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For precise statements see the references.

1. Definitions and the statement of the main result

1.1. The Alexander polynomial. Let K ⊂ S3 be a knot. It follows from Alexander
duality that H1(S

3 \ νK) ∼= Z = ⟨t⟩. We can thus consider

H1(Z–fold cover of S3 \ νK)

which is a module over the group ring of Z = ⟨t⟩, i.e. it is a module over Λ := Z[t±1].
This module is called the Alexander module ofK and we will denote it byH1(S

3\νK; Λ).
The Alexander module is finitely presented over Λ, in fact there exists a square r× r–

matrix A over Λ such that

H1(S
3 \ νK; Λ) ∼= Λr/AΛr,

and we now define the Alexander polynomial of K to be

∆K(t) := det(A).

This definition (up to multiplication by a unit in Λ) can be shown to be independent of
the presentation matrix A. One can furthermore show that ∆K(t) is always non–zero,
in fact ∆K(1) = ±1 for any knot K.

Example 1.1. (1) Let K be the unknot, then S3 \ νK is a solid torus, hence its
Alexander module is zero, and hence the Alexander polynomial is one.

(2) If K is the trefoil, then ∆K(t) = t2−t+1, more generally, if K is the (p, q)–torus
knot, then

∆K(t) =
tpq − 1

(tp − 1)(tq − 1)
.

1



2 STEFAN FRIEDL

(3) ‘Most’ knots have non–trivial Alexander polynomial (i.e. not equal to 1), but
there are non–trivial knots with trivial Alexander polynomial.

1.2. The (algebraic) unknotting number. The unknotting number of a knot K is
defined as

u(K) :=
the minimal number of crossing changes necessary

to turn K into the unknot.

The unknotting number is one of the most elementary invariants of a knot, but also one
of the most intractable. Whereas upper bounds can be found readily using diagrams, it
is much harder to find non–trivial lower bounds.

In this talk we will for the most part study a closely related invariant, namely the
algebraic unknotting number

a(K) :=
the minimal number of crossing changes necessary

to turn K into a knot with trivial Alexander polynomial.

By [Fo93] and [Sae99] this is equivalent to the original definition by Murakami [Muk90]
given in terms of ‘algebraic unknotting moves’ on Seifert matrices. In particular upper
bounds on a(K) can be obtained from a Seifert matrix alone.

It is clear that u(K) ≥ a(K), and that in general this is not an equality. For example
for any non–trivial knot K with trivial Alexander polynomial we have u(K) ≥ 1 and
a(K) = 0.

1.3. The Blanchfield pairing. LetK ⊂ S3 be a knot. We writeX = X(K) = S3\νK,
Λ = Z[t±1] and Ω = Q(t). We consider

Φ: H1(X; Λ)→ H1(X, ∂X; Λ)→ H2(X; Λ)
∼=←− H1(X; Ω/Λ)→ HomΛ(H1(X; Λ),Ω/Λ).

Here the first map is the inclusion induced map, the second map is Poincaré duality,
the third map comes from the long exact sequence in cohomology corresponding to the
coefficients 0→ Λ→ Ω→ Ω/Λ→ 0, and the last map is the evaluation map. All maps
are isomorphisms and we thus obtain a non-singular hermitian pairing

λ(K) : H1(X(K); Λ)×H1(X(K); Λ) → Ω/Λ
(a, b) 7→ Φ(a)(b),

called the Blanchfield pairing of K (see also [Bl57]).
Given a hermitian n×n-matrix A over Λ with det(A) ̸= 0 we consider the non–singular

hermitian pairing
λ(A) : Λn/AΛn × Λn/AΛn → Ω/Λ

(a, b) 7→ aTA−1b.

We define

n(K) :=
the minimal size of a hermitian matrix A = A(t) over Λ such that
(1) λ(A) ∼= λ(K), and
(2) A(1) is congruent over Z to a diagonal matrix.
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It remains to verify that this definition makes sense, i.e. that such a matrix always
exists. Let V be any matrix of size 2k which is S–equivalent to a Seifert matrix for K.
Note that V − V t is antisymmetric and it satisfies det(V − V t) = (−1)k. After a base
change we can thus arrange that

V − V t =

(
0 idk

−idk 0

)
.

Now consider AK(t) which is defined as(
(1− t−1)−1idk 0

0 idk

)
V

(
idk 0
0 (1− t)idk

)
+

(
idk 0
0 (1− t−1)idk

)
V t

(
(1− t)−1idk 0

0 idk

)
.

Then using work of Kearton [Ke75] we can show that λ(AK(t)) ∼= λ(K).
We consider A(t) = AK(t) ⊕ (1), then A(1) represents an indefinite, odd symmetric

bilinear pairing over Z, hence it is diagonalizable. We thus showed that n(K) is defined
and that

n(K) ≤ deg∆K(t) + 1.

1.4. The main results. Our main result in [BF12b] states that n(K) gives a lower
bound on the algebraic unknotting number.

Theorem 1.2. (F–Borodzik) For any knot K we have

n(K) ≤ a(K).

Furthermore n(K) is to the best of our knowledge the optimal ‘classical’ lower bound
on the unknotting number. (Here by a ‘classical’ invariant we mean an invariant de-
termined by the Seifert matrix.) More precisely in [BF12b] we will show that n(K)
subsumes the following classical lower bounds on the unknotting number:

(1) the Levine–Tristram signatures [Tr69, Lev69, Mus65],
(2) the Nakanishi index [Na81] (i.e. the minimal number of generators of the Alexan-

der module),
(3) the Lickorish obstruction [Lic85, CL86] to u(K) = 1 in terms of the linking

pairing on the 2–fold branched cover,
(4) the Jabuka obstruction [Ja09] to u(K) = 1,
(5) the Livingston [Liv11] invariant which gives a lower bound on the topological

4–genus and hence on the algebraic unknotting number,
(6) the Stoimenow obstruction [St04] to u(K) = 2.

We conclude this section with a few remarks:

(1) Note that for some of the above it was only known that they give lower bounds
on the ordinary unknotting number, our result shows that they all give lower
bounds on the algebraic unknotting number.

(2) There is no algorithm for computing n(K), in particular the above invariants can
be seen as approaches to calculating n(K).
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(3) We conjecture that in general n(K) = a(K). For n(K) = 1 this was shown by
Fogel [Fo93, Fo94].

(4) In order to detect the difference between the unknotting number and the algebraic
unknotting number one needs deeper invariants, e.g. gauge theory [CL86, KM93],
Khovanov homology [Ras10] and Heegaard-Floer homology [OS03, OS05, Ow08].
Note though that these invariants are often very hard to calculate in practice.

1.5. The linking pairing and examples. If A(t) is a matrix over Λ which represents
the Blanchfield pairing, then the integral matrix A(−1) represents the linking pairing

l(K) : H1(Σ2(K))×H1(Σ2(K))→ Q/Z

where Σ2(K) denotes the 2–fold branched cover of K. The main theorem above then
implies the following:

Theorem 1.3. If n(K) = n, then there exists a symmetric n×n–matrix A over Z which
has the following three properties:

(1) | det(A)| = |∆K(−1)|,
(2) l(A) ∼= 2l(K),
(3) A modulo two equals the identity matrix.

If sign(K) = 2n · ϵ with ϵ ∈ {−1, 1}, then we can furthermore arrange that A has the
following two properties:

(4) A is ϵ–definite,
(5) the diagonal entries of A modulo four are equal to −ϵ.

Remark. Theorem 1.3 is closely related to [Ow08, Theorem 3].

This result gives computable obstructions to n(K) having a given value. The resulting
n(K) = 1 obstruction is precisely the Lickorish obstruction, but the obstructions to
n(K) = 2, n(K) = 3 etc. are new. We wrote a computer program ‘knotorious’ and we
found that among all knots with up to 12 crossings there exist 21 knots for which we
can use this method to show that n(K) ≥ 3, where all previous classical invariants were
inconclusive.

In particular we can now determine the algebraic unknotting number for all knots up
to 11 crossings and we can determine the algebraic unknotting number for all but 19
knots with 12 crossings.

An example of a knot we can not deal with is the knot K = 12a50. We know that
either n(K) = 1 or n(K) = 2. Its Blanchfield pairing is isometric to

Λ/p× Λ/p → Ω/Λ
(v, w) 7→ 1

p
vqw,

where
p = ∆K(t) = −8t3 + 20t2 − 30t+ 3− 30t−1 + 20t−2 − 8t−3,
q = −t3 + 7t2 − 13t+ 17− 13t−1 + 7t−2 − t−3.
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The knot has n(K) = 1 if and only if there exists an automorphism of Λ/p (as a Λ-
module), which transforms this pairing into a pairing of the form (v, w) 7→ ±vw/p. Put
differently, we have n(K) = 1 if and only if there exists an f ∈ Λ such that qff = ±1
(mod p).

A full discussion of the examples is given on Maciej Borodzik’s webpage [BF12a].

2. Proof that n(K) ≤ u(K)

In order to simplify the discussion we will show that given a knot K we have

n(K) ≤ u(K).

We start out with a preliminary discussion of the effect of a crossing change on 0–framed
surgeries.

Given a knot K we denote by N(K) its zero–framed surgery. If K ′ is obtained from
K by a crossing change, then we can obtain N(K ′) from N(K) through ±1–surgery on
one of the two curves ‘circling’ the crossing change. Put differently, adding a handle to
N(K) along such a curve with framing ±1, we obtain a cobordism W between N(K)
and N(K ′).

Note that one of the above two curves is null–homologous, if we use this curve, then
H1(N(K))→ H1(W ) and H1(N(J))→ H1(W ) are isomorphisms.

Now let K be a knot which can be turned into the trivial knot J using n crossing
changes. We can then also turn the unknot J into K using n crossing changes. By
applying the above discussion to the n crossing changes we obtain a 4–manifold W with
the following properties:

(1) ∂W = N(K) ∪N(J) = S1 × S2,
(2) Z = π1(N(J)) → π1(W ) is surjective and it induces an isomorphism on first

homology, hence π1(W ) = Z,
(3) H1(N(K))→ H1(W ) is an isomorphism,
(4) b2(W ) = n,
(5) the intersection pairing on H2(W ) is diagonalizable.

One can now show that

H2(W ; Λ) ∼= Λn,

and that any matrix A(t) over Λ representing the equivariant intersection form

H2(W ; Λ)×H2(W ; Λ)→ Λ

is a presentation matrix for the Blanchfield pairing. The matrix A(1) represents the
ordinary intersection pairing on H2(W ), which by the above is diagonalizable. This
concludes the proof of the inequality n(K) ≤ u(K).

3. Questions

We conclude with a few questions and problems related to n(K).
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(1) We showed that n(K) ≤ deg∆K(t)+1. However, we do not know of a single knot,
where this is an equality. So one can ask, whether in general n(K) ≤ deg∆K(t)
holds.

(2) Given any knot K, do we have the following equality

n(K) =
minimal size of a hermitian

matrix A over Λ with λ(A) ∼= λ(K)
?

Put differently, is the condition in the definition of n(K) that A(1) be diagonal
over Z necessary?

(3) How can we show that K = 12a50 satisfies n(K) > 1? The Levine–Tristram
signatures and the obstruction from the linking form on the 2–fold branched
cover are inconclusive. We looked at Blanchfield/linking forms on higher cyclic
covers, but to our chagrin these did not give us extra information for any knot
so far.

(4) Is n(K) invariant under mutation? It is an open question whether the unknot-
ting number is preserved under mutation. The S–equivalence class of a Seifert
matrix (and thus the isometry type of the Blanchfield pairing) is preserved un-
der positive mutation. On the other hand the S–equivalence class (in fact the
isomorphism class of the Alexander module) is in general not preserved under
negative mutation (see [Ke89]).

(5) The lower bounds on the unknotting number coming from Heegaard–Floer ho-
mology have so far been extracted only from the 2–fold branched cyclic cover of
K (see [OS05, Ow08]). Can higher cyclic covers give further information?
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[OS05] P. Ozsváth and Z. Szabó, Knots with unknotting number one and Heegaard Floer homology,

Topology 44 (2005), no. 4, 705–745.
[Ow08] B. Owens, Unknotting information from Heegaard Floer homology, Adv. Math. 217 (2008), no.

5, 2353–2376.
[Ras10] J. Rasmussen, Khovanov homology and the slice genus, Inventiones Mathematicae 182 (2010),

no. 2, 419–447.
[Sae99] O. Saeki, On Algebraic Unknotting Numbers of Knots, Tokyo J. Math. 22, 425-443 (1999)
[St04] A. Stoimenow, Polynomial values, the linking form and unknotting numbers, Math. Res. Lett.

11 (2004), no. 5-6, 755–769.
[Tr69] A. Tristram, Some cobordism invariants for links, Proc. Camb. Phil. Soc. 66 (1969), 251-264

Mathematisches Institut, Universität zu Köln, Germany
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