
TWISTED ALEXANDER INVARIANTS DETECT TRIVIAL LINKS

STEFAN FRIEDL AND STEFANO VIDUSSI

Abstract. It follows from earlier work of Silver–Williams and the authors that
twisted Alexander polynomials detect the unknot and the Hopf link. We now show
that twisted Alexander polynomials also detect the trefoil and the figure-8 knot,
that twisted Alexander polynomials detect whether a link is split and that twisted
Alexander modules detect trivial links.

1. Introduction and main results

An (oriented) m-component link L = L1 ∪ · · · ∪ Lm ⊂ S3 is a collection of m
disjoint smooth oriented closed circles in S3. Given such link L we denote by φL the
canonical epimorphism π1(S

3 \ L) → 〈t〉 which is given by sending each meridian to
t. Given a representation α : π1(S

3 \ L)→ GL(k,Q) we will introduce in Section 2.1

the corresponding twisted Alexander Q[t±1]–module Hα⊗φL
1 (S3 \ L;Q[t±1]k).

The purpose of this paper is to discuss to what degree the collection of twisted
Alexander modules detects various types of links. The model example is the follow-
ing: We can extract information from these modules by looking at their order; in par-
ticular, we can define the one–variable twisted Alexander polynomial ∆α

L(t) ∈ Q[t±1].
Silver and Williams [SW06] proved that the collection of twisted Alexander polyno-
mials detects the trivial knot among 1–component links, i.e. knots. More precisely, if
L ⊂ S3 is a knot then L is the unknot if and only if ∆α

L(t) = 1 for all representations
α : π1(S

3 \ L)→ GL(k,Q).
We thus see that twisted Alexander polynomials detect the unknot, and in a similar

vein we showed in [FV07] twisted Alexander polynomials detect the Hopf link. It is
natural to ask whether twisted Alexander modules characterize other classes of knots
and links. The purpose of this paper is to discuss a number of cases where the answer
is affirmative. We will present now the main results, referring to the following sections
for the precise statements. The first result, that significantly improves upon [FV07,
Theorem 1.3] is the following:

Theorem 1.1. Twisted Alexander polynomials detect the trefoil and the figure-8 knot.

The second result asserts that twisted Alexander modules detect split links (recall
that a link L is split if there exists a 2-sphere S ⊂ S3 such that each component of
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S3 \ S contains at least one component of L). Denote by rk(L, α) the rank of the
twisted Alexander module, i.e.

rk(L, α) := rkQ[t±1]H
α⊗φL
1 (S3 \ L;Q[t±1]k).

We have the following:

Theorem 1.2. A link L is a split link if and only if for any representation α : π1(S
3 \

L)→ GL(k,Q) we have rk(L, α) > 0.

(A more detailed result, relating rk(L, α) with the splittability of L, is presented
in Section 2.1.)

Note that, as the condition rk(L, α) > 0 is equivalent to the vanishing of ∆α
L(t), this

result simultaneously asserts that twisted Alexander polynomial cannot distinguish
inequivalent split links, in particular they fail to characterize the trivial link with more
than one component. However, whenever the twisted Alexander module is not torsion,
we can define a sort of secondary invariant, defined as the order of the torsion part
of the twisted Alexander module. More precisely we consider the following invariant:

∆̃α
L(t) := ordQ[t±1]

(
TorQ[t±1]H

α⊗φL
1 (S3 \ L;Q[t±1]k)

)
.

(We refer to Section 2.1 for details.) We can now formulate our main theorem.

Theorem 1.3. An m-component link L is trivial if and only if for any representation
α : π1(S

3 \ L)→ GL(k,Q) we have rk(L, α) = k(m− 1) and ∆̃α
L(t) = 1.

In order to prove the theorems above we will build on the results of [FV12a, FV12b],
where we showed that twisted Alexander polynomials determine the Thurston norm
and detect the existence of fibrations for irreducible 3–manifolds with non–empty
toroidal boundary. These results in turn rely on the virtual fibering theorem of Agol
[Ag08] and the work of Wise and Przytycki-Wise [Wi09, Wi12a, Wi12b, PW12].

We conclude this introduction with some observations tying in the results above
with some group–theoretic aspects. First, the fact that twisted Alexander polynomials
detect the unknot and the Hopf link is perhaps not entirely surprising, as these are
the only links whose fundamental group is abelian. Instead, the fundamental group
of all non–trivial knots is non–abelian, hence detection of the trefoil and the figure-8
knot appears far more challenging. Similarly, the unlink is characterized by the fact
that π1(S

3 \L) is a free group, but in general it is difficult to distinguish a free group
from other non-abelian groups. (We refer to [AFW12] and references therein for a
survey on 3-manifold groups, from which these observations can be easily deduced.)

Convention. Unless specified otherwise, all spaces are assumed to be compact and
connected, and links are assumed to be oriented.

Acknowledgment. The first author wishes to thank IISER Pune for its generous
hospitality.
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2. Preliminaries

2.1. The definition of twisted Alexander modules and polynomials. In this
section we quickly recall the definition of the twisted Alexander modules and polyno-
mials for links, referring to [Tu01, Hi02, FV10] for history, details and generalizations.

Let L ⊂ S3 be an oriented m–component link. Consider the canonical morphism
φL : π1(S

3 \ L) → Z = 〈t〉 sending the meridian of each component to t and let
α : π1(S

3 \ L)→ GL(k,Q) be a representation. Using the tensor representation

α⊗ φL : π1(S
3 \ L) → GL(k,Q[t±1])

g 7→ α(g) · φL(g)

we can define the homology groups Hα⊗φL
∗ (S3 \L;Q[t±1]k) of S3 \L with coefficients

in Q[t±1]k, which inherit from the system of coefficients an action of Q[t±1] and, as
Q[t±1] is Noetherian, are finitely presented as Q[t±1]–modules. We refer to these
modules as twisted Alexander modules of (L, α).

We now define

∆α
L,i := ordQ[t±1]H

α⊗φL
i (S3 \ L;Q[t±1]k),

∆̃α
L,i := ordQ[t±1]TorQ[t±1]H

α⊗φL
i (S3 \ L;Q[t±1]k),

rk(L, α, i) := rkQ[t±1]H
α⊗φL
i (S3 \ L;Q[t±1]k).

(For the definition of the order ordQ[t±1](H) of a Q[t±1]-module H we refer to [Tu01].)
We refer to ∆α

L,i as the i–th twisted Alexander polynomial of (L, α). Note that ∆α
L,i ∈

Q[t±1] and ∆̃α
L,i ∈ Q[t±1] are well-defined up to multiplication by a unit in Q[t±1].

(Throughout this paper we drop the i from the notation when i = 1, and drop α
from the notation if α is the trivial one-dimensional representation over Q.)

We conclude this section with an elementary observation. Let α : π1(S
3 \ L) →

GL(k,Q) and β : π1(S
3 \ L) → GL(l,Q) be two representations. We can then also

consider the diagonal sum representation α⊕β : π1(S
3 \L)→ GL(k+ l,Q). It follows

immediately from the definitions that

(1) ∆α⊕β
L,i = ∆α

L,i ·∆
β
L,i.

2.2. Degrees of twisted Alexander polynomials and the 0-th twisted Alexan-
der polynomial. We will make use of the following lemma.

Lemma 2.1. Let L ⊂ S3 be a link and let α : π1(S
3 \ L)→ GL(k,Q) be a represen-

tation, then Hα⊗φL
0 (S3 \ L;Q[t±1]k) is Q[t±1]-torsion and

deg(∆α
L,0) ≤ k.

Proof. Recall that if X is a space and γ : π1(X)→ Aut(V ) a representation, then it
is well-known (see e.g. [HS97, Section VI]) that

(2) Hγ
0 (X;V ) = V/{(γ(g)− idk)v | g ∈ π1(X) and v ∈ V }.
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In particular in our case, we pick g ∈ π1(S3 \ L) such that φL(g) = t. It then follows
from (2) and the definition of the Alexander polynomial that

∆α
L,0 | det((α⊗ φL)(g)− idk).

Note that (α ⊗ φL)(g) = α(g)t, in particular det((α ⊗ φL)(g) − idk) is a polynomial
of degree k. It now follows that ∆α

L,0 6= 0 and that

deg ∆α
L,0 ≤ deg (α(g)t− idk)) = k.

�

2.3. The Thurston norm, fibered classes and twisted Alexander polynomi-
als. Let L ⊂ S3 be an oriented m–component link. Recall that the link L is fibered
if its complement can be fibered over S1 by Seifert surfaces of the link. (Note that,
when m ≥ 2, this is stronger than the requirement that S3 \ L admits a fibration:
precisely, it is equivalent to requiring that the class of H1(S3 \ L;Z) determined by
the canonical morphism φL : π1(S

3 \ L)→ 〈t〉 is fibered.)
The following theorem is a consequence of Theorems 1.1 and 1.2, Proposition 2.5

and Lemma 2.8 of [FK06] (see also [Fr12] for an alternative proof).

Theorem 2.2. Let L ⊂ S3 be an oriented m–component link and α : π1(S
3 \ L) →

GL(k,Q) a representation such that ∆α
L 6= 0. Then

(3) deg ∆α
L − deg ∆α

L,0 ≤ k‖φL‖T .
Furthermore, if L is a fibered link, then ∆α

L 6= 0 and (3) is an equality.

Here, ‖φL‖T is the Thurston norm of the class φL (see [Th86]): this norm is related
with the genus of the link g(L) by the equation ‖φL‖T = 2g(L)− 2 +m.

The above theorem thus says that degrees of twisted Alexander polynomials give
lower bounds on the genus of the link, and that they determine it for fibered links.
Using work of Agol [Ag08], Liu [Liu11], Przytycki-Wise [PW11, PW12] and Wise
[Wi09, Wi12a, Wi12b] the authors proved in [FV12a, FV12b] in particular that
twisted Alexander polynomials decide the fiberability and determine the genus of
a link. Specifically we have the following:

Theorem 2.3. Let L ⊂ S3 be an oriented m–component link. Then there exists a
representation α : π1(S

3 \ L)→ GL(k,Q) such that ∆α
L 6= 0 and such that

deg ∆α
L − deg ∆α

L,0 = k‖φL‖T .
Furthermore, if L is not fibered, there exists a representation α′ : π1(S

3 \ L) →
GL(k,Q) such that

∆α′

L = 0.

This theorem has the following corollary, whose second part refines the main theo-
rem of [FV07] inasmuch as it asserts the sufficiency of the use of one–variable twisted
Alexander polynomials.
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Corollary 2.4. (1) Let K ⊂ S3 be a knot. If K is trivial, then for any repre-
sentation α : π1(S

3 \ K) → GL(k,Q) we have ∆α
K = 1. Conversely, if K is

non-trivial, then there exists a representation α : π1(S
3 \K)→ GL(k,Q) such

that ∆α
K is not a constant.

(2) Let L ⊂ S3 be a 2-component link. If L is the Hopf link, then for any repre-
sentation α : π1(S

3 \ L)→ GL(k,Q) we have

ταL := ∆α
L(∆α

L,0)
−1 = 1.

Conversely, if L is not the Hopf link, then there exists a representation α : π1(S
3\

L)→ GL(k,Q) such that ταL 6= 1.

The reader may have noticed that the invariant ταL introduced in the statement
of the corollary is, in fact, the twisted Reidemeister torsion; see e.g. [FV10] for a
discussion of this point of view.

Proof. Let K ⊂ S3 be a knot. If K is trivial, then all first twisted homology modules
are zero, hence all twisted Alexander polynomials are equal to 1. Conversely, if K
is non-trivial, then the genus is greater than zero, and it then follows immediately
from Theorem 2.3 that there exists a rational representation with corresponding non-
constant twisted Alexander polynomial.

Now let L ⊂ S3 be a 2-component link. Then it is well-known that the following
are equivalent:

(a) L is the Hopf link,
(b) S3 \ L ∼= T 2 × I,
(c) L is fibered with ||φL||T = 2g(L) = 0.

It follows easily from the implication (a)⇒ (b) that the twisted Alexander modules of
the Hopf link are the homology groups of the infinite cyclic cover T 2 determined by φL,
i.e. homotopically a copy of S1. Given any representation α : π1(S

3 \L)→ GL(k,Q)
it follows that ταL = 1 (we refer to [KL99, p. 644] for details). Now suppose that L
is not the Hopf link. Then φL is either not fibered or ||φL||T > 0. It follows from
Theorem 2.3 that there exists a representation α : π1(S

3 \ L) → GL(k,Q) such that
∆α
L is either zero or such that

deg(∆α
L)− deg(∆α

L,0) > 0.

Either way, ταL 6= 1. �

3. Proofs of the main results

3.1. Twisted Alexander polynomials detect the trefoil and the figure-8
knot. The following theorem is the promised more precise version of Theorem 1.1.

Theorem 3.1. Let K be a knot. Then K is equivalent to the trefoil knot (the figure-8
knot respectively) if and only if the following conditions hold:

(1) ∆K(t) = 1− t+ t2 (∆K(t) = 1− 3t+ t2 respectively)
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(2) for any representation α : π1(S
3 \K)→ GL(k,Q) we have

∆α
K(t) 6= 0 and deg ∆α

K(t) ≤ 2k.

Proof. Let K be the trefoil knot or the figure-8 knot. It is well known that in the
former case ∆K(t) = 1− t+ t2 and that in the latter case ∆K(t) = 1− 3t+ t2. Note
that in either case K is a fibered genus one knot. It now follows from Theorem 2.3
that for any representation α : π1(S

3 \K)→ GL(k,Q) we have ∆α
K(t) 6= 0 and that

deg ∆α
K(t)− deg ∆α

K,0(t) = k(2 genus(K)− 1) = k.

We deduce from Lemma 2.1 that deg ∆α
K,0(t) ≤ k. We thus obtain the desired in-

equality
deg ∆α

K(t) ≤ 2k.

This concludes the proof of the ‘only if’ direction of the theorem.
Now suppose that K is a knot such that for any representation α : π1(S

3 \K) →
GL(k,Q) we have

∆α
K(t) 6= 0 and deg ∆α

K(t) ≤ 2k.

It follows from Theorem 2.3 that K is fibered and that the genus of K equals one.
From [BZ85, Proposition 5.14] we deduce that K is equivalent to either the trefoil
knot or the figure-8 knot. The ‘if’ direction of the theorem now follows from the fact
mentioned above that the ordinary Alexander polynomial distinguishes the trefoil
knot from the figure-8 knot. �

3.2. Split links. We say that a link L is s-splittable if there exist s disjoint 3-balls
B1, . . . , Bs ⊂ S3 such that each Bi contains at least one component of L and such
that S3 \ (B1 ∪ · · · ∪Bs) also contains a component of L. Furthermore we say that L
is s-split if L is s-splittable but not (s+ 1)-splittable.

The following theorem implies in particular Theorem 1.2.

Theorem 3.2. Let L ⊂ S3 be an oriented m–component link. Then the following
hold:

(1) If L is s-splittable, then for any representation α : π1(S
3 \ L)→ GL(k,Q) we

have
rk(L, α) ≥ sk.

(2) If L is s-split, then there exists a representation α : π1(S
3 \ L) → GL(k,Q)

such that
rk(L, α) = sk.

Proof. Denote as usual by φL : π1(S
3\L)→ 〈t〉 the map which is given by sending each

meridian to t. By slight abuse of notation, we will also denote by φL the restriction
of φL to any subset of S3 \ L.

Suppose that L ⊂ S3 is an s-splittable link. We pick disjoint 3-balls B1, . . . , Bs ⊂
S3 such that each Bi contains at least one component of L and such that B0 :=
S3 \ (B1 ∪ · · · ∪ Bs) also contains a component of L. For i = 1, . . . , s we write
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Si := ∂Bi and for i = 0, . . . , s we write Li := L∩Bi. By assumption Li is non-empty
for any i.

Now let α : π1(S
3 \ L)→ GL(k,Q) be a representation. We consider the following

Mayer-Vietoris sequence

s⊕
i=1

H1(Si;Q[t±1]k) →
s⊕
i=0

H1(Bi \ Li;Q[t±1]k) → H1(S
3 \ L;Q[t±1]k) →

→
s⊕
i=1

H0(Si;Q[t±1]k) →
s⊕
i=0

H0(Bi \ Li;Q[t±1]k) → . . .

where the representation is given by α ⊗ φL in each case. Note that the restriction
of α⊗ φL to π1(Si), i = 1, . . . , s is necessarily trivial, but that the restriction of φL
to π1(Bi \ Li), i = 0, . . . , s is non-trivial since Li consists of at least one component.
It follows immediately from the definition of homology with coefficients that for i =
1, . . . , s we have H0(Si;Q[t±1]k) ∼= Q[t±1]k and H1(Si;Q[t±1]k) ∼= 0.

Finally note that for i = 0, . . . , s and j = 0, 1 we have inclusion induced isomor-
phisms

Hj(Bi \ Li;Q[t±1]k)
∼=−→ Hj(S

3 \ Li;Q[t±1]k).

This entails, by Lemma 2.1 that for i = 0, . . . , s the modules H0(Bi \ Li;Q[t±1]k) are
torsion Q[t±1]-modules. We thus see that the above Mayer-Vietoris sequence gives
rise to an exact sequence

(4) 0→
s⊕
i=0

H1(S
3 \ Li;Q[t±1]k)→ H1(S

3 \ L;Q[t±1]k)→ Q[t±1]ks → T

where T is a torsion Q[t±1]-module. In particular we now deduce that

rk(L, α) = rkQ[t±1]

(
H1(S

3 \ L;Q[t±1]k)
)
≥ rkQ[t±1]

(
s⊕
i=1

H0(Si;Q[t±1]k)

)
= sk.

This concludes the proof of (1).
We now suppose that L is in fact an s-split link. Note that we have a canonical

homeomorphism

S3 \ L ∼= S3 \ L0 # . . . #S3 \ Ls.
Furthermore it is straightforward to see that the fact that L is not (s+ 1)-splittable
implies that the manifolds S3 \ Li, i = 0, . . . , s are irreducible.

It follows from Theorem 2.3 that for i = 0, . . . , s there exists a representation
αi : π1(S

3 \ Li) → GL(ki,Q) such that ∆αi
L 6= 0. We now denote by k the greatest

common divisor of the ki. After replacing αi by the diagonal sum of k/ki-copies of
the representation αi we can in light of (1) assume that in fact k = ki, i = 0, . . . , s.
We now denote by

α : π1(S
3 \ L)→ GL(k,Q)
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the unique representation which has the property that for i = 0, . . . , s the restriction
of α to π1(Bi \ Li) agrees with the restriction of αi to π1(Bi \ Li). By the above the
modules H1(S

3 \L;Q[t±1]k) are Q[t±1]-torsion modules. It now follows from (4) that

rk(L, α) = rkQ[t±1]

(
H1(S

3 \ L;Q[t±1]k)
)

= rkQ[t±1]

(
s⊕
i=1

H0(Si;Q[t±1]k)

)
= sk.

This concludes the proof of (2). �

3.3. Detecting unlinks. We finally turn to the problem of detecting unlinks. The
following well-known lemma gives a purely group-theoretic characterization of unlinks.

Lemma 3.3. A link L is trivial if and only if π1(S
3 \ L) is a free group.

Proof. The ‘only if’ direction is obvious. So suppose that L = L1 ∪ · · · ∪ Lm is an
m-component link such that π1(S

3 \ L) is a free group. We have to show that each
Li bounds a disk in the complement of the other components. We denote by Ti the
torus which is the boundary of a tubular neighborhood around Li. It is well-known
that the kernel of H1(Ti) → H1(S

3 \ L) is spanned by the longitude λi of Li. Since
π1(S

3 \L) is a free group and since every abelian subgroup of a free group is cyclic it
now follows easily that the longitude also lies in the kernel of π1(Ti)→ π1(S

3 \L). It
now follows from Dehn’s lemma that the longitude bounds in fact an embedded disk
in S3 \ L. �

Note that if a finitely presented group is free, then one can show this using Tietze
moves. On the other hand there is in general no algorithm for showing that a finitely
presented group is not a free group. Our main theorem now gives in particular an
algorithm for showing that a given link group is not free.

Theorem 3.4. An m-component link L is the trivial link if and only if for any
representation α : π1(S

3\L)→ GL(k,Q) we have rk(L, α) = k(m−1) and ∆̃α
L(t) = 1.

Proof. The proof of the ‘only if’ statement is very similar to the proof of Theorem 3.2
(1). In fact it follows easily from (4) that for the m-component trivial link L and a
representation α : π1(S

3 \L)→ GL(k,Q) we have H1(S
3 \L;Q[t±1]k) ∼= Q[t±1]k(m−1).

In particular rk(L, α) = k(m− 1) and ∆̃α
L(t) = 1.

We now suppose that L = L0 ∪ · · · ∪ Lm−1 is an m-component link such that
for every representations α : π1(S

3 \ L) → GL(k,Q) we have rk(L, α) = k(m − 1).
It follows immediately from Theorem 3.2 (2) that L is an (m − 1)-split link. We
can therefore pick disjoint 3-balls B1, . . . , Bm−1 ⊂ S3 such that each Bi contains a
component of L and such that B0 := S3 \ (B1 ∪ · · · ∪ Bs) also contains a component
of L. Without loss of generality we can assume that for i = 0, . . . ,m − 1 we have
Li = L ∩Bi. For i = 1, . . . ,m− 1 we furthermore write Si := ∂Bi.

It remains to show that if one of the components Li is not the unknot, then there
exists a representations α : π1(S

3\L)→ GL(k,Q) with ∆̃α
L(t) 6= 1. So we now suppose
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that L0 is not the unknot. It follows from Theorem 2.3 and from Corollary 2.4 that
for i = 0, . . . ,m − 1 there exists a representation αi : π1(S

3 \ Li) → GL(ki,Q) such
that ∆αi

S3\Li
6= 0 and such that ∆α0

S3\L0
is not a constant. As in the proof of Theorem

3.2 we can assume that k := k0 = · · · = km−1. We then denote by

α : π1(S
3 \ L)→ GL(k,Q)

the unique representation which has the property that for i = 0, . . . ,m − 1 the re-
striction of α to π1(Bi \ Li) agrees with the restriction of αi to π1(Bi \ Li).

It now follows from (4) that

TorQ[t±1](H1(S
3 \ L;Q[t±1]k)) ∼= TorQ[t±1]

(
m−1⊕
i=0

H1(S
3 \ Li;Q[t±1]k)

)
.

We now conclude that

∆̃α
L(t) = ordQ[t±1]

(
TorQ[t±1](H1(S

3 \ L;Q[t±1]k))
)

= ordQ[t±1]

(
TorQ[t±1]

(
m−1⊕
i=0

H1(S
3 \ Li;Q[t±1]k)

))
=

m−1∏
i=0

ordQ[t±1]

(
TorQ[t±1]

(
H1(S

3 \ Li;Q[t±1]k)
))

=
m−1∏
i=0

ordQ[t±1]

(
H1(S

3 \ Li;Q[t±1]k)
)

=
m−1∏
i=0

∆α
Li

(t)

=
m−1∏
i=0

∆αi
Li

(t).

But this is not a constant since ∆α0
L0

(t) is not a constant. �

4. Extending the results

Let L be an s-split. We pick disjoint 3-balls B1, . . . , Bs ⊂ S3 such that each Bi

contains a component of L and such that B0 := S3 \ (B1 ∪ · · · ∪ Bs) also contains a
component of L. For i = 0, . . . , s we write Li := L ∩ Bi. We then view L0, . . . , Ls as
links in S3. This set of links are called the split-components of L. It is well-known
that the set of split-components is well-defined and does not depend on the choice of
the B1, . . . , Bs.

As a consequence of the proofs of Corollary 2.4, Theorems 1.3 and 3.1, it is rather
straightforward to see that twisted Alexander modules determine any s-split link such
that each of the split-components is either the unknot, the trefoil, the figure-8 knot
or the Hopf link.

This result now begs the following question:

Question 4.1. Are there any other links which are determined by twisted Alexander
modules?
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