group of π = π1(M) vanishes. Thus
the map f : (X ′, Y ) → (X, Y ) is a simple homotopy equivalence, and the maximal
abelian torsions of (X ′, Y ) and (X, Y ) agree. We have now shown that

τ(M, γ) = τ(X, Y ) = τ(X ′, Y ).
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The following claim therefore concludes the proof of the proposition.

Claim. We have τ(X ′, Y ) = det(A).

As before, we pick lifts of the cells in (X ′, Y ) to the universal abelian cover. These
lifts are, as usual, decorated by a ‘hat’. Consider the following diagram of free Z[H]–
modules.

0 → C2(X
′;Z[H]) → C2(X

′, Y ;Z[H]) → 0

B̂1, . . . , B̂n B̂1, . . . , B̂n

Ŵ1, . . . , Ŵl Ŵ1, . . . , Ŵl

↓ ↓ ↓
0 → C1(Y ;Z[H]) → C1(X

′;Z[H]) → C1(X
′, Y ;Z[H]) → 0

Ĉ∗
1 , . . . , Ĉ

∗
l → Â∗

1, . . . , Â
∗
m

Ĉ∗
1 , . . . , Ĉ

∗
l

Â∗
1, . . . , Â

∗
m

↓ ↓ ↓
0 → C0(Y ;Z[H]) → C0(X

′;Z[H]) → 0.
p̂ p̂

Fox calculus tells us that the boundary map C2(X
′;Z[H]) → C1(X

′;Z[H]) is given
by (

ϕ
(

∂bj

∂ai

)
ϕ

(
∂e∗([c∗j ])

∂ai

)

0 ∗

)
.

Thus A is the matrix of the boundary map C2(X
′, Y ;Z[H]) → C1(X

′, Y ;Z[H]), and
the claim follows. ¤

6. Algebraic properties of the torsion

In this section, we collect some algebraic properties of the torsion function and
their consequences. We begin by describing some known examples which appear as
special cases of the torsion for sutured manifolds. We then turn our attention to
the “evaluation homomorphism” H1(M) → H1(M,R−(γ)) and prove Proposition 5
from the introduction. Finally, we discuss sutured L-spaces and give the proof of
Corollary 6.

6.1. Special Cases of the Torsion. In this section, we summarize some useful
special cases of the torsion. These are all “decategorifications” of known facts about
sutured Floer homology, although in many cases they admit more elementary proofs
as well.

Lemma 6.1. Let (M,γ) be a product sutured manifold. Denote by s0 the canon-
ical vertical Spinc–structure of (M,γ) and take ω to be the positive orientation of
H∗(M, R−(γ);R) = 0. Then

T(M,γ,ω)(s) =

{
1, if s = s0,
0, if s 6= s0.
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This decategorifies the fact that SFH(M, γ, s) is isomorphic to Z if s = s0 and is
trivial otherwise [Ju06].

Proof. Let Z be the handle decomposition of (M, γ) with underlying sutured handle
complex (A, S × I) such that S = R−(γ) and A = S × I. Then s−1

Z (s0) ∈ Eul(Z) can
be represented by the 1-cycle θ = ∅. Since there are no handles, we have a canonical
identification between Eul(Z) and H1(M), and by the definitions of Subsection 3.3,
in this case τ(Z, h, ω) = h for every h ∈ Eul(Z) ∼= H1(M). The result follows. ¤

Lemma 6.2. Let Y be a closed 3–manifold and let Y (1) be the balanced sutured
manifold defined in Example 2.2. Then for every s ∈ Spinc(Y (1)) we have

TY (1)(s) =

{
1 if b1(Y ) = 0,
0 if b1(Y ) > 0.

Proof. Since R−(γ) = D2, the map p∗ : H1(M) → H1(M, R−(γ)) is an isomorphism.
So the result follows immediately from Proposition 5. ¤

This also follows from the isomorphism SFH(Y (1)) ∼= ĤF (Y ) from [Ju06], together

with the corresponding calculation of χ(ĤF (Y, s)) in [OS04a].
Let L ⊂ S3 be an ordered oriented k–component link. Let S3(L) be the correspond-

ing balanced sutured manifold as defined in Example 2.3. Then H = H1(S
3 \N(L))

is the free abelian multiplicative group generated by t1, . . . , tk, where tk is represented
by the meridian of the k-th component of L.

Lemma 6.3. If L ⊂ S3 is a k-component link, then given s ∈ Spinc(S3(L)), we have

τ(S3(L)) =
∑

h∈H

TS3(L)(h + s) · h ∼
{

∆L(t1) if k = 1

∆L(t1, . . . , tk) ·
∏k

i=1(ti − 1) if k ≥ 2.

Proof. Let Q = Q(t1, . . . , tk). Note that we have a short exact sequence of chain
complexes

0 → C∗(R−(γ); Q) → C∗(S3 \N(L); Q) → C∗(S3 \N(L), R−(γ); Q) → 0.

From the multiplicativity of torsion (cf. [Tu01, Theorem 1.5]) it follows that

τ(S3 \N(L), R−(γ); Q) = τ(S3 \N(L); Q) · τ(R−(γ); Q)−1.

For i = 1, . . . , k, we denote by Ri the component of R−(γ) corresponding to the i-
th component of the link L. It follows easily from the definition of the torsion that
τ(Ri; Q) = (ti − 1)−1. We therefore deduce that

τ(S3 \N(L), R−(γ); Q) = τ(S3 \N(L); Q) · τ(R−(γ); Q)−1 =

= τ(S3 \N(L); Q) ·
k∏

i=1

τ(Ri; Q)−1 = τ(S3 \N(L); Q) ·
k∏

i=1

(ti − 1).
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The lemma now follows from the following relation between the torsion and the
Alexander polynomial (cf. [Tu01, Theorem 11.8]):

τ(S3 \N(L); Q) =

{
∆L(t1)(t1 − 1)−1, if k = 1
∆L(t1, . . . , tk), if k ≥ 2.

¤
The following lemma can be viewed as the decategorification of [Ju08, Theorem 1.5].

Lemma 6.4. Let K ⊂ S3 be a knot and let R be a genus minimizing Seifert surface
for K. Then ∑

s∈Spinc(S3(R))

TY (R)(s)

is equal to the coefficient of tg(R) in the symmetrized Alexander polynomial of K.

Proof. Recall that there exists a Mayer–Vietoris sequence

H1(R)⊗ Z[t±1]
A−−tA+−−−−−→ H1(S

3 \N(R))⊗ Z[t±1] → H1(S
3 \N(K);Z[t±1]) → 0.

Here we endow H1(R) with any basis and H1(S
3 \N(R)) with the dual basis. Then

the symmetrized Alexander polynomial of K equals

p(t) = det(A− − tA+)t−g(R).

The coefficient of tg(R) in p(t) is

det(A+) = |H1(S
3 \N(R), R−(γ))| = |H1(S

3(R), R−(γ))|,
where we write |G| = 0 if G is infinite. With this convention, ε(IG) = |G| for any
group G, where ε : Z[G] → Z is the augmentation map. The lemma now follows
immediately from Lemma 6.3 and Proposition 5. ¤

6.2. Evaluation. In this section, we study the behavior of the torsion under the
natural map p : H1(M) → H1(M,R−(γ)). We prove the following statement, which
is clearly equivalent to Proposition 5 of the introduction.

Proposition 6.5. If (M, γ) is a balanced sutured manifold, then

p∗(τ(M, γ)) = ±IH1(M,R−(γ)),

where IG ∈ Z[G] is the sum of all elements in G if G is finite, and is 0 otherwise.

Equivalently, if K = PD[ker p∗] ⊂ H2(M,∂M), then there is an ε ∈ {−1, 1} such
that for every s ∈ Spinc(M,γ)

∑

h∈K

T(M,γ)(s + h) =

{
ε if H1(M,R−(γ)) is finite,
0 otherwise.

This result generalizes the fact that ∆K(1) = ±1 whenever K ⊂ Y is a knot
in a homology sphere. Indeed, if we take (M, γ) to be the manifold Y (K) from
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Example 2.3, then H1(M,R−(γ)) = 0, and p∗ induces the map Z[t±1] → Z which is
evaluation at t = 1. We also refer to [Tu02, Corollary II 5.2.1], where it is shown
that for a null-homologous knot K in a rational homology sphere Y we have ∆K(1) =
±|H1(Y )|.
Proof. By adding product 1-handles, we reduce to the case where R−(γ) is con-
nected. Indeed, if (M ′, γ′) is obtained from (M, γ) by adding a product 1-handle,
then H1(M

′, R−(γ′)) ∼= H1(M, R−(γ)), and the diagram

H1(M)
p∗−−−→ H1(M, R−(γ))

i∗

y
y∼=

H1(M
′)

p′∗−−−→ H1(M
′, R−(γ′))

commutes. Applying Lemma 3.20, we see that if we know that p′∗(τ(M ′, γ′)) =
IH1(M ′,R−(γ′)), then p∗(τ(M, γ)) = IH1(M,R−(γ)) as well.

From now on, we assume that R− = R−(γ) is connected. Denote the group
H1(M, R−) by G. Let ψ : π1(M) → G be the composition of p∗ with the abelianiza-

tion map, and consider the connected covering map π : M̃ → M corresponding to
the kernel of ψ. We write R̃− = π−1(R−). Let τ be the maximal abelian torsion of

C∗(M̃, R̃−), viewed as a module over Z[G]. Then

C∗(M̃, R̃−) ∼= C∗(M̂, R̂−)⊗Z[H1(M)] Z[G].

It now follows immediately from the proof of Lemma 3.6 that τ = p∗(τ(M,γ)). Thus
it suffices to show that τ = IG.

As in Subsection 3.4, let T ⊂ G be the torsion subgroup, and pick a splitting
G = F × T , where F is a free abelian group. Under the isomorphism

Q[T ] ∼=
⊕

i

Fχi

IT maps to the element whose Fχi
component is 0 for all non–trivial χi and whose

component in Fχid
∼= Q is |T |. (Here χid denotes the trivial character.) To show

that τ is a multiple of IG, it suffices to show that the torsion τϕi(M, R−) vanishes
whenever either the group F or the character χi is nontrivial. Equivalently, we must

prove that the complex C∗(M̃, R̃−)⊗Q(Fχi
[F ]) has nontrivial homology.

To this end, we consider the groups H0(M̃) and H0(R̃−). By construction H0(M̃) =
Z. Recall (see [HS97, Section VI.3]) that

H0(M,Q(Fχi
[F ])) = Q(Fχi

[F ])/{gv − v | g ∈ π1(M), v ∈ Q(Fχi
[F ])}.

It follows that H0(M,Q(Fχi
[F ])) = 0 if and only if the π1(M) action on the field

Q(Fχi
[F ]) is non-trivial. We thus see that H0(M,Q(Fχi

[F ])) = 0 unless F = 0 and
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χi is the trivial character. On the other hand, if e∗ : π1(R−) → π1(M) is the map
induced by the embedding e, then ψ ◦ e∗ factors as a composition

π1(R−) → H1(R−) → H1(M) → H1(M,R−)

and is therefore the zero map. It follows that π : R̃− → R− is a trivial covering. We as-

sumed R− is connected, so p∗ is a surjection and the deck group of M̃ is isomorphic to

G. Thus H0(R̃−) ∼= Z[G], from which it follows that H0(R−, Q(Fχi
[F ])) ∼= Q(Fχi

[F ])
for any character χi.

We now consider the long exact sequence of the pair (M̃, R̃−):

→ H1(M, R−; Q(Fχi
[F ])) → H0(R−; Q(Fχi

[F ])) → H0(M ; Q(Fχi
[F ])) →

The middle group in this sequence has rank 1, but the last group is trivial unless
F = 0 and χi = 1. It follows that H1(M, R−; Q(Fχi

[F ])) is nontrivial unless F = 0
and χi is trivial.

To finish the proof, we need only compute the torsion τϕid(M,R−) when F = 0
and ϕid is the homomorphism induced by the trivial character. But in this case

C∗(M̃, R̃−) ⊗ Q(Fχid
[F ]) reduces to the ordinary chain complex C∗(M, R−;Q). This

complex is trivial for i 6= 1, 2, so the torsion is det(d), where d : C2(M, R−) →
C1(M,R−) is the boundary map. In other words, τϕid(M, R−) = ±|H1(M, R−)| =
±|G| as desired. ¤

6.3. Sutured L-spaces. From the introduction, we recall the following definition.

Definition. We say that (M, γ) is a sutured L-space if SFH(M,γ) is torsion free and
supported in a single Z/2 homological grading.

For sutured L–spaces, the sutured Floer homology is determined by its Euler char-
acteristic; i.e., by the torsion function. In fact, the sutured Floer homology of a
sutured L-space has an especially simple form.

Corollary 6.6. If (M,γ) is a sutured L-space, then for each s ∈ Spinc(M, γ) the
group SFH(M,γ, s) is either trivial or isomorphic to Z.

Proof. Since SFH is supported in a single homological grading, T(M,γ)(s) is equal to
the rank of SFH(M, γ, s). Then Proposition 5 shows that

∑

h∈K

rank SFH(M, γ, s + h) ≤ 1.

This clearly implies the statement above. ¤

Lemma 6.7. Suppose that (M, γ) is a balanced sutured manifold and that S ⊂ M is
a nice decomposing surface (cf. [Ju10, Definition 3.22]). Let (M ′, γ′) be the result of
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decomposing (M, γ) along S. Furthermore, let OS be the set of outer Spinc structures
for S, as defined in [Ju08, Definition 1.1]. If⊕

s∈OS

SFH(M,γ, s)

is torsion free and supported in a single Z/2 grading, then (M ′, γ′) is a sutured L-
space.

Proof. By the decomposition formula [Ju08, Theorem 1.3],

SFH(M ′, γ′) ∼=
⊕
s∈OS

SFH(M,γ, s).

The proof there also gives that SFH(M ′, γ′) is supported in a single Z/2 grading. ¤
Corollary 6.8. If (M,γ) is a sutured L-space and (M ′, γ′) is obtained by decomposing
(M, γ) along a nice surface, then (M ′, γ′) is also a sutured L-space.

Corollary 6.9. Suppose that R is a minimal genus Seifert surface of an oriented

k-component link L ⊂ S3. If ĤFK(L, g(R) + k − 1) is torsion free and supported in
one Z/2 grading, then S3(R) is a sutured L-space.

Remark 6.10. Here we require from any Seifert surface that it intersects a meridian
of each component of L geometrically once.

Proof. The sutured manifold S3(R) is obtained by decomposing S3(L) along R. By

[Ju06, Proposition 9.2], there is an isomorphism SFH(S3(L)) ∼= ĤFK(L). As shown
in [Ju08, Theorem 8.4], the part corresponding to the outer Spinc structures with

respect to R is exactly ĤFK(L, g(R) + k − 1). ¤
Corollary 6.11. If L ⊂ S3 is a non-split alternating link and R is a minimal genus
Seifert surface of L, then S3(R) is a sutured L-space.

Proof. The main theorem of [OS03] implies that ĤFK(L, g(R)+k−1) is torsion free
and supported in a single homological grading, so the result follows from Corollary 6.9.

¤
We remark that there are many non-alternating links which also satisfy the hypothesis
of Corollary 6.9. For example, it is satisfied by all knots of ten or fewer crossings and
it is satisfied by the class of quasi-alternating knots (we refer to [OS05] and [MO08]
for definitions and proofs).

7. The Thurston norm for sutured manifolds

Let (M,γ) be a sutured manifold. In [Sc89], Scharlemann introduced a natural
seminorm on H2(M, ∂M ;R) which generalizes the usual Thurston norm of [Th86].
In this section, we investigate the relation between this norm and the sutured Floer
homology.
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Definition 7.1. Let (M,γ) be a sutured manifold. Given a properly embedded,
compact, connected surface S ⊂ M, let

xs(S) = max{0, χ(S ∩R−(γ))− χ(S)},
and extend this definition to disconnected surfaces by taking the sum over the compo-
nents. Note that S∩R−(γ) is necessarily a one–dimensional manifold and χ(S∩R−(γ))
equals the number of components of S ∩ R−(γ) which are not closed. Equivalently,
we have

xs(S) = max

{
0,−χ(S) +

1

2
|S ∩ s(γ)|

}
.

For α ∈ H2(M, ∂M), let

xs(α) = min{xs(S) : S ⊂ M is properly embedded and [S, ∂S] = α}.
Theorem 7.2. [Sc89] Let (M, γ) be a sutured manifold. Then the function

xs : H2(M, ∂M) → Z≥0

defined above has the following two properties:

(1) xs(nα) = |n| · xs(α) for all n ∈ Z and α ∈ H2(M, ∂M),
(2) xs(α + β) ≤ xs(α) + xs(β) for all α, β ∈ H2(M, ∂M).

It follows that xs extends to a continuous map xs : H2(M,∂M ;R) → R≥0 which
is convex and linear on rays from the origin. Put differently, xs is a seminorm on
H2(M, ∂M ;R). It is called the sutured Thurston norm.

Example. Let Y be a closed 3–manifold and let (M,γ) = Y (1) be Y with an open
ball removed and having a connected suture. Then we can identify H2(Y ;R) with
H2(Y (1), ∂Y (1);R). It is straightforward to see that under this identification the
Thurston norms of Y and Y (1) agree.

Example. Let K ⊂ S3 be a knot and let (M,γ) = S3(K) be the associated sutured
manifold with two meridional sutures. If α ∈ H2(M,∂M) is a generator, then xs(α) =
2g(K). Note that this differs from the usual Thurston norm x of M , which satisfies
x(α) = 2g(K)− 1 for a non-trivial knot.

The previous example is in fact a special case of the following elementary lemma.

Lemma 7.3. Let Y be a closed 3–manifold and let L ⊂ Y be an l–component link with
meridians µ1, . . . , µl. Suppose that L has no trivial components. Let Y (L) = (M,γ)
be the corresponding sutured manifold. Given h ∈ H2(M,∂M), we have

xs(h) = x(h) +
l∑

i=1

|〈h, µi 〉|,

where x(h) denotes the ordinary Thurston norm on H2(M, ∂M).
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The following proposition should be compared with [Ju10, Theorem 6.1] and [Ju10,
Proposition 8.5]. For all the necessary definitions also see [Ju10].

Proposition 7.4. Suppose that the taut balanced sutured manifold (M,γ) is reduced,
horizontally prime, and H2(M) = 0. Then xs is a norm.

Proof. Assume there exists an α 6= 0 in H2(M, ∂M) with xs(α) = 0. This implies
that there exists a connected homologically non-trivial orientable surface (S, ∂S) ⊂
(M, ∂M) with xs(S) = 0. Hence

−χ(S) ≤ −χ(S) + χ(S ∩R−(γ)) ≤ 0.

So χ(S) ≥ 0 and S is either S2, T 2, D2, or S1 × I. Since [S, ∂S] 6= 0 and H2(M) = 0,
the surface S is not S2 or T 2. Furthermore, we can assume that S ∩ γ consists of arcs
connecting R−(γ) and R+(γ).

Now suppose that S = D2. Then χ(S ∩ R−(γ)) is 0 or 1. In the latter case S
would be a homologically non-trivial product disc, contradicting the assumption that
(M, γ) is reduced. In the former case S is a compressing disk for R(γ). Since (M,γ)
is taut, R(γ) is incompressible, so ∂S bounds a disk S ′ in R(γ). Now S ∪ (−S ′) is
a sphere, which has to bound a D3 since M is irreducible. But then [S, ∂S] = 0, a
contradiction.

Finally, assume that S is an annulus. Then χ(S ∩ R−(γ)) = 0. Since (M, γ) is
reduced, we know that S can not be a product annulus. So suppose that ∂S ⊂ R,
where R is either R−(γ) or R+(γ). Pick a product neighborhood S × [0, 1] and let

R′ = R \ (∂S × (0, 1)) ∪ (S × 0) ∪ (S × 1).

Then R′ is homologous to R, ∂R′ = ∂R, and χ(R′) = χ(R). Hence R′ is a horizontal
surface. Note that R′ is not parallel to R. If R′ were parallel to R(γ) \ R, then
∂S × [0, 1] would give rise to a non-trivial product annulus. So the existence of R′

would contradict our assumption that (M,γ) is horizontally prime. ¤
Definition 7.5. Let S(M, γ) = {s ∈ Spinc(M,γ) : SFH(M, γ, s) 6= 0} be the sup-
port of SFH(M, γ). If α ∈ H2(M, ∂M ;R), we define

z(α) = max{〈 s− t, α 〉 : s, t ∈ S(M, γ)}.
Remark 7.6. In [Ju10, Section 8] another “seminorm” y on H2(M,∂M ;R) was
constructed using sutured Floer homology. The function y satisfies all properties of
a seminorm except that y(α) 6= y(−α) can happen. It is straightforward to see that

z(α) =
1

2
(y(α) + y(−α)).

The following proposition proves the second statement of Theorem 4.

Proposition 7.7. Let (M,γ) be an irreducible balanced sutured manifold such that
all boundary components of M are tori. Then z = xs.
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Proof. First note that by standard arguments it suffices to show the equality of norms
for integral classes.

Now assume that each component of ∂M has exactly two sutures. Observe that
we can assign to (M, γ) a link L in a 3-manifold Y which is obtained by Dehn filling
∂M such that the µi become meridians of the filling tori, see [Ju06, Example 2.4].
Then by [Ju08, Remark 8.5] we can assign to each s ∈ Spinc(M, γ) a relative first
Chern class c1(s) ∈ H2(M, ∂M) in such a way that the set {c1(s) : s ∈ S(M, γ)} is
symmetric about the origin. Then by [Ju08, Remark 8.5] for every h ∈ H2(M, ∂M)

max{〈 c1(s), h 〉 : s ∈ S(M,γ) } = x(h) +
l∑

i=1

|〈h, µi 〉|.

Since the image of S(M, γ) is centrally symmetric, this is equivalent to saying

max{〈 s− t, h 〉 : s, t ∈ S(M,γ) } = x(h) +
l∑

i=1

|〈h, µi 〉|.

Note that the left hand side is just z(h). If L is not the unknot, then L does not have
trivial components since M is irreducible. So by Lemma 7.3, the right hand side is
exactly xs(h). The proposition is obviously true if L is the unknot.

Now consider the general case when each component of ∂M has at least two sutures.
We can reduce this case to the case treated above using [Ju10, Proposition 9.2]. ¤
Remark 7.8. Link Floer homology of a link L ⊂ S3 was defined in [OS08a]. It
agrees with the sutured Floer homology of the sutured manifold S3(L) introduced in
Example 2.3. In [OS08b] it is shown that if L has no trivial components, then the
link Floer homology of L determines the Thurston norm of the link complement. In
light of the above theorem it is perhaps a better point of view to observe that twice
the link Floer polytope equals the dual of the sutured Thurston polytope of S3(L),
which then determines the ordinary Thurston polytope of S3(L) via Lemma 7.3.

The following theorem is exactly the first part of Theorem 4.

Theorem 7.9. Let (M, γ) be an irreducible balanced sutured manifold. Then z ≤ xs.

We will later see in Proposition 7.16 that the inequality of Theorem 7.9 is strict in
general.

In order to prove Theorem 7.9, we consider the double of the sutured manifold
(M, γ) along R(γ). More precisely, the double DM of (M,γ) is obtained from the
disjoint union of M and −M by identifying the two copies of R(γ) via the identity
map. The boundary of DM is a union of tori; each torus is the double of a component
of γ. In the context of sutured manifolds this operation was first used by Gabai [Ga83].

A theorem of Cantwell and Conlon relates the sutured Thurston norm on (M, γ) to
the Thurston norm of the double. To be precise, suppose (M,γ) is a sutured manifold,
and let X = DM be the double of M along R(γ). There is a natural “doubling
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map” D∗ : H2(M, ∂M ;R) → H2(X, ∂X;R). Note that the doubling map takes the
homology class represented by a surface (S, ∂S) ⊂ (M, ∂M) to the homology class
represented by its double. In particular, we immediately see that x(D∗(α)) ≤ 2xs(α).
The following theorem shows that in fact equality holds.

Theorem 7.10. [CC06, Theorem 2.3] We have x(D∗(α)) = 2xs(α).

Here x denotes the usual Thurston norm on H2(X, ∂X;R) and xs is the sutured
Thurston norm on H2(M, ∂M ;R).

Definition 7.11. We make X = DM into a sutured manifold (X, γX) in the following
canonical way. Let the components of γ be γ1, . . . , γl. For each component γi of γ
choose two parallel, oppositely oriented arcs mi and m′

i that connect R+(γ) and
R−(γ). Then on the torus Dγi ⊂ ∂X the sutures are µi = mi ∪ (−mi) and µ′i = m′

i ∪
(−m′

i). These sutures are well defined up to isotopy. Let γX be a regular neighborhood

of
⋃l

i=1(µi ∪ µ′i) inside ∂X.

Lemma 7.12. Let (M,γ) be an irreducible balanced sutured manifold and let (X, γX)
be its double. Then for all α ∈ H2(M, ∂M ;R), we have

2xs(α) = max{〈 s− t, D∗(α) 〉 : s, t ∈ S(X, γX)}.
Proof. First note that by standard arguments it suffices to show the equality when α
is an integral class.

Since X is irreducible and has only toroidal boundary components, by Proposi-
tion 7.7 we have

max{〈 s− t, h 〉 : s, t ∈ S(X, γX) } = xs(h)

for any h ∈ H2(X, ∂X).
We claim that if h = D∗(α) for some α ∈ H2(M,∂M), then 〈h, µi 〉 = 0 for every

1 ≤ i ≤ l. To see this, choose a surface S representing α. We may assume that S ∩ γi

consists of a collection of parallel arcs. If we take mi and m′
i parallel to these arcs,

then ∂S ∩ µi and ∂S ∩ µ′i are empty. Consequently, xs(h) = x(h). Combining this
with the fact from Theorem 7.10 that x(h) = 2xs(α), we obtain the statement of the
lemma. ¤

The surface R(γ) defines an oriented surface R ⊂ X. Note that R has the orienta-
tion coming from R(γ), not the induced orientation coming from ∂M . In particular,
the homology class represented by R is twice the class of R−(γ). It is easy to see that
R is a nice decomposing surface for (X, γX) in the sense of [Ju10, Definition 3.22].
Let OR ⊂ Spinc(X, γX) be the set of outer Spinc structures for R.

Lemma 7.13. Let (M, γ) be a taut balanced sutured manifold. Then for all α ∈
H2(M, ∂M ;R), we have

2z(α) = max { 〈 s− t, D∗(α) 〉 : s, t ∈ OR ∩ S(X, γX) } .
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Proof. First note that by standard arguments it suffices to show the equality when α
is an integral class.

Now note that if we decompose (X, γX) along R, we get (M ′, γ′) = (M,γ)t(−M,γ).
The set Spinc(M ′, γ′) is naturally identified with Spinc(M,γ) × Spinc(−M, γ). By
[Ju10, Prop. 5.4], there is a gluing map fR : Spinc(M ′, γ′) → OR such that fR(s) −
fR(t) = i∗(s − t) for every s, t ∈ Spinc(M ′, γ′), where i : M ′ → X is the inclusion.
(Here we view s − t as an element of H1(M

′), or equivalently, use PD ◦ i∗ ◦ PD in
place of i∗.) The decomposition theorem [Ju10, Proposition 5.4] implies that

fR(S(M ′, γ′)) = OR ∩ S(X, γX).

Clearly,
S(M ′, γ′) = S(M,γ)× S(−M, γ).

Recall that there is a bijection Spinc(M, γ) → Spinc(−M, γ) which sends a nonvan-
ishing vector field v to −v. By Proposition 2.14, we have S(−M, γ) = −S(M,γ).
Thus each element of OR ∩ S(X, γX) can be written as s = fR(s1,−s2), where
s1, s2 ∈ S(M,γ). So for s, t ∈ OR ∩ S(X, γX), we have

〈s− t, D∗(α)〉 = 〈fR(s1,−s2)− fR(t1,−t2), D∗(α)〉
= 〈i∗(s1 − t1, t2 − s2), D∗(α)〉
= 〈s1 − t1, α〉+ 〈s2 − t2, α〉.

In particular, we see that

max { 〈 s− t, D∗(α) 〉 : s, t ∈ OR ∩ S(X, γX) } = 2 ·max{〈 s− t, α 〉 : s, t ∈ S(M, γ)}.
The right hand side is by definition 2z(α). ¤

We are now finally ready to complete the proof of Theorem 7.9.

Proof of Theorem 7.9. If (M, γ) is taut, this is an immediate consequence of Lem-
mas 7.12 and 7.13. Now suppose that (M,γ) is not taut. Since M is irreducible,
[Ju06, Proposition 9.18] implies that SFH(M, γ) = 0. So z = 0, and the inequality
is obviously true. ¤

Since the set of Spinc structures appearing in Lemma 7.13 is a proper subset of
the set in Lemma 7.12, it seems plausible that there should be sutured manifolds for
which xs is strictly larger than z. We explain how to find such a manifold.

The form of the support S(X, γX) is constrained by the fact that (X, γX) is a
double. There is a natural “reflection” r : X → X which exchanges the two copies
of M in the X. The action of r∗ decomposes H1(X;R) into a direct sum of ±1
eigenspaces A±. For simplicity, let us suppose that (M,γ) is a rational homology
product.

Lemma 7.14. If (M,γ) is a rational homology product, then A− is one dimensional,
and A+

∼= H1(R−). Moreover, A− is the annihilator of Im(D∗) under the intersection
pairing H1(X;R)×H2(X, ∂X;R) → R, and A+ is the annihilator of [R].
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Proof. The fact that (M, γ) is a rational homology product implies that the map
i∗ : H1(R−;R) → H1(X;R) is injective and b1(X) = 1+ b1(R−). The action of r fixes
R− pointwise, so Im(i∗) ⊂ A+. To prove the first claim, it is enough to construct a
nonzero element of A−. Choose an arc in M joining R−(γ) to R+(γ), and let α ⊂ X
be its double, Then r acts by reflection on α, so α ∈ A−. Finally, α · [R] = 2, so
[α] 6= 0.

To prove the second claim, we observe that the subspace spanned by [R] is the +1
eigenspace for the action of r∗ on H2(X, ∂X;R), while Im(D∗) is the −1 eigenspace.
Since r∗ acts by multiplication by−1 on H3(X, ∂X;R), the±1 eigenspace in H1(X;R)
pairs trivially with the ±1 eigenspace in H2(X, ∂X;R). ¤

Since the intersection pairing is perfect, A+ = Im(i∗) can be naturally identified
with the dual of Im(D∗). Let B∗

xs ⊂ H2(M, ∂M ;R) ∼= H1(M ;R) be the dual unit
norm ball of xs. As in [Ju10], let

P = P (X, γX) = conv { c1(s) : s ∈ S(X, γX) } ⊂ H2(X, ∂X;R)

be the sutured Floer homology polytope of (X, γX), where c1(s) is the relative real
Chern class appearing in [Ju08, Remark 8.5]. Then Lemma 7.12 implies that

2B∗
xs = π(P ),

where π : H1(X;R) → A+ is the projection with kernel A−, and we have made use
of the identification A+

∼= H1(R−;R) ∼= H1(M,R) coming from the fact that (M,γ)
is a rational homology product. Similarly, let

P±R = conv { c1(s) : s ∈ O±R ∩ S(X, γX) } ⊂ H2(X, ∂X;R).

By [Ju08, Proposition 4.13], PR and P−R are the two extremal faces of the polytope
P in the A− direction. Then Lemma 7.13 says that

2B∗
z = π(PR).

The polytope P is invariant under the action of r∗. Indeed, r is orientation reversing
and r(s(γX)) = −s(γX), so r is an diffeomorphism from (X, γX) to (−X,−γX). By
Proposition 2.14, the sutured Floer homology polytope of (−X,−γX) is also P. This
implies that r∗(P ) = P.

It follows that r∗ exchanges the faces P−R and PR of P , so P−R can be identified
with PR by translating it in the direction given by A−. Equivalently, π(PR) = π(P−R).
From this, we conclude that B∗

z = B∗
xs if and only if P is isomorphic to PR × I for

some interval I.

Remark 7.15. It is clear from the definition that B∗
z is symmetric about the origin.

The corresponding symmetry of PR can be realized by composing r∗ with the map
P → P which sends x to −x (note that X has toroidal boundary, hence P = −P ).

The Thurston norm of doubled manifolds was investigated by Cantwell and Conlon
in [CC06]. They give an example of a homology product such that the dual Thurston
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a b c

Figure 1. Boundary of Cantwell and Conlon’s example, showing su-
tures and compressing disks. The shaded region is R−.

ball of the doubled manifold is not a product PR× I. (This is Example 2 in Section 5
of [CC06].) Figure 1 shows the sutured manifold (M, γ) which is doubled to give their
example. The underlying manifold M is a genus three handlebody. The surface ∂M
is shown in the figure; it is obtained by identifying the three circles labeled a, b, c with
their counterparts in the lower half of the diagram by reflecting across a horizontal
line. The circles a, b, c bound compressing disks in M . There are four sutures, and
the subsurfaces R±(γ) are four-punctured spheres.

Proposition 7.16. For the sutured manifold (M,γ) described above, Bxs is a proper
subset of Bz.

Proof. The Thurston ball of (M, γ) was determined by Cantwell and Conlon in Sec-
tion 5.1 of [CC06]. For convenience, we describe their result in terms of the dual
Thurston ball B∗

xs . Let A,B, and C be the compressing disks in M bounded by the
corresponding circles, and oriented so that the induced orientation on the boundary
corresponds with the standard orientation on the upper circle in each pair. Let a, b, c
be the geometrically dual basis of π1(M). (In other words, a intersects A once pos-
itively and misses B and C, etc.) Finally, let ea, eb, ec be the corresponding basis of
H1(M). Then by [CC06, Section 5.1] the vertices of the dual Thurston ball are

±ea, ±eb, ±ec, ±(ea − eb), ±(ea − ec), ±(eb − ec), and ± (ea − eb − ec).

Next, we determine the sutured Floer polytope of (M,γ). To do so, we first com-
pute τ(M, γ). The three loops shown in Figure 2 form a basis for π1(R−). The
corresponding words in π1(M) are a, ba−1bc−1, and ba−1cab−1, so by Proposition 5.1

τ(M,γ) ∼ det




1 −ba−1 −ba−1 + ba−1c
0 1 + ba−1 1− c
0 −b2a−1c−1 ba−1


 .
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a b c a b c

a b c

Figure 2. A basis for π1(R−).

(To save space in writing the matrix, we have applied the abelianization map, but
omitted the φ’s, so a is to be read as φ(a), etc.) We find that

τ(M, γ) ∼ ac + bc− ba + bac,

so up to a global translation the vertices of the torsion polytope are −ea,−eb,−ec

and 0.
Let Q and T denote the sutured Floer polytope and torsion polytope of (M,γ).

We claim that Q = T . To see this, we first apply the adjunction inequality [Ju10,
Theorem 4.1] to the three obvious disks A, B, C ⊂ M . Each of these disks intersects
the sutures in four points, so the projection of Q to each of the coordinate axes can
take on at most two values. Comparing with T , we see that for each axis, these values
must be −1 and 0.

Following Cantwell and Conlon, we observe that there is another embedded disk
D ⊂ M whose boundary intersects the sutures in four points. The boundary of this
disk separates the three upper circles in Figure 1 from the lower circles. The homology
class of D is [A] + [B] + [C], so by adjunction, the linear functional e∗a + e∗b + e∗c can
take at most two values on Q. Comparing with T , we see that these values must be
−1 and 0. So T and Q are the same.

Finally, we recall that the polytope B∗
z is the convex hull of the set of points of the

form x− y, for x, y ∈ Q. The vertices of B∗
z are

±ea, ±eb, ±ec, ±(ea − eb), ±(ea − ec), and ± (eb − ec).

As promised, B∗
z is a proper subset of B∗

xs ; it does not contain the vertex ea−eb−ec. ¤
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In the above example b1(X) = 4, so the polytope P is four-dimensional. The
lattice polytope P ∩ H1(X;Z) is composed of three “layers” distinguished by the
value of their intersection number with [R]. Two of these layers are the outer faces
PR and P−R, both of which are isomorphic to 2B∗

z . The middle layer is larger — it
is isomorphic to 2B∗

xs . The fact that there are (at most) three layers in P is a direct
consequence of the adjunction inequality applied to R− ⊂ X.

Remark 7.17. Observe that if ∂M had genus less than three, we would necessarily
have B∗

z = B∗
xs . Indeed, the corresponding lattice polytope would have at most two

layers by adjunction. These must be PR and P−R, so P = PR × I.

Let (M,γ) be a balanced sutured manifold such that H2(M) = 0. In [Ju08, Propo-
sition 8.10] the second author showed that if (M, γ) ÃS (M ′, γ′) is a decomposition
along a “nice” product annulus S, then SFH(M, γ) ∼= SFH(M ′, γ′). Theorem 7.9
permits us to extend this result to irreducible balanced sutured manifolds with arbi-
trary second homology.

Proposition 7.18. Suppose that (M,γ) is an irreducible balanced sutured manifold.
Let S ⊂ (M,γ) be a product annulus such that at least one component of ∂S is
non-zero in H1(R(γ)), or both components of ∂S are boundary-coherent in R(γ) (see
[Ju08, Definition 1.2]). If S gives a surface decomposition (M,γ) ÃS (M ′, γ′), then

SFH(M, γ) ∼= SFH(M ′, γ′).

Proof. In both cases we can orient S such that ∂S is boundary-coherent in R(γ). Note
that (M ′, γ′) is taut if and only if (M, γ) is, and both are irreducible. So if (M ′, γ′)
is not taut, then by [Ju06, Proposition 9.18] we have

SFH(M, γ) = 0 = SFH(M ′, γ′).

Now assume that (M ′, γ′) is taut, then SFH(M ′, γ′) 6= 0 by [Ju08, Theorem 1.4].
[Ju08, Theorem 1.3] implies that

SFH(M ′, γ′) ∼=
⊕
s∈OS

SFH(M, γ, s).

So OS ∩ S(M, γ) 6= ∅. Let s0 ∈ OS ∩ S(M, γ), then for any s ∈ Spinc(M, γ) we have
〈 s − s0, [S] 〉 = 0 if and only if s ∈ OS. Obviously, xs([S]) = 0, so by Theorem 7.9
z([S]) = 0. Thus 〈 s−s0, [S] 〉 = 0 for every s ∈ S(M,γ). So S(M,γ) ⊂ OS, and hence
SFH(M,γ) ∼= SFH(M ′, γ′). ¤

8. Examples and Applications

We conclude with some sample computations of the torsion and/or the sutured
Floer homology, with emphasis on the case where (M,γ) is the complement of a
Seifert surface R ⊂ S3.
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Example 8.1. Suppose that R ⊂ S3 is an embedded annulus. Then ∂R consists of two
parallel copies of a knot K with some linking number n corresponding to the framing
of the annulus. The complementary sutured manifold S3(R) is homeomorphic to
S3 \N(K). Its boundary is a torus with two sutures, each representing the homology
class ` + nm with respect to the canonical basis on H1(∂(S3 \ N(K)). Let Kn be
the manifold obtained by filling this homology class (i.e., by performing n/1 Dehn
surgery on K), and let K(n) ⊂ Kn be the core circle of the filling. Then SFH(S3(R))

is isomorphic to ĤFK(K(n)). Its Euler characteristic is given by

τ(S3(R)) ∼ ∆K(t) · tn − 1

t− 1
,

cf. Proposition 3.1 of [Ra07]. Note that when n = 0, the torsion vanishes, regardless

of what K is. The group ĤFK(K(n)) has been studied by Eftekhary [Ef05] (in the
case n = 0) and Hedden [He07], who gives a complete calculation in terms of the

groups HFK−(K). See also Section 10 of [LOT08]. In particular, ĤFK(K(0)) is
nontrivial unless K is the unknot.

Example 8.2. Suppose M is a solid torus, and that γ consists of 2n parallel curves on
∂M , each of which represents p times the generator of H1(M). The group SFH(M,γ)
was computed by the second author in [Ju10]; its Euler characteristic is given by

τ(M,γ) ∼ (tp − 1)n

t− 1
.

The homology in each Spinc structure is a free module of rank equal to the Euler
characteristic in that Spinc structure. An important special case is when n = 1. In
this case (M, γ) = S3(R), where R is a twisted band with p full twists (in other
words, an unknotted annulus in S3 with framing p.) SFH(M, γ) is supported in p
consecutive Spinc structures, each containing a single copy of Z.

Example 8.3. Suppose K = K(p, q) ⊂ S3 is the two-bridge knot or link corresponding
to the fraction p/q. The set of minimal genus Seifert surfaces for K has been classified
up to isotopy by Hatcher and Thurston [HT85]. Any such surface R is obtained as a
Murasugi sum of twisted bands. By [Ju08, Cor. 8.8] and [Ju10, Theorem 5.11], the
sutured Floer homology of the complement of a Murasugi sum is the tensor product
of the SFH of the complements of the summands. Thus the sutured Floer polytope
SFH(S3(R)) is a rectangular prism whose dimension is given by the number of bands.
The length of its sides is determined by the number of twists in the different bands.

The number of bands is the number of terms in the unique continued fraction
expansion of p/q all of whose terms are even, and the number of twists in a given
band is half the corresponding coefficient in the continued fraction expansion [HT85].
For example, the knot K(56, 15) has continued fraction expansion

56

15
= 4− 1

4− 1
4

.
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Any Seifert surface R of K is a Murasugi sum of three twisted bands, each with two
full twists. SFH(S3(R)) ∼= Z8 is supported at the vertices of a 2× 2× 2 cube.

Whenever two of the bands have more than one twist, K will have more than one
Seifert surface. The calculation above shows that these surfaces can not be distin-
guished by their sutured Floer polytope alone. In contrast, we have the following.

Theorem. [HJS08] There exist two minimal genus Seifert surfaces R1 and R2 for
K(17, 4) which can be distinguished by combining sutured Floer homology with the
Seifert form. More precisely, there does not exist an orientation–preserving diffeo-
morphism between the pairs (S3, R1) and (S3, R2).

By Corollary 6.11, the groups SFH(S3(Ri), s) for i = 1, 2 and s ∈ Spinc(S3(Ri)) are
determined by TS3(Ri)(s) since two-bridge knots are alternating. Hence it is straight-
forward to modify the proof of the theorem to show that the Seifert surfaces can also
be distinguished by the torsion and the Seifert form.

(a) (b)

Figure 3. The pretzel knot P (2r+1, 2s+1, 2t+1) with 2r+1, 2s+1,
and 2t + 1 half twists.

Example 8.4. The pretzel knot P (2r + 1, 2s+ 1, 2t + 1) has an obvious Seifert surface
R, as shown in Figure 3(a). A natural pair of compressing disks A and B for the
handlebody M = S3 \ N(R) is shown in Figure 3(b). Cutting M along these disks
and using the Seifert–van Kampen theorem give an isomorphism between π1(M) and
the free group generated by a and b. If α is a curve on ∂M , we can read off the word
it represents in π1(M) by traversing α and recording its intersections with ∂A and
∂B.

Suppose that R is oriented so that the region visible in the bottom of the figure
belongs to R−(γ). Put p in this region, and let α be a loop which runs from p up the
left-hand strip, and back down via the middle strip. Similarly, let β be a loop which
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runs up the left-hand strip and back down the right, so that π1(R−(γ), p) is generated
by α and β. The reader can easily verify that

α = ar(a(b−1a)sb), β = arbt+1.

Set x = ar, y = a(b−1a)sb, and w = bt+1, then α = xy and β = xw. To compute the
torsion, we evaluate

det

[
∂α/∂a ∂β/∂a
∂α/∂b ∂β/∂b

]
= det

[
dax + φ(x)day dax

φ(x)dby φ(x)dbw

]
,

where we have written dax for φ(∂a/∂x), etc. We find that

τ(S3(R)) ∼ dax dbw + φ(x)day dbw − dby dax.

After evaluating the Fox derivatives and clearing fractions, we obtain

(1− a)(1− b)(1− ab−1)τ(S3(R)) = (1− ar)(1− bt+1)(1− ab−1)

+ ar(1− (ab−1)s+1)(1− bt+1)(1− a)

+ ab−1(1− (b−1a)s)(1− ar)(1− b).

Expanding the right-hand side, we get

− ar+s+1b−s(1− ab−1) + ar+s+1bt−s(1− a)− ar+1bt(1− b)

− bt+1(1− ab−1) + (1− a)− as+1b−s−1(1− b).

To compute the torsion, we must divide this expression by (1 − a)(1 − b)(1 − ab−1).
If r, s, and t are all positive, we find that the torsion is supported on a hexagon,
as illustrated in Figure 4. (The easiest way to see this is to start with the sum
of all monomials corresponding to vertices in the hexagon, and then multiply by
(1 − a)(1 − b)(1 − ab−1). Regardless of r, s and t, the product will have 6 pairs of
terms, each supported near a vertex of a hexagon. These are the pairs appearing in
the equation above.)

With respect to the natural basis given by a and b, the sides of the hexagon have
slope 0,−1 and ∞. Parallel sides have the same length, and the sides are of length
r + 1, t + 1, and s + 1. The coefficient of the torsion at each lattice point in the
hexagon is 1, and the sutured Floer homology consists of a single copy of Z at each
lattice point since the pretzel knot is alternating.

The case where r, s > 0 and t < 0 can be treated similarly. We distinguish two
subcases, depending on whether |2t − 1| is less than min(2r + 1, 2s + 1), or greater.
In the first, the coefficients of τ(S3(R)) take on both positive and negative signs.
The torsion is supported on a “bowtie”, as shown in Figure 5. The coefficient of
the torsion is 1 at each lattice point in the rectangle, and −1 at each lattice point
in the two triangles. In the second case, the support is a nonconvex hexagon, as
illustrated in Figure 6. The coefficient of the torsion is −1 at each lattice point in the
hexagon. To determine the sutured Floer homology, we compare with the calculation
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Figure 4. Support of τ(S3(R)) for r, s, t > 0.

of ĤFK(P (2r + 1, 2s + 1, 2t + 1)) given in [OS04c]. In both cases, the top group in
the knot Floer homology is torsion free and its rank is equal to the number of vertices
in the support of τ(S3(R)). It follows that SFH(S3(R)) has rank one at each vertex
in the support and is trivial elsewhere.

Figure 5. Support of τ(S3(R)) for r, s > 0 and −min(r, s) ≤ t ≤ 0.

Figure 6. Support of τ(S3(R)) for r, s > 0 and t ≤ −min(r, s).

Example 8.5. The three-component pretzel link P (2r, 2s, 2t) has a Seifert surface R
similar to that shown in Figure 3. We compute τ(S3(R)) as in the previous example.
When r, s, t are all positive, the torsion is again supported on a hexagon with sides
of slopes 0,−1 and ∞. (In this case, the relevant words in π1(M) are α = ar(b−1a)s
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and β = arbt.) However, in this case parallel sides of the hexagon do not have the
same lengths. Instead, the sides have lengths r + 1, t, s + 1, r, t + 1, s as we go around
the hexagon. This gives a simple family of examples for which the torsion does not
exhibit any symmetry. The phenomenon is already evident for P (2, 2, 2). In this
case, the hexagon degenerates to a triangle supported at three vertices in the plane.
With respect to the standard basis a, b, these vertices can be taken to be (0, 0), (1, 0)
and (1, 1). Note that for r, s, t > 0, P (2r, 2s, 2t) is an alternating link, and hence
SFH(S3(R)) has the same support as the torsion. Thus the sutured Floer polytope
is asymmetric as well.

Example 8.6. Seifert surfaces of small knots. Let K be a knot in S3 and suppose
R is a Seifert surface for K. Among knots with nine crossings or fewer, most are
either two-bridge or fibred. (See e.g. the tables in [Ka96] or [CL09].) If K is fibred,
SFH(S3(R)) ∼= Z; if it is two-bridge, SFH(S3(R)) was determined in Example 8.3.
The remaining knots all have a unique Seifert surface R by [Ka05]. We briefly describe
the groups SFH(S3(R)). They fall into two broad classes, as well as a few knots with
more interesting homology.

• The knots 916, 937, and 946 have Seifert surfaces that decompose as Murasugi
sums of a single twisted band with two full twists together with some other
twisted bands with one full twist. Thus SFH(S3(R)) ∼= SFH(A2), where A2

is an unknotted annulus with two full twists.
• The knots 815, 925, 939, 941, and 949 have Seifert surfaces which are Murasugi

sums of once-twisted bands and a single copy of R(2, 2, 2) — the Seifert surface
of the (2, 2, 2) pretzel link. Thus SFH(S3(R) ∼= SFH(S3(R2,2,2)) is supported
on a triangle.

• The knot 935 is P (3, 3, 3). Its sutured Floer polytope is a hexagon with sides
of length 2.

• The knot 938 is the only knot with fewer than 10 crossings whose sutured Floer
polytope is 3-dimensional. The polytope is contained in a 2×2×2 cube, with
Z summands at five of the vertices: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), and
(1, 0, 1). (We computed this directly using Proposition 5.1.)

For all of these knots, the top group in knot Floer homology is torsion free and
supported in a single homological grading, so SFH is determined by the torsion.

Example 8.7. The four-strand pretzel link L = P (n,−n, n,−n) has a genus one Seifert
surface analogous to the one shown in Figure 3. The multivariable Alexander polyno-
mial of this link is 0, but a calculation similar to the one in Example 4 shows that the
torsion polytope is a “pinwheel” which is a disjoint union of four square pyramids,
each with side length n. It follows that the rank of HFK(L) in the top Alexander
grading is at least

4
n∑

k=1

k2 =
2n(n + 1)(2n + 1)

3
.
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Figure 7. Sutured genus two handlebody with no disk decomposition.

Example 8.8. We conclude by using the torsion to give an example of a phenomenon
first observed by Goda [Go94]. Namely, there exist sutured manifolds whose total
space is a genus two handlebody, but which are not disk-decomposable. Consider the
two pairs of pants illustrated in Figure 7. We consider the genus two surface obtained
by gluing the two pairs of paints glued along the corresponding boundary curves
by identifying the corresponding numbers 1, 2, . . . , 12. Let M be the handlebody in
which the curves labeled A and B bound compressing disks, and let s(γ) be the curve
shown in the figure. Then we easily compute

τ(M,γ) ∼ 2a− 3 + 2a−1.

Proposition 8.1. (M, γ) is not disk-decomposable.

Proof. Suppose we decompose (M, γ) along a disk D to obtain a sutured manifold
(M ′, γ′). If ∂D is a non-separating curve in ∂M , then M ′ is homeomorphic to S1 ×
D2. If (M ′, γ′) were taut, then by [Ju10], SFH(M ′, γ′) would be isomorphic to the
restriction of SFH(M, γ) to those Spinc structures which are extremal with respect to
evaluation on [D] . It follows that either τ(M ′, γ′) = 0, τ(M ′, γ′) ∼ 2, or τ(M ′, γ′) ∼
2t− 3 + 2t−1. Comparing with Example 2, we see that none of these are the torsion
of a taut sutured manifold whose total space is the solid torus.

Similarly, if ∂D is a separating curve, then M ′ is homeomorphic to the disjoint
union of two solid tori M1 and M2, and

SFH(M, γ) ∼= SFH(M ′, γ′) ∼= SFH(M1, γ1)⊗ SFH(M2, γ2).

Again, comparing τ(M, γ) with Example 8.2 shows that this is not possible. ¤
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théorème de la pseudo-isotopie, Publ. Math. I.H.É.S. 39 (1970), 5–173.
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[OS04a] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed 3-

manifolds, Annals of Mathematics 159 (2004), no. 3, 1027–1158.
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