
TWISTED ALEXANDER POLYNOMIALS AND FIBERED
3–MANIFOLDS

STEFAN FRIEDL AND STEFANO VIDUSSI

Abstract. In a series of papers the authors proved that twisted Alexander poly-
nomials detect fibered 3-manifolds, and they showed that this implies that a closed
3–manifold N is fibered if and only if S1×N is symplectic. In this note we summa-
rize some of the key ideas of the proofs. We also give new evidence to the conjecture
that if M is a symplectic 4–manifold with a free S1–action, then the orbit space is
fibered.

1. Introduction

1.1. Definitions and previous results. A manifold pair is a pair (N,φ) where
N 6= S1 × D2, N 6= S1 × S2 is an orientable connected 3–manifold with toroidal or
empty boundary and φ ∈ H1(N ;Z) = Hom(π1(N),Z) is non–trivial. We say that a
manifold pair (N, φ) fibers over S1 if there exists a fibration p : N → S1 such that
the induced map p∗ : π1(N) → π1(S

1) = Z coincides with φ. Given a manifold pair
(N, φ) the Thurston norm of φ is defined as

||φ||T = min{χ−(Σ) |Σ ⊂ N properly embedded surface dual to φ}.
Here, given a surface Σ with connected components Σ1 ∪ · · · ∪Σk, we define χ−(Σ) =∑k

i=1 max{−χ(Σi), 0}. Thurston [Th86] showed that this defines a seminorm on
H1(N ;Z) which can be extended to a seminorm on H1(N ;R).

Given a manifold pair (N, φ) and a homomorphism α : π1(N) → G to a finite
group G we can consider the corresponding twisted Alexander polynomial ∆α

N,φ ∈
Z[t±1]. This invariant was initially introduced by Lin [Lin01], Wada [Wa94] and
Kirk–Livingston [KL99]. We will recall the definition in Section 2 and we refer to
[FV09] for a survey of the theory of twisted Alexander polynomials.

We say that ∆α
N,φ ∈ Z[t±1] is monic if its top coefficient equals ±1. Note that ∆α

N,φ

is palindromic, in particular if its top coefficient equals ±1, then it bottom coefficient
also equals ±1. Given a polynomial p(t) ∈ Z[t±1] with p =

∑l
i=k ait

i, ak 6= 0, al 6= 0
we define deg(p) = l − k.

We have the following theorem, that gives a characterization of fibered 3-manifolds
in terms of twisted Alexander polynomials.
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Theorem 1.1. Let (N,φ) be a manifold pair. Then (N, φ) is fibered if and only if for
any epimorphism α : π1(N) → G onto a finite group the twisted Alexander polynomial
∆α

N,φ ∈ Z[t±1] is monic and

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα,

where φα denotes the restriction of φ : π1(N) → Z to Ker(α), and where we denote
by divφα ∈ N the divisibility of φα, i.e.

divφα = max{n ∈ N |φα = nψ for some ψ : Ker(α) → Z}.
The ‘only if’ direction has been shown at various levels of generality by Cha [Ch03],

Kitano and Morifuji [KM05], Goda, Kitano and Morifuji [GKM05], Pajitnov [Pa07],
Kitayama [Kiy08], [FK06] and [FV09, Theorem 6.2]. We will also outline the proof
in Section 2. The ‘if’ direction is the main theorem of [FV08c].

The main goal of this paper is to provide a summary of the proof, and to show a
few ways how the approach can be generalized to prove new results.

Revisiting the proof of Theorem 1.1 will also show that in fact the following refine-
ment of Theorem 1.1 holds:

Theorem 1.2. Let (N, φ) be a manifold pair such that π1(N) is residually finite
solvable. Then (N, φ) is fibered if and only if for any homomorphism α : π1(N) → G
to a finite solvable group the twisted Alexander polynomial ∆α

N,φ ∈ Z[t±1] is monic
and if the following equality holds

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα.

Note that 3-manifolds with residually finite solvable fundamental group are fairly
frequent. For example, as we will see in Theorem 3.4, any 3-manifold has a finite
cover such that its fundamental group is residually finite solvable. Also note that
the fundamental group of a fibered 3-manifold is always residually finite solvable,
therefore the statement above applies to characterize the fibered cone of H1(N,Z).

1.2. Fibered manifolds and symplectic 4–manifolds. The main applications of
the “if” direction of Theorem 1.1 is in the proof of the following Theorem.

Theorem 1.3. Let N be a closed 3–manifold. Then S1×N is symplectic if and only
if N is fibered.

Proof. (outline) We first consider the ‘if’ direction. This direction was first proved
by Thurston [Th76], and we present here a proof that should be well-known to the
experts. Let p : N → S1 be a fibration. We write ψ = p∗(dt) where dt is the canonical
non-degenerate closed 1–form on S1 = R/Z. By [Ca69] we can find a metric on N
such that ψ is harmonic. Denote by ∗ψ the dual closed 2–form. We now consider
the 1–form ds on S1 as a 1–form on S1 ×N by the pull back operation, similarly we
consider ψ and ∗ψ as forms on S1 ×N . With this convention we now define:

ω = ds ∧ ψ + ∗ψ.
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Clearly ω is a closed 2–form on S1 ×N . We furthermore calculate that

ω ∧ ω = 2ds ∧ ψ ∧ ∗ψ.

But since ψ is non-zero everywhere, it follows that ψ ∧ ∗ψ is a 3-form on N which is
non-zero everywhere. Hence ω∧ω is a 4-form on S1×N which is non-zero everywhere.
This shows that ω is a symplectic form on S1 ×N .

We ‘only if’ direction follows by showing that if S1 × N is symplectic, then there
exists a class φ ∈ H1(N,Z) determined by the symplectic form that satisfies the
constraints described in Theorem 1.1. This is achieved building on an idea of Kro-
nheimer in [Kr99]. Suppose that N is a closed 3-manifold such that S1 × N admits
a symplectic form ω. Without loss of generality we can assume that ω represents an
integral class. Taubes proved in [Ta94, Ta95] that the Seiberg–Witten invariants of a
symplectic 4–manifold satisfy very stringent constraints, that can be viewed as akin to
a condition of “monicness”. This, together with the relation between Seiberg–Witten
invariants of S1 ×N and the Alexander polynomial of N , due to Meng and Taubes,
translates in the condition that ∆N,φ is monic, where φ ∈ H1(N,Z) is the Künneth
component of [ω] ∈ H2(S1 × N ;Z) ∼= H1(N ;Z) ⊕H2(N ;Z). Next, thanks to a the-
orem of Donaldson ([Do96]), there exist a symplectic surface dual to (a sufficiently
large multiple of) the symplectic form. Such surface satisfies the usual adjunction
formula for symplectic surfaces. This formula, played against Kronheimer’s adjunc-
tion inequality for manifolds of type S1 ×N , gives a constraint on the top degree of
the Alexander polynomial ∆N,φ in terms of the Thurston norm, more precisely

deg(∆N,φ) = ‖φ‖T + 2div φ.

The constraints above hold for all finite covers of N , as all finite covers of S1×N are
symplectic as well. The connection between the twisted Alexander polynomials of N
and the ordinary Alexander polynomials of the finite covers of N entails at this point
that for any epimorphism α : π1(N) → G to a finite group the twisted Alexander
polynomial ∆α

N,φ is monic and

deg(∆α
N,φ) = |G| ‖φ‖T + 2div φα.

(We refer to [FV08a] for the details of the argument). The theorem follows at this
point from Theorem 1.1. ¤

We would like to mention that an alternative proof of the “only if” direction of
Theorem 1.3 in the case that b1(N) = 1, and under a technical condition in the general
case, follows from combining the work of Kutluhan–Taubes [KT09], Kronheimer–
Mrowka [KM08] and Ni [Ni08]. This proof requires a more sophisticated study of the
Seiberg–Witten theory of S1 ×N in the symplectic case.

1.3. Non–fibered manifolds and vanishing twisted Alexander polynomials.
It is natural to ask whether the conditions in Theorem 1.1 can be weakened. In
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particular, in light of some partial results discussed below, we propose the following
conjecture.

Conjecture 1.4. Let (N, φ) be a manifold pair. If (N,φ) is not fibered, then there
exists a epimorphism α : π1(N) → G onto a finite group G such that ∆α

N,φ = 0 ∈
Z[t±1].

Besides the interest per se in sharpening the results of Theorem 1.1 there are other
reasons to investigate Conjecture 1.4. First, the proof of Theorem 1.3 would be sig-
nificantly simplified, bypassing the use of Kronheimer’s refined adjunction inequality:
Taubes’ nonvanishing result for Seiberg–Witten invariants of symplectic manifolds
would suffice to carry the argument. But most importantly, Conjecture 1.4 would
imply a result akin to Theorem 1.3 for all symplectic 4–manifolds that carry a free
circle action. For those manifolds, in fact, a refined adjunction inequality in the
spirit of [Kr99] does not seem available, and Taubes’ constraints translate to a mere
monicness of the twisted Alexander polynomials of the orbit space. We state these
observations in the following form, referring to [FV07b] for details and for the extent
to which the converse holds.

Theorem 1.5. Let M be a 4–manifolds which carries a free circle action with orbit
space N . If Conjecture 1.4 holds for N , then M admits a symplectic structure only
if N fibers over the circle.

We also refer to [Ba01] and [Bo09] for related work on the problem of determining
which 4–manifolds with a free circle action admit a symplectic structure. We refer
also to the work by Silver and Williams [SW09a, SW09b] and by Pajitnov [Pa08]
for several interesting links of Conjecture 1.4 to other problems in 3–dimensional
topology.

Conjecture 1.4 can be proven to hold for various classes of manifolds. In order to
describe them in detail, we must introduce some definitions.

Let π be a group and Γ ⊂ π a subgroup. We say Γ is separable if for any g ∈ π \ Γ
there exists an epimorphism α : π → G onto a finite group G such that α(g) 6∈ α(Γ).
Put differently, we can tell that g is not in Γ by going to a finite quotient. We say π
is locally extended residually finite (LERF) if any finitely generated subgroup of π is
separable.

The following theorem proves Conjecture 1.4 in various special cases:

Theorem 1.6. Let (N,φ) be a manifold pair. Suppose that ∆α
N,φ 6= 0 ∈ Z[t±1] for

any epimorphism α : π1(N) → G onto a finite group G. Furthermore suppose that
one of the following holds:

(1) N = Σ3 \ νK and K is a genus one knot,
(2) ||φ||T = 0,
(3) N is a graph manifold,
(4) π1(N) is LERF.
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Then (N, φ) fibers over S1.

We refer to [FV07a, Theorem 1.3] and [FV08b, Theorem 1, Proposition 4.6, Corol-
lary 5.6] for details and proofs. Note that it is conjectured (cf. [Th82]) that π1(N) is
LERF for any hyperbolic 3–manifold N .

In Section 4 we will give new conditions under which Conjecture 1.4 holds.

Acknowledgments. The first author would like to express his gratitude to the
organizers of the Georgia International Topology Conference 2009 for the opportunity
to speak and for organizing a most enjoyable and interesting meeting.

2. Twisted invariants of 3–manifolds

We recall the definition of twisted homology and cohomology and their basic prop-
erties. Let X be a topological space and let ρ : π1(X) → GL(n, R) be a representation.

Denote by X̃ the universal cover of X. Letting π = π1(X), we use the representation

ρ to regard Rn as a left Z[π]–module. The chain complex C∗(X̃) is also a left Z[π]–
module via deck transformations. Using the natural involution g 7→ g−1 on the group

ring Z[π], we can view C∗(X̃) as a right Z[π]–module and form the twisted homology
groups

Hρ
∗ (X; Rn) = H∗(C∗(X̃)⊗Z[π] R

n).

For most of the paper we will be interested in a particular type of representation.
Let φ ∈ H1(X;Z) and let α : π1(X) → GL(n,Z) be a representation. We can now
define a left Z[π1(X)]–module structure on Zn⊗ZZ[t±1] =: Zn[t±1] via α⊗φ as follows:

g · (v ⊗ p) := (α(g) · v)⊗ (φ(g) · p) = (α(g) · v)⊗ (tφ(g)p),

where g ∈ π1(X), v ⊗ p ∈ Zn ⊗Z Z[t±1] = Zn[t±1]. Put differently, we get a represen-
tation α⊗ φ : π1(X) → GL(n,Z[t±1]).

We call the resulting twisted module Hα⊗φ
1 (X;Zn[t±1]) the twisted Alexander mod-

ule of (X,φ, α). When φ and α are understood, then we just write H∗(X;Zn[t±1]).
Now suppose X has finitely many cells in all dimensions. Note that Z[t±1] is a Noe-
therian UFD and that Hα

i (X;Zn[t±1]) is therefore a finitely generated module over

Z[t±1]. We now denote by ∆α
X,φ,i ∈ Z[t±1] the order of Hα⊗φ

1 (X;Zn[t±1]) and refer
to it as the twisted Alexander polynomial of (X,φ, α). We refer to [Tu01] or [FV09,
Section 2] for the precise definitions. Note that the twisted Alexander polynomials
are well–defined up to multiplication by an element of the form ±tk, k ∈ Z.

We adopt the convention that we drop α from the notation if α is the trivial
representation to GL(1,Z). If α : π1(N) → G is a homomorphism to a finite group
G, then we get the regular representation π1(N) → G → Aut(Z[G]) where the second
map is given by left multiplication. We can identify Aut(Z[G]) with GL(|G|,Z) and
we obtain the corresponding twisted Alexander polynomial ∆α

N,φ.
As an example we give an outline of the proof of the ‘if’ direction in Theorem 1.1.
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Lemma 2.1. Let (N, φ) be a fibered manifold pair. Then for any epimorphism α :
π1(N) → G onto a finite group the twisted Alexander polynomial ∆α

N,φ ∈ Z[t±1] is
monic and the following equality holds

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα.

Proof. First note that exists a short exact Mayer–Vietoris sequence

0 → H1(Σ;Z[G])⊗ Z[t±1]
tι+−ι−−−−−→ H1(N \ Σ;Z[G])⊗ Z[t±1] → H1(N ;Z[G][t±1]) → 0.

Note that in the case of a knot complement and untwisted coefficients this is just
the usual exact sequence relating the homology of a Seifert surface to the Alexander
module of a knot (cf. e.g. [Lic97, Theorem 6.5]). We write r = rank H1(Σ;Z[G]).
Picking a basis for H1(Σ;Z[G]) and H1(N \ Σ;Z[G]) = H1(Σ × [0, 1];Z[G]) we can
represent ι± by r × r-matrices A±. It follows from the definition of the Alexander
polynomial that

∆α
N,φ = det(tA+ − A−) = tr det(A+) + · · ·+ det(−A−).

Since ι± are homotopy equivalences it follows that det(A±) = ±1. In particular ∆α
N,φ

is monic and of degree r. It remains to determine r. First note that we have

2∑
i=0

(−1)irank Hi(Σ;Z[G]) = |G| ·
2∑

i=0

(−1)irank Hi(Σ;Z) = |G| · (−χ(Σ)) = |G| ||φ||T .

Furthermore recall that Σ is closed if and only if N is closed. The formula for r now
follows from a direct calculation of the rank of H0(Σ;Z[G]) and from duality in the
case that Σ is closed. ¤

3. Summary of the proof of Theorem 1.1

Our goal is to give an outline of the proof of Theorem 1.1 given in [FV08c] without
descending into the many technical details required in a rigorous write up. We are
acutely aware of the fact that the proof in [FV08c] hides the forest behind a wall of
trees.

3.1. Step A: First observations. Let (N, φ) be a manifold pair and k ∈ N. Note
that (N,φ) fibers if and only if (N, kφ) fibers and note that ||kφ||T = k||φ||T . It
follows now easily that it suffices to prove Theorem 1.1 for primitive φ ∈ H1(N ;Z).

Theorem A. Let (N, φ) be a manifold pair with φ ∈ H1(N ;Z) primitive. Assume
that ∆N,φ 6= 0. Then the following hold:

(1) There exists a connected Thurston norm minimizing surface Σ dual to φ.
(2) Any connected surface Σ dual to φ intersects any boundary torus, in particular

Σ is closed if and only if N is closed.
(3) If ∆α

N,φ 6= 0 for any epimorphism α : π1(N) → G onto a finite group, then N
is irreducible.
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(4) The pair (N, φ) fibers over S1 if and only if the maps ι± : π1(Σ) → π1(N \νΣ)
are isomorphisms.

Proof. If ∆N,φ 6= 0, then it follows from [McM02, Section 4 and Proposition 6.1] that
there exists a connected Thurston norm minimizing surface Σ dual to φ.

Now let Σ be any connected surface dual to φ. Suppose that there exists a boundary
torus T of N which Σ does not intersect. Then T lifts to the universal cyclic cover N̂ of
N , in particular N̂ contains infinitely many tori in its boundary. A standard argument
now shows that b1(N̂) = ∞, but it is well-known (cf. [Tu01]) that b1(N̂) = deg∆N,φ.

Statement (3) follows from an argument of McCarthy [McC01] (see also [FV08c,
Lemma 7.1]). Note that the proof of (3) relies on the fact that 3-manifold groups are
residually finite, which is a consequence of the proof of the Geometrization Conjecture
(cf. [Th82] and [He87]). The final statement is a consequence of Stallings’ fibering
theorem ([St62] and [He76]). ¤

Throughout this section Σ will always denote a connected Thurston norm minimiz-
ing surface dual to φ. We write M = N \ νΣ and denote the two canonical inclusion
maps of Σ into ∂M by ι±. Since Σ ⊂ N is Thurston norm minimizing it follows from
Dehn’s lemma that the inclusion induced maps π1(Σ) → π1(N) and π1(M) → π1(N)
are injective. In particular we can view π1(Σ) and π1(M) as subgroups of π1(N).

Given an epimorphism α : π1(N) → G onto a finite group G we say ∆α
N,φ has

Property (M) if ∆α
N,φ ∈ Z[t±1] is monic and if

deg(∆α
N,φ) = |G| ‖φ‖T + (1 + b3(N))divφα

holds.

3.2. Step B: Extracting information from twisted Alexander polynomials.
In view of Theorem A our strategy is now to translate the information on twisted
Alexander polynomials into information on the maps ι± : π1(Σ) → π1(M). We start
with considering the untwisted polynomial:

Lemma 3.1. If ∆N,φ has Property (M), then the maps ι± : H1(Σ;Z) → H1(M ;Z)
are isomorphisms.

This lemma is well-known in the case of the untwisted Alexander polynomial for
knots. An early reference is given by [CT63] but see also [Ni07b, Proposition 3.1] or
[GS08].

Proof. We translate the information on twisted Alexander polynomials into informa-
tion on the maps ι± : π1(Σ) → π1(M) by considering, as in Lemma 2.1, the following
long exact Mayer–Vietoris sequence:

(1)

. . . → H2(N ;Z[t±1]) →
→ H1(Σ;Z)⊗ Z[t±1]

tι+−ι−−−−−→ H1(M ;Z)⊗ Z[t±1] → H1(N ;Z[t±1]) →
→ H0(Σ;Z)⊗ Z[t±1]

tι+−ι−−−−−→ H0(M ;Z)⊗ Z[t±1] → H0(N ;Z[t±1]) → 0.
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Now suppose that ∆N,φ ∈ Z[t±1] is monic and that

deg∆N,φ = ‖φ‖T + (1 + b3(N))

holds. Recall that Σ is connected and that Σ is closed if and only if N is closed.
In our context this implies that ‖φ‖T + (1 + b3(N)) equals twice the genus g of Σ.
Using elementary arguments one can show that H1(M ;Z) is a free abelian group of
the same rank as H1(Σ;Z), namely 2g. Picking bases for H1(Σ;Z) and H1(M ;Z) we
denote the corresponding 2g × 2g–matrices for ι± by A±. It now follows from the
definition of the Alexander polynomial that

∆N,φ = det(tA+ − A−) = det(A+)t2g + · · ·+ det(−A−).

Recall that we assumed that ∆N,φ is monic and that deg∆N,φ = 2g. Since ∆N,φ is
palindromic it now follows that A− and A+ are invertible matrices, in particular the
maps ι± : H1(Σ;Z) → H1(M ;Z) are isomorphisms. ¤

Clearly the conclusion of the claim is not enough to deduce that π1(Σ) → π1(M)
is an isomorphism. In fact there exist many non-fibered knots whose Alexander
polynomial has Property (M). We will therefore use the information coming from all
twisted Alexander polynomials.

Using the idea of the proof the previous claim we can show the following (we refer
to [FV08c, Theorem 3.2] for details). If α : π1(N) → G is an epimorphism onto a
finite group such that ∆α

N,φ has Property (M), then the maps ι± : H1(Σ;Z[G]) →
H1(M ;Z[G]) are isomorphisms. In fact, considering the ‘H0-part’ of the Mayer–
Vietoris sequence (1) we see that the assumption ∆α

N,φ 6= 0 implies that the maps
ι± : H0(Σ;Z[G]) → H0(M ;Z[G]) are isomorphisms. Using well-known properties of
0-th homology groups (cf. e.g. [HS97, Section VI]) this condition is equivalent to

Im{π1(Σ)
ι±−→ π1(M)

α−→ G} = Im{π1(M)
α−→ G}.

For future reference we now summarize the results of the above discussion in the
following theorem.

Theorem B. Let α : π1(N) → G be an epimorphism onto a finite group such that
∆α

N,φ 6= 0, then

(2) Im{π1(Σ)
ι±−→ π1(M)

α−→ G} = Im{π1(M)
α−→ G}.

If furthermore ∆α
N,φ has Property (M), then

(3) ι± : H1(Σ;Z[G]) → H1(M ;Z[G])

are isomorphisms
Our goal now is to show that the information we just obtained from twisted Alexan-

der polynomials is in fact enough to deduce that ι± : π1(Σ) → π1(M) are isomor-
phisms.
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3.3. Step C: Finite solvable quotients. First recall that in the untwisted case
we obtained the following conclusion: if ∆N,φ has Property (M), then the maps
ι± : H1(Σ;Z) → H1(M ;Z) are isomorphisms. Another way of saying this is that
the maps ι± : π1(Σ) → π1(M) ‘look like an isomorphism on the abelian level’. Our
goal is now to show that if all twisted Alexander polynomials corresponding to finite
solvable groups have Property (M), then the maps ι± : π1(Σ) → π1(M) ‘look like
isomorphisms on the finite solvable level’. More precisely, we will prove the following
theorem.

Theorem C. Let (N,φ) be a manifold pair such that for any epimorphism π1(N) → S
onto a finite solvable group the polynomial ∆α

N,φ has Property (M). Then for any finite
solvable group S the induced maps

ι∗± : Hom(π1(M), S) → Hom(π1(Σ), S)

are bijections.

The outline of the proof of Theorem C will require the remainder of this section.
We will now need to introduce a couple of definitions. Given a solvable group S we
denote by `(S) its derived length, i.e. the length of the shortest decomposition into
abelian groups. Note that `(S) = 0 if and only if S = {e}.

Given n ∈ N ∪ {0} we denote by S(n) the statement that for any finite solvable
group S with `(S) ≤ n the maps

ι∗± : Hom(π1(M), S) → Hom(π1(Σ), S)

are bijections. It is a straightforward exercise to see that ι± : H1(Σ;Z) → H1(M ;Z)
are isomorphisms if and only if S(1) holds.

Note that Theorem C says that S(n) holds for all n if all twisted Alexander poly-
nomials corresponding to finite solvable groups have Property (M). We will show this
by induction on n. For the induction argument we use the following auxiliary state-
ment: Given n ∈ N∪{0} we denote by H(n) the statement that for any epimorphism
β : π1(M) → T where T is finite solvable with `(T ) ≤ n the maps

ι± : H1(Σ;Z[T ]) → H1(M ;Z[T ])

are isomorphisms.

Proposition 3.2. [FV08c, Proposition 3.3] If H(n) and S(n) hold, then S(n + 1)
holds as well.

Proof. Let G be a group and α : G → S an epimorphism onto an n–solvable group.
Then we obtain the following short exact sequence

0 → H1(G;Z[S]) → G/[Ker(α), Ker(α)]
α−→ S → 1.

In particular if we can control n–solvable quotients and the corresponding first homol-
ogy groups, then we can control (n + 1)–solvable information on G. The proposition
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now follows from elaborating this principle. We refer to [FV08c, Section 3.3] for the
full details. ¤

Proposition 3.3. [FV08c, Proposition 3.4] Assume that ∆α
N,φ has Property (M) for

any epimorphism α : π1(N) → S onto a finite solvable group S with `(S) ≤ n + 1. If
S(n) holds, then H(n) holds as well.

Proof. In this proof we find it convenient to introduce the notation π = π1(N),
A = π1(Σ) and B = π1(M). Recall that we can view A and B as subgroups of π.
In fact we can view π as an HNN extension of B by A, more precisely we have a
canonical isomorphism

π = 〈B, t | tι−(g)t−1 = ι+(g), g ∈ A〉.
As usual we will normally just write π = 〈B, t |, ti−(A)t−1 = ι+(A)〉. Let β : B → T
be an epimorphism where T is finite solvable with `(T ) ≤ n. Given a group C we
now define

C(T ) =
⋂

γ∈Hom(C,T )

Ker(γ).

It is straightforward to see that C/C(T ) is a finite solvable group with `(C/C(T )) ≤ n
(see [FV08c, Lemma 3.6]). It is a consequence of S(n) that the homomorphisms

(4) ι± : A/A(T ) → B/B(T )

are in fact isomorphisms (see [FV08c, Lemma 3.6]). In particular we can define an
epimorphism

π = 〈B, t |, tι−(A)t−1 = ι+(A)〉 → 〈B/B(T ), t | tι−(A/A(T ))t−1 = ι+(A/A(T ))〉.
It is a consequence of (4) that the above group is in fact a semidirect product, i.e. we
have an isomorphism

〈B/B(T ), t | tι−(A/A(T ))t−1 = ι+(A/A(T ))〉 ∼= Z nB/B(T ),

where 1 ∈ Z acts on B/B(T ) via ι− ◦ ι−1
+ . Since B/B(T ) is finite this automorphism

has finite order, say k, therefore there exists an epimorphism

α : π → Z nB/B(T ) → Z/k nB/B(T ) =: S.

Note that S is a finite solvable group of length n+1. It now follows from our assump-
tion that the twisted Alexander polynomial ∆α

N,φ has Property (M). The information
coming from Theorem B is not quite what we wanted, since we replaced β : B → T
by α : B → S. But since Ker(α) ⊂ Ker(b) the latter homomorphism contains in fact
the information coming from β we deduce that

ι± : H1(A;Z[T ]) → H1(B;Z[T ])

is an isomorphism as well. We refer to [FV08c, Section 3.4] for the full details. ¤
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Theorem C is now an immediate consequence of Propositions 3.2 and 3.3 and of
the fact, observed above, that ∆N,φ having Property (M) implies that S(1) holds.

3.4. Step D: Residually finite solvable fundamental groups. The conclusion
of Theorem C loosely says that ι± ‘look like isomorphisms on the finite solvable level’
if all ∆α

N,φ have Property (M). With the methods from the previous section Theorem
C is the maximum information on the map ι± : π1(Σ) → π1(M) we can obtain from
twisted Alexander polynomials.

In order to analyze the content of the conclusion of Theorem C we need the following
definition. Let P be a property of groups (e.g. finite, finite solvable), then we say that
a group π is residually P if for any non-trivial g ∈ P there exists a homomorphism
α : π → G to a group G with Property P such that α(g) is non-trivial. For example
it is well-known that surface groups are residually finite solvable, and that 3-manifold
groups are residually finite (cf. [Th82] and [He87]).

On the other hand 3-manifold groups are in general not residually finite solvable.
For example if K is a non-trivial knot with Alexander polynomial equal to one, then
standard arguments show that any homomorphism π1(S

3 \ νK) → S to a solvable
group S necessarily factors through the abelianization π1(S

3\νK) → Z. In particular
π1(S

3 \ νK) is not residually finite solvable. One can use such a knot to construct
a manifold pair(N, φ) where ι± : Hom(π1(Σ), S) → Hom(π1(M), S) is a bijection for
any solvable S, but such that π1(M) is not residually solvable. In particular M is not
a product.

This discussion shows that the conclusion of Theorem C is not strong enough to
ensure that ι± : π1(Σ) → π1(M) are isomorphisms, the problem being that 3-manifold
groups are in general not residually finite solvable.

Before we continue we need to introduce a few more notions. We say a group has
virtually a property, if there exists a finite index subgroup which has this property.
Also recall, that given a prime p a p–group is a group whose order is a power of p.
If G is a group which is residually a p–group, then we will normally just say G is
residually p. In particular note that a group which is residually p is also residually
finite solvable.

We can now formulate the following recent theorem of Matthias Aschenbrenner and
the first author.

Theorem 3.4. [AF09] Let N be a 3-manifold. Then for almost all primes p the group
π1(N) is virtually residually p.

Recall that p-groups are finite solvable, in particular Theorem 3.4 says that 3-
manifold groups are virtually residually finite solvable.

If N is hyperbolic then the theorem is a consequence of the fact that linear groups
are virtually residually p (cf. e.g. [We73, Theorem 4.7]). The proof of that fact is so
short and elegant that we think it is worthwhile mentioning.
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Proof of Theorem 3.4 for hyperbolic N . We write π = π1(N). Since we assume that
N is hyperbolic we can assume that π is a subgroup of SL(2,C). Since π is finitely
generated there is a finitely generated subring R of C such that π ⊂ GL(n,R). It
is well–known that for almost all primes p there exists a maximal ideal m of R with
char(R/m) = p (cf., e.g., [LS03, p. 376f]).

Now let p be a prime for which there exists a maximal ideal m of R with char(R/m) =
p. We will show that π is virtually residually p. Before we continue note that R/mk is
a finite ring for any k ≥ 1 and that

⋂∞
k=1 mk = {0} by the Krull Intersection Theorem.

For k ≥ 1 we let

πk = Ker
(
π → GL(n,R) → GL(n,R/mk)

)
.

Each πk is a normal subgroup of π, of finite index, and clearly πk+1 ⊂ πk for every
k ≥ 1. Moreover

⋂∞
k=1 πk = {1} since

⋂∞
k=1 mk = {0}.

We claim that π1 is residually p. We will prove this by showing that π1/πk is a
p-group for any k. This in turn follows from showing that any non–trivial element in
πk/πk+1 has order p. Indeed, let A ∈ πk. By definition we can write

A = id + C for some n× n-matrix C with entries in mk.

From p ∈ m and k ≥ 1 we get that

Ap = (id + C)p = id + (some n× n-matrix with entries in mk+1).

Hence Ap ∈ πk+1. ¤

The combination of Theorem C and 3.4 shows that proving Theorem 1.1 becomes
much easier, if we can go to finite covers. Fortunately the following lemma tells us
that we can indeed do so:

Lemma 3.5. Let p : N ′ → N be a finite cover and let φ′ = p∗(φ). Then the following
hold:

(1) (N,φ) fibers if and only if (N ′, φ′) fibers,
(2) if ∆α

N,φ has Property (M) for any epimorphism α from π1(N) onto a finite
group, then ∆α

N,φ has Property (M) for any epimorphism α from π1(N
′) onto

a finite group.

Proof. The first statement can for example be proved using Stallings’ fibering theorem
[St62]: Indeed, (N,φ) fibers if and only if Ker(φ) is finitely generated and (N ′, φ′)
fibers if and only if Ker(φ′) is finitely generated. But Ker(φ′) is subgroup of Ker(φ)
of finite index. In particular if one is finitely generated, then so is the other.

The second statement is fundamentally just an application of Shapiro’s lemma,
which says that the homology of a finite cover of a space N is nothing but the twisted
homology of N . Making this principle work in this context is a little delicate though,
and we refer the reader to [FV08c, Lemma 7.6] for the details. ¤
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The following is now an immediate corollary to Theorem 3.4 and Lemma 3.5.

Theorem D. Suppose the conclusion of Theorem 1.1 holds for all 3-manifolds such
that π1(N) is residually finite solvable, then Theorem 1.1 holds for all 3-manifolds.

Note that the original proof of Theorem 1.1 (that appeared before the first author
and M. Aschenbrenner completed the proof of Theorem 3.4) required in [FV08c,
Section 6] a rather convoluted argument based on the study of residual properties
of each piece of the JSJ decomposition of N . The result of Theorem 3.4 therefore
greatly simplifies the argument.

3.5. Step E. Reformulation in terms of sutured manifolds and Agol’s the-
orem. In our final step we find it convenient to switch to the language of sutured
manifolds. A sutured manifold is a triple (M, Σ−, Σ+) where M is an oriented 3-
manifold, Σ± are (possibly disconnected) disjoint oriented subsurfaces of ∂M with
the following properties:

(1) the orientation of Σ+ agrees with the orientation of ∂M ,
(2) the orientation of Σ− is the opposite orientation of ∂M ,
(3) the closure of ∂M \ Σ− ∪ Σ+ consists of a union of annuli A1, . . . , An such

that for any i the boundary of Ai consists of a boundary curve of Σ− and of a
boundary curve of Σ+. Furthermore the boundary curves have to be oriented
the same way.

A sutured manifold (M, Σ−, Σ+) is called taut if M is irreducible and if Σ± are
Thurston norm minimizing in their homology class in H2(M, ∂Σ±;Z). We refer to
[Ju06], [Ga83, Definition 2.6] or [CC03, p. 364] for more on sutured manifolds.

The following are the two most important types of examples for us:

(1) If Σ is a oriented surface, then (Σ× [−1, 1],−Σ×−1, Σ× 1) is a taut sutured
manifold. We will refer to it as a product sutured manifold.

(2) Let N be an irreducible 3–manifold with empty or toroidal boundary. Let Σ
be a Thurston norm minimizing surface which intersects all boundary tori of
N . Denote by M the result of cutting N along Σ and denote by Σ± the two
copies of Σ in M . Then (M, Σ−, Σ+) is a taut sutured manifold.

Theorem E. Let (M, Σ−, Σ+) be a taut sutured manifold. Suppose that π1(M) is
residually finite solvable and suppose that for any finite solvable group S the induced
maps

ι : Hom(π1(M), S) → Hom(π1(Σ±), S)

are bijections. Then M is a product on Σ±.

Theorem 1.1 is an immediate consequence of Theorems A, C, D and E, and Theo-
rem 1.2 is an immediate consequence of Theorems A, C and E.
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Note that the statement of Theorem E can be generalized to a question about
groups in general: Let P be a property of groups, let ϕ : A → B be a homomorphism
of finitely presented groups which are residually P such that for any group G with
Property P the map Hom(B, G) → Hom(A,G) is a bijection. Does this imply that ϕ
is an isomorphism? For P = {finite} this question goes back to Grothendieck [Gr70]
and was answered in the negative by Bridson and Grunewald [BG04]. We refer to
[AHKS07] for more on the case P = {finite solvable}.

This excursion into group theory shows that in order to prove Theorem E we can
not rely on a miracle in group theory, but we need a miracle which comes from our
3-dimensional setting. This miracle is provided by a stunning theorem of Agol [Ag08].
To explain it we need one more definition.

A group π is called residually finite Q–solvable or RFRS if there exists a filtration
of groups π = π0 ⊃ π1 ⊃ π2 . . . such that the following hold:

(1) ∩iπi = {1},
(2) πi is a normal, finite index subgroup of π for any i,
(3) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z),
(4) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z)/torsion.

Note that conditions (1), (2) and (3) are equivalent to saying that π is residually finite
solvable. But condition (4) means that being RFRS condition is considerably more
restrictive. The notion of an RFRS group was introduced by Agol [Ag08], we refer to
Agol’s paper for more information on RFRS groups. For our context it is important
to note that free groups and surface groups are RFRS. Indeed, it is well-known that
these groups are residually finite solvable, in particular there exists a sequence πi with
Properties (1), (2) and (3). But the extra condition (4) is now always satisfied since
the first homology of a free group or a surface group is always torsion free.

Given a sutured manifold M = (M, Σ−, Σ+) the double DM is defined to be the
double of M along Σ− and Σ+. Note that the annuli ∂M \ (Σ− ∪ Σ+) give rise to
toroidal boundary components of DM .

The following theorem is implicit in the proof of [Ag08, Theorem 6.1].

Theorem 3.6 (Agol). Let M = (M, Σ−, Σ+) be a connected, taut sutured manifold
which is not a product sutured manifold. Suppose that π1(M) is RFRS. Then there
exists an epimorphism α : π1(M) → S onto a finite solvable group, such that the
corresponding cover M̃ = (M̃, Σ̃−, Σ̃+) of M = (M, Σ−, Σ+) has the property that the
class [Σ̃−] ∈ H2(DM̃ , ∂DM̃ ;Z) lies on the closure of the cone over a fibered face of the
Thurston norm ball of DM̃ .

Before we delve into the details of the proof of Theorem E, let us take a step
back and think about what Theorem 3.6 does for us. Agol’s theorem has as input
information on finite solvable quotients of π1(M) and as output it gives us a strong
topological conclusion. This is exactly the type of statement we want to make in
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Theorem E. It is now just a matter of time till chopping and twisting turns Theorem
3.6 into a proof of Theorem E.

Proof of Theorem E. Let M = (M, Σ−, Σ+) be a taut sutured manifold such that
π1(M) is residually finite solvable and such that for any finite solvable group S the
induced maps

(5) ι∗ : Hom(π1(M), S) → Hom(π1(Σ±), S)

are bijections. We have to show that M is product sutured manifold.
Let us now suppose that M is not a product sutured manifold. We write Σ =

Σ−. Recall that we pointed out above that the surface group π1(Σ) is RFRS. By
assumption π1(M) is residually finite solvable and by (5) the finite solvable quotients
of π1(M) and π1(Σ) ‘look the same’. It is now fairly elementary to show that π1(M)
is also RFRS (see [FV08c, Section 4.2] for details).

We can thus apply Theorem 3.6 to the taut sutured manifold (M, Σ−, Σ+). In fact
applying arguments similar to the ones used in Lemma 3.5 we can without loss of
generality assume that already the class [Σ−] ∈ H2(DM , ∂DM ;Z) lies on the closure of
the cone over a fibered face F of the Thurston norm ball of DM . We refer to [FV08c,
Lemma 4.3] for details.

Note that DM has an obvious involution r given by ‘reflection’, i.e. interchanging
the two copies of M . Also recall that (5) implies in particular that the inclusion
induced maps H1(Σ±;Z) → H1(M ;Z) are isomorphisms. This means that homologi-
cally M looks like a product, and hence homologically DM looks like S1 × Σ. More

precisely, there exists a canonical isomorphism Z ·t⊕H1(Σ−;Z)
∼=−→ H1(DM ;Z), where

t is an oriented curve with r(t) = −t which intersects each of Σ− and Σ+ once. Note
that the map r : H1(DM ;Z) → H1(DM ;Z) restricts to the identity on H1(Σ;Z) and
sends t to −t.

Applying duality we now obtain a dual isomorphism H2(DM , ∂DM ;Z) = Z · [Σ]⊕V
where r acts as −id on V . Recall that r([Σ]) = [Σ] and that [Σ] sits on the boundary
of the face F . It follows that [Σ] also sits on the boundary of the face r(F ). Clearly
r(F ) is also a fibered face, and since r acts as −id on V we see that F and r(F ) are
distinct faces. Also note that by the convexity of the Thurston norm ball F and r(F )
can not sit on the same plane. Schematically we now have the situation presented in
Figure 1.

We now consider the information contained in (5) coming from finite metabelian
groups. We see that M looks like a product on the ‘metabelian level’, and hence
DM looks like S1 × Σ on the ‘metabelian level’. Now recall that the multivariable
Alexander polynomial of a 3-manifold is a metabelian invariant, we conclude that
the multivariable Alexander polynomial of DM equals the multivariable Alexander
polynomial of S1 × Σ which is given well-known to be given by (1 − t)−χ(Σ), where
t ∈ H1(S

1×M ;Z) = H1(DM ;Z) is the same generator introduced above (we refer to
[FV08c, Lemma 4.9] for details).
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r(F)

V
F

Figure 1. Thurston norm ball on H2(DM , ∂DM ;R) = R · Σ⊕ V .

The norm ball dual to the Newton polygon of the multivariable Alexander polyno-
mial is called the Alexander norm ball ([McM02]). Since the Alexander polynomial
is given by (1− t)−χ(Σ) and since Σ is dual to t we see that the Alexander norm ball
in our case is given by Figure 2. On the other hand, since F and r(F ) are fibered

V

Figure 2. Alexander norm ball on H2(DM , ∂DM ;R) = R · Σ⊕ V .

it follows that these faces sit on faces of the Alexander norm ball ([McM02]). But
comparing Figure 1 with Figure 2 we see that this is not the case. This shows that
the assumption that M is not a product leads to a contradiction. We refer to [FV08c,
Section 4] for a formal and completely rigorous version of the above argument. ¤

4. Vanishing twisted Alexander polynomials for non–fibered
manifolds

Throughout this section we use the notation from the previous section. In particular
given a manifold pair (N,φ) where φ ∈ H1(N,Z) is a primitive class with ∆N,φ 6= 0,
we will denote by Σ a connected Thurston norm minimizing surface dual to φ and we
will write M = N \νΣ. Furthermore we will denote the two natural inclusion maps of
Σ into M by ι±. We recall the following theorem, whose proof we had outlined above:
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Theorem B. Let (N, φ) be a manifold pair and let α : π1(N) → G be an epimorphism
onto a finite group such that ∆α

N,φ 6= 0, then

Im{π1(Σ)
ι±−→ π1(M)

α−→ G} = Im{π1(M)
α−→ G}.

We will see in this section that Theorem B can be used in many situations to show
that a non-fibered manifold pair has zero twisted Alexander polynomials.

Theorem 4.1. [FV08b, Theorem 4.2] Let (N,φ) be a non-fibered manifold pair such
that φ is dual to a connected Thurston norm minimizing surface Σ. If π1(Σ) ⊂ π1(N)
is separable, then there exists an epimorphism α : π1(N) → G onto a finite group G
such that ∆α

N,φ = 0.

Proof. We write Σ = Σ−. By Theorem A we know that the monomorphism π1(Σ) →
π1(M) is not an isomorphism, in particular the set π1(M) \ π1(Σ) is nonempty. By
the separability of π1(Σ) ⊂ π1(N) we can now find for any g ∈ π1(M) \ π1(Σ) an
epimorphism α : π1(N) → G onto a finite group G such that α(g) 6∈ α(π1(Σ)). In
particular we have

Im{π1(Σ)
ι−→ π1(M)

α−→ G} ( Im{π1(M)
α−→ G}.

The theorem now follows from Theorem B. ¤
It is an important open question whether fundamental groups of hyperbolic 3–

manifolds are LERF (see [Th82, Question 15]), and various partial results of separa-
bility are known. In particular, Long and Niblo [LN91, Theorem 2] showed that the
subgroup carried by an embedded torus is separable. It follows that the assumption
needed in Theorem 4.1 is always satisfied if Σ is a torus. We now easily obtain the
following corollary.

Theorem 4.2. [FV08b, Proposition 4.6] Let N be a closed 3-manifold and φ ∈
H1(N ;Z) a non-trivial class with ||φ||T = 0. Then (N,φ) is fibered if and only if
for any epimorphism α : π1(N) → G onto a finite group G we have ∆α

N,φ 6= 0.

Expanding on the ideas of Theorem 4.1 and 4.2 one can then continue to prove
Theorem 1.6. We refer to [FV08b] for details.

Unfortunately not all 3-manifold groups are LERF (see [NW01]) and little is known
even conjecturally about the separability properties of non-geometric 3-manifold groups.
In the remainder of this section we will therefore give two examples of types of non-
fibered manifold pairs where Theorem 4.1 does not apply, but where the weaker
assumptions of Theorem B allow us to show that these pairs have twisted Alexander
polynomials which are zero.

In order to prove our theorems we recall the following result of Long and Niblo
[LN91]: Let Σ be an incompressible subsurface of the boundary of a 3–manifold M .
Then π1(Σ) ⊂ π1(M) is separable. This is often referred to as peripheral subgroup
separability. We will exploit this result in two cases. The first is the case of the
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double of the complement of a nonfibered surface Σ ⊂ N . The second, perhaps of
more conceptual breadth, is an application of ‘virtual retractibility’.

We start with the first case. Let W be a 3–manifold with empty or toroidal bound-
ary and let Σ ⊂ W be an incompressible nonseparating connected properly embedded
surface. Consider the manifold with boundary M = W \ νΣ. This manifold has two
copies Σ± sitting in the boundary. Consider the double DM of M where we identify
the boundary components via the identity map. The images Σ± ⊂ DM are nonsepa-
rating incompressible surfaces which are homologous in H2(DM , ∂DM ;Z).

Theorem 4.3. Let DM be defined as above, and let φ ∈ H1(DM ,Z) be the primitive
class Poincaré dual to [Σ±]. If (DM , φ) is a non-fibered pair, then there exists an
epimorphism α : π1(DM) → G onto a finite group G such that ∆α

DM ,φ = 0.

Proof. Suppose that (DM , φ) is a non–fibered pair. First note that it is well-known
that Σ+ ⊂ DM is a fiber if and only if M is a product on Σ+.

Note that we have a folding map r : DM → M that is a retraction. In particular
the induced map in homotopy r∗ : π1(DM) → π1(M) is an epimorphism, and has
as right inverse the inclusion–induced map i∗ : π1(M) → π1(DM). Note that both
r∗ and i∗ restrict to an isomorphism on the proper subgroups of the domain and
image determined by a copy of π1(Σ+). Consider now the proper subgroup π1(Σ+) ⊂
π1(M); by peripheral subgroup separability, there is an epimorphism β : π1(M) → G
to a finite group such that β(π1(Σ+) ( β(π1(M)). The surface Σ+ ⊂ DM is an
incompressible surface dual to φ; define Z := DM \ νΣ+. By the usual argument
based on the incompressibility of Σ+, π1(Σ+) can be viewed as subgroup of π1(Z)
and the latter is a subgroup of π1(DM).

The inclusion–induced map i∗ : π1(M) → π1(DM) has image in π1(Z). It follows
that if we let α = β ◦ r∗ : π1(DM) → G, then we have

Im{π1(Σ+)
ι−→ π1(Z)

α−→ G} ( Im{π1(Z)
α−→ G}.

It now follows from Theorem B that ∆α
DM ,φ 6= 0.

¤

The second application of peripheral subgroup separability is in the context of
virtual retractions. In [LR08] (see also [LR05]), Darren Long and Alan Reid define
and explore the notion of virtual retraction of a group to one of its finitely generated
subgroup, as well as various related properties. As the authors of [LR08] discuss, these
notions are closely connected with subgroup separability properties of the group.

We start by giving the proper definitions, from [LR08], using a notation that adapts
to the case we have in mind.

Definition. Let π be a group and B a subgroup. Then a homomorphism θ : B → G
extends over the subgroup π̂ ≤f.i. π if B ≤ π̂ and there is a homomorphism Θ : π̂ → G
such that Θ|B = θ.
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Definition. Let π be a group and B a subgroup. Then π virtually retracts onto B if
the identity homomorphism θ = idB extends over some finite index subgroup of π.

Quite clearly, if π virtually retracts onto B, any homomorphism θ : B → G ex-
tends over some finite index subgroup of π. A less trivial fact, observed in [LR08,
Theorem 2.1], is that if π is LERF and if B is finitely generated, then any homomor-
phism θ onto a finite group extends over a finite index subgroup. In light of that the
following theorem can be viewed as a generalization of Theorem 4.1.

Theorem 4.4. Let (N, φ) be a non-fibered manifold pair. Suppose that there exists
a connected Thurston norm minimizing surface Σ dual to φ such that any homomor-
phism of π1(N \ νΣ) extends to a finite index subgroup of π1(N). Then there exists
an epimorphism α : π1(N) → G onto a finite group G such that ∆α

N,φ = 0.

Proof. We write M := N \ νΣ and we write π = π1(N), A = π1(Σ) and B = π1(M).
The manifold M has, as boundary, two copies of Σ; the incompressibility of Σ entails
in particular the existence of inclusion–induced injective morphisms ι± : A ↪→ B ⊂ π.

As (a copy of) Σ occurs as boundary component of M , the image under say i+
of A in B (that we will denote by A as well) is separable by peripheral subgroup
separability. This means that for any element γ ∈ B \A there exist an epimorphism
θ : B → H onto some finite group such that θ(γ) /∈ θ(A). Pick such an element
γ. The assumption of virtual retraction implies that θ extends to an epimorphism
Θ : π̂ → H where π̂ ≤f.i. π. The kernel ker Θ ≤ π̂ is a normal finite index subgroup
of π. This subgroup may fail to be normal in π; define Γ = ∩g∈πg (ker Θ) g−1 to be
its normal core in π, a normal finite index subgroup of both π̂ and π. Denote by
G := π/Γ, a finite group, and let α : π → G be the quotient map. As π̂/Γ surjects
on π̂/ker Θ, it is not difficult to verify that the condition Θ(A) ( Θ(B) entails that
α(A) ( α(B) ⊂ G. The theorem is now an immediate consequence of Theorem
B. ¤

Clearly, Theorem 4.4 applies when π1(N) virtually retracts to π1(M). Examples
where this occurs are 3–manifolds whose fundamental group embeds into an all right
hyperbolic Coxeter subgroup of Isom(Hn) (see [LR08, Theorem 2.6]): these groups
retract to any finitely generated geometrically finite subgroup, and the only finitely
generated geometrically infinite subgroups are virtual fiber groups, hence excluded in
the statement of Theorem 4.4.
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