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Abstract. Let K be a knot of genus g. If K is fibered, then it is well known
that the knot group π(K) splits only over a free group of rank 2g. We show that
if K is not fibered, then π(K) splits over non-free groups of arbitrarily large rank.
Furthermore, if K is not fibered, then π(K) splits over every free group of rank at
least 2g. However, π(K) cannot split over a group of rank less than 2g. The last
statement is proved using the recent results of Agol, Przytycki–Wise and Wise.

1. Introduction

We start out with a few definitions from group theory. Let π be a group. We say
that π splits over the subgroup B if π admits an HNN decomposition with base group
A and amalgamating subgroup B. More precisely, π splits over the subgroup B if
there exists an isomorphism

π
∼=−→ ⟨A, t |φ(b) = tbt−1 for all b ∈ B⟩,

where B ⊂ A are subgroups of π and φ : B → A is a monomorphism. In this notation,
relations of A are implicit. We will write such a presentation more compactly as
⟨A, t |φ(B) = tBt−1⟩.

In this paper we are interested in splittings of knot groups. Given a knot K ⊂ S3

we denote the knot group π1(S
3 \ K) by π(K). We denote by g(K) the genus of

the knot, the minimal genus of a Seifert surface Σ for K. It follows from the Loop
Theorem and the Seifert-van Kampen theorem that we can split the knot group π(K)
over the free group π1(Σ) of rank 2g(K). The rank rk(G) of a group G is the minimal
size of a set of generators for G.

It is well known that if K is a fibered knot, that is, the knot complement S3 \K
fibers over S1, then the group π(K) splits only over free groups of rank 2g(K). (See,
for example, Lemma 3.1.) We show that this property characterizes fibered knots. In
fact, we can say much more.

Theorem 1.1. Let K be a non-fibered knot. Then π(K) splits over non-free groups
of arbitrarily large rank.
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Neuwirth [Ne65, Problem L] asked whether there exists a knot K such that π(K)
splits over a free group of rank other than 2g(K). By the above, such a knot would
necessarily have to be non-fibered. Lyon [Ly71, Theorem 2] showed that there does
in fact exist a non-fibered genus-one knot K with incompressible Seifert surfaces of
arbitrarily large genus. This implies in particular that there exists a knot K for which
π(K) splits over free groups of arbitrarily large rank. We give a strong generalization
of this result.

Theorem 1.2. Let K be a non-fibered knot. Then for any integer k ≥ 2g(K) there
exists a splitting of π(K) over a free group of rank k.

Note that an incompressible Seifert surface gives rise to a splitting over a free group
of even rank. The splittings over free groups of odd rank in the theorem are therefore
not induced by incompressible Seifert surfaces.

Feustel and Gregorac [FG73] showed that if N is an aspherical, orientable 3-
manifold such that π = π1(N) splits over the fundamental group of a closed surface
Σ ̸= S2, then this splitting can be realized topologically by a properly embedded
surface. (More splitting results can be found in [CS83, Proposition 2.3.1].) The fact
that fundamental groups of non-fibered knots can be split over free groups of odd
rank shows that the result of Feustel and Gregorac does not hold for splittings over
fundamental groups of surfaces with boundary.

Theorems 1.1 and 1.2 can be viewed as strengthenings of Stallings’s fibering crite-
rion. We refer to Section 7 for a precise statement.

Our third main theorem shows that Theorem 1.2 is optimal.

Theorem 1.3. If K is a knot, then π(K) does not split over a group of rank less
than 2g(K).

The case g(K) = 1 follows from the Kneser Conjecture and work of Waldhausen
[Wal68b], as we show in Section 8.1. However, to the best of our knowledge, the
classical methods of 3-manifold topology do not suffice to prove Theorem 1.3 in the
general case. We use the recent result [FV12a] that Wada’s invariant detects the genus
of any knot. This result in turn relies on the seminal work of Agol [Ag08, Ag12], Wise
[Wi09, Wi12a, Wi12b], Przytycki–Wise [PW11, PW12a] and Liu [Liu11].

Theorem 1.3 is of interest for several reasons:

(1) It gives a completely group-theoretic chararcterization of the genus of a knot,
namely

g(K) =
1

2
min{rk(B) | π(K) splits over the group B}.

A different group-theoretic characterization was given by Calegari (see the
proof of Proposition 4.4 in [Ca09]) in terms of the ‘stable commutator length’
of the longitude.
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(2) Theorem 1.3 fits into a long sequence of results showing that minimal-genus
Seifert surfaces ‘stay minimal’ even if one relaxes some conditions. For exam-
ple, Gabai [Ga83] showed that the genus of an immersed surface cobounding a
longitude of K is at least g(K). Furthermore, minimal-genus Seifert surfaces
give rise to surfaces of minimal complexity in the 0-framed surgery NK (see
[Ga87]) and in most S1-bundles over NK (see [Kr99, FV12b]).

(3) Given a closed 3-manifold N it is obvious that rk(π1(N)) is a lower bound for
the Heegaard genus g(N) of N . In light of Theorem 1.3 one might hope that
this is in an equality; that is, that rk(π1(N)) = g(N). This is not the case,
though, as was shown by various authors (see [BZ84, ScW07] and [Li13]).

The paper is organized as follows. In Section 2 we discuss several basic facts
about HNN decompositions of groups. In Section 3 we recall that incompressible
Seifert surfaces give rise to HNN decompositions of knot groups and we characterize
in Lemma 3.1 the splittings of fundamental groups of fibered knots. In Section 4
we consider the genus-one non-fibered knot K = 52. We give explicit examples of
splittings of the knot group over a non-free group and over the free group F3 of rank
3, and inequivalent splittings of the knot group over F2.

Section 5 contains the proof of Theorem 1.1, and in Section 6 we give the proof of
Theorem 1.2. In Section 7 we show that these two theorems strengthen Stallings’s
fibering criterion. In Section 8.1 we give a proof of Theorem 1.3 for genus-one knots.
The proof relies mostly on the Kneser Conjecture and a theorem of Waldhausen. In
Section 8.2 we review the definition of Wada’s invariant of a group. Finally, in Section
8.3 we prove Theorem 8.5, which combined with the main result of [FV12a] provides
a proof of Theorem 1.3 for all genera.

We conclude this introduction with two questions. The precise notions are ex-
plained in Section 2.

(1) Let π be a word hyperbolic group and let ϵ : π → Z be an epimorphism
such that Ker(ϵ) is not finitely generated. Does (π, ϵ) admit splittings over
(infinitely many) pairwise non-isomorphic groups? (The group π = π(K)
satisfies these conditions if K is a non-fibered knot.)

(2) Let K be a non-fibered knot of genus g. Does π(K) admit (infinitely many)
inequivalent splittings over the free group F2g on 2g generators?

Conventions and notations. All groups are assumed to be finitely presented unless
we say specifically otherwise. All 3-manifolds are assumed to be connected, compact
and orientable. Given a submanifold X of a 3-manifold N , we denote by νX ⊂ N an
open tubular neighborhood of X in N . Given k ∈ N we denote by Fk the free group
on k generators.

Acknowledgments. The first author wishes to thank the University of Sydney for
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2. Hnn-decompositions and splittings of groups

2.1. Splittings of groups. AnHNN decomposition of a group π is a 4-tuple (A,B, t, φ)
consisting of subgroups B ≤ A of π, a stable letter t ∈ π, and an injective homomor-
phism φ : B → A, such that the natural inclusion maps induce an isomorphism from
⟨A, t |φ(B) = tBt−1⟩ to π. Alternatively, a HNN-decomposition of π can be viewed
as an isomorphism

f : π
∼=−→ ⟨A, t |φ(B) = tBt−1⟩

where φ : B → A is an injective map. We will frequently go back and forth between
these two points of view.

We need a few more definitions:

(1) Given an HNN-decomposition (A,B, t, φ) we refer to the homomorphism ϵ : π →
Z that is given by ϵ(t) = 1 and ϵ(a) = 0 for a ∈ A as the canonical epimor-
phism.

(2) Let π be a group and let ϵ ∈ Hom(π,Z) be an epimorphism. A splitting of (π, ϵ)
over a subgroup B (with base group A) is an HNN decomposition (A,B, t, φ)
of π such that ϵ equals the canonical epimorphism. With the alternative point
of view explained above, a splitting of (π, ϵ) is an isomorphism

f : π
∼=−→ ⟨A, t |φ(B) = tBt−1⟩

such that the following diagram commutes:

π

ϵ
��=

==
==

==
=

f // ⟨A, t |φ(B) = tBt−1⟩

ψ
wwnnn

nnn
nnn

nnn
nn

Z

where ψ denotes the canonical epimorphism.
(3) Two splittings (A,B, t, φ) and (A′, B′, t′, φ′) of (π, ϵ) are called weakly equiv-

alent if there exists an automorphism Φ of π with Φ(B) = B′. If Φ can be
chosen to be an inner automorphism of π, then the two HNN decompositions
are said to be strongly equivalent.

We conclude this section with the following well-known lemma of [BS78]. It appears
as Theorem B* in [Str84] where an elementary proof can be found.

Lemma 2.1. Let π be a finitely presented group and let ϵ ∈ Hom(π,Z) be an epimor-
phism. Then there exists a splitting

f : π
∼=−→ ⟨A, t |φ(B) = tBt−1⟩

of (π, ϵ) where A and B are finitely generated.
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2.2. Splittings of pairs (π, ϵ) with finitely generated kernel. The following
lemma characterizes splittings of pairs (π, ϵ) for which Ker(ϵ) is finitely generated.

Lemma 2.2. Let π be a finitely presented group, ϵ : π → Z an epimorphism, and
t an element of π with ϵ(t) = 1. If Ker(ϵ) is finitely generated, then there exists a
canonical isomorphism

π = ⟨B, t |φ(B) = tBt−1⟩
where B := Ker(ϵ) and where φ : B → B is given by conjugation by t. Furthermore,
any other splitting of (π, ϵ) is strongly equivalent to this splitting.

Proof. Let π be a finitely presented group and let ϵ : π → Z be an epimorphism such
that B = Ker(ϵ) is finitely generated. We have an exact sequence

1 → B → π
ϵ−→ Z→ 0.

Let t ∈ π with ϵ(t) = 1. The map n 7→ tn defines a right-inverse of ϵ, and we see that
B is canonically isomorphic to the semi-direct product ⟨t⟩nB where tn acts on B by
conjugation by tn. That is, we have a canonical isomorphism

π = ⟨B, t |φ(B) = tBt−1⟩.
We now suppose that we have another splitting π = ⟨C, s |ψ(D) = sDs−1⟩ of (π, ϵ).

By our hypothesis the group B = Ker(ϵ) is finitely generated. On the other hand, it
follows from standard results in the theory of graphs of groups (see [Se80]) that

Ker(ϵ) ∼= · · ·Ck ∗Dk
Ck+1 ∗Dk+1

Ck+2 · · · ,
where Ci = C and Di = D for all i ∈ Z and each map Di → Ci+1 is given by ψ.

As in [Ne65], the fact that the infinite free product with amalgamation is finitely
generated implies that Ci = Di = ψ(Di−1) for all i ∈ Z. This, in turn, implies that
each Ci and Di is isomorphic to D = Ker(ϵ). It is now clear that the identity on π
already has the desired property relating the two splittings of (π, ϵ). �

2.3. Induced splittings of groups. Let

π = ⟨A, t |φ(B) = tBt−1⟩
be an HNN-extension. Given n ≤ m ∈ N we denote by A[n,m] the result of amalga-
mating the groups tiAt−i, i = n, . . . ,m along the subgroups tiφ(B)t−i = ti+1Bt−i−1,
i = n, . . . ,m− 1. In our notation,

A[n,m] = ⟨∗ni=mtiAt−i | tjφ(B)t−j = tj+1Bt−j−1 (j = n, . . . ,m− 1)⟩.
Given any k ≤ m ≤ n ≤ l, we have a canonical map A[m,n] → A[k,l] which is a
monomorphism (see, for example, [Se80] for details). If ϵ : π → Z is the canonical
epimorphism, then it is well known that Ker(ϵ) is given by the direct limit of the
groups A[−m,m], m ∈ N; that is,

Ker(ϵ) = lim
m→∞

A[−m,m].
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The following well-known lemma shows that a splitting of a pair (π, ϵ) gives rise to a
sequence of splittings.

Lemma 2.3. Let
π = ⟨A, t |φ(B) = tBt−1⟩

be an HNN-extension. For any integer n ≥ 0, let

φn : π1(A[0,n]) → A[1,n+1]

be the map that is given by conjugation by t. Then the obvious inclusion maps induce
an isomorphism

⟨A[0,n+1], t |φn(A[0,n]) = tA[0,n]t
−1⟩ ι−→ π = ⟨A, t |φ(B) = tBt−1⟩.

Proof. We write
Γ = ⟨A[0,n+1], t |φn(A[0,n]) = tA[0,n]t

−1⟩.
We denote by π′ (respectively Γ′) the kernel of the canonical map from π (respectively
Γ) to Z. It is clear that it suffices to show that the restriction of ι : Γ → π to π′ → Γ′

is an isomorphism.
For i ∈ Z, we write Ai := tiAt−i and Bi := φ(ti+1Bt−i−1). Note that Γ′ is canoni-

cally isomorphic to

· · · (A0 ∗B0 · · · ∗Bn An+1) ∗A1∗B1
···∗BnAn+1

(
A1 ∗B1 · · · ∗Bn+1 An+2

)
∗A2∗B2

···∗Bn+1
An+2 · · · ,

and π′ is canonically isomorphic to

· · · ∗B0 A−1 ∗B−1 A0 ∗B0 A1 ∗B1 ∗ · · ·
It is now straightforward to see that ι does indeed restrict to an isomorphism Γ′ →
π′. �

Note that the isomorphism in Lemma 2.3 is canonical. Throughout the paper we
will therefore make the identification

π = ⟨A[0,n+1], t |φn(A[0,n]) = tA[0,n]t
−1⟩.

In the paper we will also write A = A[0,0].

3. Splittings of knot groups and incompressible surfaces

Now let K ⊂ S3 be a knot, that is, an oriented embedded simple closed curve in
S3. We write X(K) := S3 \ νK and

π(K) := π1(X(K)) = π1(S
3 \ νK).

The orientation of K gives rise to a canonical epimorphism ϵK : π(K) → Z sending
the oriented meridian to 1.

Let Σ be a Seifert surface of genus g forK; that is, a connected, orientable, properly
embedded surface Σ of genus g in X(K) such that ∂Σ is an oriented longitude for K.
Note that Σ is dual to the canonical epimorphism ϵ.
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Suppose that Σ is incompressible. (Recall that a surface Σ in a 3-manifold N is
called incompressible if the inclusion-induced map π1(Σ) → π1(N) is injective.) We
pick a tubular neighborhood Σ × [−1, 1]. The manifold X(K) \ Σ × (−1, 1)) is the
result of cutting along Σ. The Seifert–van Kampen theorem gives us a splitting

π1(X(K)) = ⟨π1(X(K) \ Σ× (−1, 1)), t | φ(π1(Σ×−1) = tπ1(Σ× 1)t−1⟩

of (π(K), ϵK), where φ is induced by the canonical homeomorphism Σ×−1 → Σ×1.
We thus see that π(K) splits over the free group π1(Σ) of rank 2g.

Given a knot K ⊂ S3, we denote by g = g(K) the minimal genus of a Seifert
surface. It follows from the Loop Theorem (see, for example, [He76, Chapter 4]) that
a Seifert surface of minimal genus is incompressible. Hence π(K) splits over a free
group of rank 2g(K).

If two incompressible Seifert surfaces of a knot K are isotopic, then it is clear
that the corresponding splittings of π(K) are strongly equivalent. There are many
examples of knots that admit non-isotopic minimal genus Seifert surfaces; see e.g.
[Ly74b, Ei77a, Ei77b, Al12, HJS13]. We expect that these surfaces give rise to split-
tings that are not strongly equivalent.

On the other hand, if a knot is fibered, then it admits a unique minimal genus
Seifert surface up to isotopy (see e.g. [EL83, Lemma 5.1]). It is therefore perhaps
not entirely surprising that π(K) admits a unique splitting up to strong equivalence.
More precisely, we have the following well-known lemma, which is originally due to
Neuwirth [Ne65].

Lemma 3.1. Let K be a fibered knot of genus g with fiber Σ. Then any splitting of
π(K) is strongly equivalent to

⟨π1(X(K) \ Σ× (−1, 1)), t |φ(π1(Σ×−1) = tπ1(Σ× 1)t−1⟩.

In particular π(K) only splits over the free group of rank 2g.

Proof. If Σ is a fiber surface for X(K), then the infinite cyclic cover of X(K) is
diffeomorphic to Σ×R. Put differently, Ker(ϵK) ∼= π1(Σ) which implies in particular
that Ker(ϵK) is finitely generated. The lemma is now a straightforward consequence
of Lemma 2.2. �

4. Splitting of the knot group for K = 52

In this section we give several explicit splittings of the knot group π(K) where
K = 52, the first non-fibered knot in the Alexander-Briggs table. We construct:

(1) three splittings of π(52) over the free group F2, no two being weakly equivalent;
(2) a splitting of π(52) over the free group F3 on three generators;
(3) a splitting of π(52) over a non-free group.
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Note that neither the second nor the third splitting is induced by an incompressible
surface. We will also see that at least two of the three splittings over F2 are not
induced by an incompressible surface.

Since K is a knot of genus one, a minimal-genus Seifert surface gives rise to a
splitting of π(K) over a free group of rank 2. In the following we will consider an
explicit splitting that comes from a Wirtinger presentation of the knot group:

π(K) = ⟨a, b, t | tat−1 = b, tb−1ab−1t−1 = (b−1a)2⟩.
Here the knot group has an HNN decomposition (A,B, t, φ), where A is the free group
on a, b while B is the subgroup freely generated by a and b−1ab−1. The isomorphism
φ sends a 7→ b and b−1ab−1 7→ (b−1a)2. For the remainder of this section we identify
π(K) with ⟨A, t |φ(B) = tBt−1⟩.

Proposition 4.1. Consider the splittings:

π(K) = ⟨A, t |φ(B) = tBt−1⟩,
π(K) = ⟨A[0,1], t |φ1(A) = tAt−1⟩,
π(K) = ⟨A[0,2], t |φ2(A[0,1]) = tA[0,1]t

−1⟩
where the latter two splittings are provided by Lemma 2.3. Then the following hold.

(i) Each is a splitting over a free group of rank two.
(ii) No two of the splittings of (π(K), ϵK) are weakly equivalent.
(iii) At least two of the splittings are not induced by an incompressible Seifert surface.

In the proof of Proposition 4.1 we will make use of the following lemma which is
perhaps also of independent interest.

Lemma 4.2. Let M be a hyperbolic 3-manifold with empty or toroidal boundary, and
let G be a subgroup of π := π1(M). If f : π → π is an automorphism with f(G) ⊂ G,
then f(G) = G.

We do not know whether the conclusion of the lemma holds for any 3-manifold.

Proof. Let f : π → π be an automorphism with f(G) ⊂ G. Since M is hyperbolic, it
is a consequence of the Mostow Rigidity Theorem that the group of outer automor-
phisms of π is finite. (See, for example, [BP92, Theorem C.5.6] and [Jo79, p. 213]
for details.) Consequently, there exists a positive integer n and an element x ∈ π
such that fn(G) = xGx−1. It follows from [Bu07, Theorem 4.1] that fn(G) = G.
The assumption that f(G) ⊂ G implies inductively that fn(G) ⊂ f(G). Hence
f(G) = G. �

We can now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. It is clear that the first and the second splitting are over a
free group of rank two. It remains to show that A[0,1] is a free group of rank two.
First note that

A[0,1]
∼= ⟨a0, b0, a1, b1 | a1 = b0, b

−1
1 a1b

−1
1 = (b−1

0 a0)
2⟩,
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where ai and bi denote t
iat−i and tibt−i, respectively. Using the first relation to elim-

inate the generator b0, we obtain A[0,1]
∼= ⟨a0, a1, b1 | r⟩, where r = (a−1

1 a0)
2b1a

−1
1 b1.

We let c = a−1
1 a0 and d = b1a

−1
1 . Clearly {c, d, r} is a basis for the free group on

a0, a1, b1. Hence A[0,1]
∼= ⟨c, d, r | r⟩ ∼= ⟨c, d | ⟩ is indeed a free group of rank 2. This

concludes the proof of (i).
We turn to the proof of (ii). Since K is not fibered it follows from Stallings’s

theorem (see Theorem 7.1) that Ker(ϵK) = limk→∞A[−k,k] is not finitely generated.
It follows that easily that for any l ≥ k the map A[0,k] → A[0,l] is a proper inclusion. In
particular, we have proper inclusions A  A[0,1]  A[0,2]. Since S

3 \ νK is hyperbolic,
the desired statement now follows from Lemma 4.2.

We prove (iii). It is well known (see, for example, [Ka05]) that any two minimal-
genus Seifert surfaces of 52 are isotopic. This implies, in particular, that any two
splittings of π(K) induced by minimal-genus Seifert surfaces are strongly equivalent.
It follows from (ii) that at least two of the three splittings are not induced by a
minimal genus Seifert surface. �
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Figure 1. Covering graph.

We show that π(K) admits a splitting over a free group of rank 3. In order to do
so we note that there exists a canonical isomorphism

(1)
⟨a, b, t | tat−1 = b, tb−1ab−1t−1 = (b−1a)2⟩

∼= ⟨a, b, c, t | tat−1 = b, tb−1ab−1t−1 = (b−1a)2, tb−2ab−2t−1 = c⟩.
Let A′ be the free group generated by a, b, c. Let B′ be the subgroup of A′ generated
by a, b−1ab−1, b−2ab−2. The fundamental group of the covering graph in Figure 1
is free on a, b−1ab−1, b−1a2b, b−2ab−2, and b4, and so B′ is a free rank-3 subgroup of
A′. The elements b, b−1ab−1a, c of A′ also generate a free group of rank 3, since they
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are free in the abelianization of A′. There exists therefore a unique homomorphism
φ′ : B′ → A′ such that φ′(a) = b, φ′(b−1ab−1) = b−1ab−1a and φ′(b−2ab−2) = c. It
follows that φ′ is in fact a monomorphism. Hence from (1),

⟨A′, t | tB′t−1 = φ(B′)⟩

defines a splitting of π(K) over the free group B′ of rank three.
Finally we give an explicit splitting of π(K) over a subgroup that is not free. Recall

that by Lemma 2.3 the group π(K) admits an HNN decomposition with the HNN
base A[0,2] defined as the amalgamated product of A, tAt−1 and t2At−2. It suffices to
prove the following claim.

Claim. The group A[0,2] is not free.

Note that A[0,2] has the presentation

⟨a0, b0, a1, b1, a2, b2 | a1 = b0, b
−1
1 a1b

−1
1 = (b−1

0 a0)
2, a2 = b1, b

−1
2 a2b

−1
2 = (b−1

1 a1)
2⟩.

Using the first and third relations, we eliminate the generators b0 and b1. Thus

A[0,2]
∼= ⟨a0, a1, a2, b2 | r1, r2⟩,

where r1 = (a−1
1 a0)

2a2a
−1
1 a2 and r2 = (a−1

2 a1)
2b2a

−1
2 b2.

Let ϵ = a−1
1 a0 and f = a2a

−1
1 . One checks that {ϵ, f, r1, b2} is a basis for the free

group ⟨a0, a1, a2, b2 | ⟩. Using the substitutions

a0 = f−2ϵ−2r1ϵ, a1 = f−2ϵ−2r1 and a2 = f−1ϵ−2r1,

we see

A[0,2]
∼= ⟨ϵ, f, b2 | r2⟩ ∼= ⟨ϵ, f, b2 | f−2ϵ−2(b2ϵ

2)f(b2ϵ
2)⟩.

We perform two more changes of variables. First we let g = b2ϵ
2 and eliminate b2 to

obtain

A[0,2]
∼= ⟨ϵ, f, g | ϵ−2(gf)2f−3⟩, .

Second, we let h = gf and we eliminate g:

A[0,2]
∼= ⟨ϵ, f, h | ϵ−2h2 = f 3⟩.

We thus see that A[0,2] is a free product of two free groups amalgamated over an
infinite cyclic group. By Lemma 4.1 of [BF94] (see Example 4.2), if the group A[0,2] is
free, then either ϵ−2h2 or f 3 is a basis element in its respective factor. Since neither
element is a basis element (seen for example by abelianizing), the group A[0,2] is not
free. This concludes the proof of the claim.



SPLITTINGS OF KNOT GROUPS 11

5. Splittings of fundamental groups of non-fibered knots over
non-free groups

In Section 4 we saw that we can split the knot group π(52) over a group that is
not free. We will now see that this example can be greatly generalized. We recall the
statement of our first main theorem.

Theorem 5.1. If K is a non-fibered knot, then π(K) admits splittings over non-free
subgroups of arbitrarily large rank.

Proof. Let Σ ⊂ X(K) be a Seifert surface of minimal genus. We write A = π1(X(K)\
Σ× (−1, 1) and B = π1(Σ×−1), and we consider the corresponding splitting

π(K) = ⟨A, t |φ(B) = tBt−1⟩
of (π(K), ϵK) over π1(Σ). Given n ≤ m we consider, as in Section 2.3, the group

A[n,m] = ⟨∗ni=mtiAt−i | tjφ(B)t−1 = tj+1Bt−j−1 (j = n, . . . ,m− 1)⟩.
By Lemma 2.3 the group π(K) splits over the group A[0,n] for any non-negative integer
n.

Claim. There exists an integer m such that A[0,n] is not a free group for any n ≥ m.

As we pointed out in Section 2.3, we have an isomorphism

Ker(ϵK : π(K) → Z) ∼= lim
k→∞

A[−k,k]

where the maps A[−l,l] → A[−k,k] for l ≤ k are monomorphisms. It follows from [FF98,
Theorem 3] that Ker(ϵK) is not locally free; that is, there exists a finitely generated
subgroup of Ker(ϵK) which is not a free group. But this implies that there exists k ∈ N
such thatA[−k,k] is not a free group. We have a canonical isomorphismA[−k,k] ∼= A[0,2k],
and for any n ≥ 2k we have a canonical monomorphism A[0,2k] → A[0,n]. It now follows
that A[0,n] is not a free group for any n ≥ 2k. This concludes the proof of the claim.

To complete the proof of Theorem 5.1 it remains to prove the following claim:

Claim. Writing Hn := A[0,n] we have

lim
n→∞

rk(Hn) = ∞.

Since Σ ⊂ X(K) is not a fiber it follows from [He76, Theorem 10.5] that there exists
an element g ∈ Ar B. By work of Przytycki–Wise (see [PW12b, Theorem 1.1]) the
subgroup B = π1(Σ×−1) ⊂ π(K) is separable. This implies, in particular, that there
exists an epimorphism α : π(K) → G onto a finite group G such that α(g) ̸∈ α(B).
Then

D := α(B)  C := α(A).

Given n ∈ N we denote by αn the restriction of α to Hn ⊂ π(K) and we write
Gn := α(Hn).
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Note that in
Hn = A0 ∗B0 · · · ∗Bn−1 An

the groups Ai, viewed as subgroups of π(K), are conjugate. It follows that the groups
αn(Ai) are conjugate in G. In particular, each of the groups αn(Ai) has order |C|.
The same argument shows that each of the groups αn(Bi) has order |D|. Standard
arguments about fundamental groups of graphs of groups (see, for example, [Se80])
imply that Ker(αn : Hn → Gn) is the fundamental group of a graph of groups,
where the underlying graph G̃ is a connected graph with (n + 1) · |Gn|/|C| vertices
and n · |Gn|/|D| edges. From the Reidemeister-Schreier theorem (see, for example,
[MKS76, Theorem 2.8] and from the fact that Ker(αn : Hn → Gn) surjects onto π1(G̃)
it then follows that

rk(Hn) ≥ 1
|Gn| rk(Ker(αn : Hn → Gn))

≥ 1
|Gn| rk(π1(G̃))

= 1
|Gn|

(
n · |Gn|/|D| − (n+ 1) · |Gn|/|C|+ 1

)
≥ (n+ 1)

(
1
|D| −

1
|C|

)
.

But this sequence diverges to ∞ since |D| < |C|. �

6. Splittings of fundamental groups of non-fibered knots over free
groups

6.1. Statement of the theorem. Lyon [Ly71, Theorem 2] showed that there exists
a non-fibered knot K of genus one that admits incompressible Seifert surfaces of
arbitrarily large genus (see also [Sce67, Gu81, Ts04] for related examples). By the
discussion in Section 3, this implies that π(K) splits over free groups of arbitrarily
large rank.

Splitting along incompressible Seifert surfaces is a convenient way to produce knot
group splittings. Yet there are many non-fibered knots that have unique incompress-
ible Seifert surfaces (see, for example, [Wh73, Ly74a, Ka05]). For such a knot, Seifert
surfaces gives rise to only one type of knot group splitting.

In Section 4 we saw an example of a splitting of a knot group over a free group
that is not induced by an embedded surface. We generalize the example in our second
main theorem. We recall the statement.

Theorem 6.1. Let K be a non-fibered knot. Then for any integer k ≥ 2g(K) there
exists a splitting of π(K) over a free group of rank k.

The key to extending the result in Section 4 is the following theorem, which we
will prove in the next subsection.

Theorem 6.2. Let K be a non-fibered knot. Then there exists a Seifert surface Σ
of minimal genus such that for a given base point p ∈ Σ = Σ × 0 there exists a
nontrivial element g ∈ π1(S

3 \Σ× (0, 1), p) such that the subgroup of π(K) generated
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by π1(Σ× 0, p) and g is the free product of π1(Σ× 0, p) and the infinite cyclic group
⟨g⟩.

Theorem 6.1 is now a consequence of Theorem 6.2 and the following proposition
about HNN decompositions.

Proposition 6.3. Assume that (π, ϵ) splits over a free group F of rank n with base
group A. If there exists an element g ∈ A such that the subgroup of π generated by
F and g is the free product F ∗ ⟨g⟩, then (π, ϵ) splits over free groups of every rank
greater than n.

Proof. By hypothesis we can identify π with

⟨A, t | φ(xi) = txit
−1 (1 ≤ i ≤ n)⟩,

where x1, . . . , xn generate the group F and where ϵ is given by ϵ(t) = 1 and ϵ(A) = 0.
The kernel of the second-factor projection F ∗ ⟨g⟩ → ⟨g⟩ = Z is an infinite free

product ∗{giFg−i | i ∈ Z}. Let l be any positive integer. Choose a nontrivial element
z ∈ F and define zi = gizg−i, for 1 ≤ i ≤ l. Then F ′ = ⟨F, z1, . . . , zl⟩ is a free
subgroup of F ∗ ⟨g⟩ with rank n+ l. By hypothesis F ′ is then also a free subgroup of
A of rank n+ l.

Note that π is canonically isomorphic to

⟨A, c1, . . . , cl, t | φ(xi) = txit
−1, cj = tzjt

−1(1 ≤ i ≤ n, 1 ≤ j ≤ l)⟩.
We denote by A′ the free product of A and ⟨c1, . . . , cl⟩, and we denote by φ′ the
unique homomorphism

φ′ : F ′ = F ∗ ⟨z1, . . . , zl⟩ → A′ = A ∗ ⟨c1, . . . , cl⟩
that extends φ and that maps each zj to cj. Since φ′ is the free product of two
isomorphisms, it is also an isomorphism. We then have a canonical isomorphism

π ∼= ⟨A′, t | φ′(F ′) = tF ′t−1⟩.
We have thus shown that (π, ϵ) splits over the free group F ′ of rank n+ l. �
6.2. Proof of Theorem 6.2. To prove Theorem 6.2 we will need to discuss the JSJ
pieces of knot complements. (See [AFW12] for exposition about JSJ decompositions.)
It is therefore convenient to generalize a few notions for knots to more general 3-
manifolds.

Given a 3-manifold N , we can associate to each class ϵ ∈ H1(N ;Z) its Thurston
norm xN(ϵ), which is defined as the minimal ‘complexity’ of a surface dual to ϵ. We say
that a class ϵ ∈ H1(N ;Z) is fibered if there exists a fibration p : N → S1 such that the
induced map p∗ : π1(N) → π1(S

1) = Z agrees with ϵ ∈ H1(N ;Z) = Hom(π1(N),Z).
It is well known that given a non-zero d ∈ Z, the class ϵ is fibered if and only if dϵ is
fibered. Note that given a non-trivial knot K ⊂ S3 we have xX(K)(ϵK) = 2g(K)− 1,
and ϵK is fibered if and only if K is fibered. We refer to [Th86] for background and
more information.
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We will need the following theorem, which in particular implies Theorem 6.2 in the
case that S3 \ νK is hyperbolic.

Theorem 6.4. Let N be a hyperbolic 3-manifold and let Σ be a properly embedded,
connected Thurston norm-minimizing surface that is not a fiber surface. We write
M = N \ Σ × (0, 1) and we pick a base point p on Σ × 0 = Σ. Then there exists
a nontrivial element g ∈ π1(M, p) such that the subgroup of π1(M, p) generated by
π1(Σ, p) and g is the free product of π1(Σ, p) and ⟨g⟩.

Proof. Let N be a hyperbolic 3-manifold. We denote by T1, . . . , Tk the boundary com-
ponents of N . Let Σ be a properly embedded, connected Thurston norm-minimizing
surface that is not a fiber surface. We write M = N \ Σ× (0, 1) and we pick a base
point p on Σ× 0 = Σ. We now take all fundamental groups with respect to this base
point. It follows again from the Loop Theorem and the fact that Σ is Thurston norm-
minimizing that the inclusion-induced map Γ := π1(Σ) → π1(M) is a monomorphism.
We will henceforth view Γ = π1(Σ) as a subgroup of π1(M).

We first suppose that Σ hits all boundary components of N . Since Σ is not a fiber
surface, it follows from the Tameness Theorem of Agol [Ag04] and Calegari–Gabai
[CG06] that π1(M) is word-hyperbolic and that Γ = π1(Σ) is a quasi-convex subgroup
of π1(M). (We refer to [Wi12a, Sections 14 and 16] for more details.) It then follows
from work of Gromov [Gr87, 5.3.C] (see also [Ar01, Theorem 1]) that there exists an
element g ∈ π1(M) such that the subgroup of π1(M) generated by Γ and g is in fact
the free product of Γ and ⟨g⟩.

We now suppose that there exists a boundary component Ti that is not hit by
Σ. We pick a path in M connecting Ti to the chosen base point and we henceforth
view π1(Ti) as a subgroup of π1(M). Note that π1(N) is hyperbolic relative to the
subgroups π1(T1), . . . , π1(Tk). Since Σ is not a fiber surface, it follows from the Tame-
ness Theorem and from work of Hruska [Hr10, Corollary 1.3] that Γ is a relatively
quasi-convex subgroup of π1(N). Since Γ is a non-abelian surface group we can find
an element g ∈ Γ such that ⟨g⟩ ∩ π1(Ti) is trivial. We see again from the Tameness
Theorem that ⟨g⟩ is a relatively quasi-convex subgroup of π1(N).

Summarizing, we have shown that π1(Σ) and ⟨g⟩ are two relatively quasi-convex
subgroups of π1(N) which have trivial intersection with the parabolic subgroup π1(Ti).
It now follows from Martinez-Pedroza [MP09, Theorem 1.2] that there exists a h ∈
π1(Ti) such that the subgroup of π1(N) generated by Γ and hgh−1 is the free product
of Γ and ⟨hgh−1⟩. The proposition now follows from the observation that according
to our choices, both Γ and ⟨hgh−1⟩ lie in π1(M). �

We can now prove Theorem 6.2. For the reader’s convenience we recall the state-
ment.

Theorem 6.5. Let K be a non-fibered knot. Then there exists a Seifert surface Σ of
minimal genus and a nontrivial element g ∈ π1(S

3 \Σ× (0, 1)) such that the subgroup
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generated by π1(Σ × 0) and g is the free product of π1(Σ × 0) and the infinite cyclic
group ⟨g⟩.
Proof. Let K be a non-fibered knot. We write X = S3 \ νK. We denote by Xv, v ∈
V , the JSJ components, and we denote by Tϵ, ϵ ∈ E, the JSJ tori of X. We let
ϵ ∈ H1(X;Z) = Hom(H1(X);Z),Z) ∼= Z be the generator that corresponds to the
canonical homomorphism ϵK : H1(X;Z) → Z. For each v ∈ V , we denote by ϵv ∈
H1(Xv;Z) the restriction of ϵ to Xv.

The pair (V,E) has a natural graph structure, since each JSJ torus cobounds two
JSJ components. Since X is a knot complement, this graph is a based tree, where the
base is the vertex b ∈ V for which Xb contains the boundary torus. We now denote
by Tb the boundary torus of X, and for each v ̸= b we denote by Tv the unique JSJ
torus which is a boundary component of Xv and which separates Xv from Xb.

Claim. There exists an element w ∈ V such that Xw is hyperbolic and such that
ϵw ∈ H1(Xw;Z) is not a fibered class.

We say that a vertex v ∈ V is non-fibered if ϵv ∈ H1(Xv;Z) is not a fibered class.
Since ϵ = ϵK is by assumption not fibered, it follows from [EN85, Theorem 4.2] that
some vertex is not fibered. Let w ∈ V be a non-fibered vertex of minimal distance to
b.

Note that if v ∈ V is fibered and if ϵv is non-trivial, then the restriction of ϵv to
any boundary torus is also non-trivial. Since ϵb is non-trivial and since w ∈ V is a
non-fibered vertex of minimal distance to b, we conclude that the restriction of ϵw to
Tw is non-trivial.

It follows from the Geometrization Theorem and from [JS79, Lemma VI.3.4] that
Xw is one of the following:

(1) the exterior of a torus knot;
(2) a ‘composing space’, that is, a product S1 ×Wn, where Wn is the result of

removing n open disjoint disks from D2;
(3) a ‘cable space’, that is, a manifold obtained from a solid torus S1 × D2 by

removing an open regular neighborhood in S1 × Int(D2) of a simple closed
curve c that lies in a torus S1 × s, where s ⊂ Int(D2) is a simple closed curve
and c is non-contractible in S1 ×D2;

(4) a hyperbolic manifold.

As we argued above, the restriction of ϵw ∈ H1(Xw;Z) to one of the boundary tori,
namely Tw, is non-trivial. It is well known that in each of the first three cases, this
would imply that ϵw is a fibered class. Hence Xw must be hyperbolic. This concludes
the proof of the claim.

In the following, given a vertex v with ϵv non-zero, we denote by dv ∈ N the
divisibility of ϵv ∈ H1(Xv;Z). For all other vertices we write dv = 0.

Claim. There exists a minimal genus Seifert surface Σ for K with the following prop-
erties:
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(1) Σ intersects each Te transversally;
(2) each intersection Σ ∩ Te consists of a possibly empty union of parallel, non-

null-homologous curves;
(3) for each v with dv ̸= 0 the surface Σv := Σ ∩ Xv is the union of dv parallel

copies of a surface Σ′
v.

For each v with dv ̸= 0 we pick a properly embedded Thurston norm-minimizing
surface Σ′

v that represents 1
dv
ϵv. After possibly gluing in annuli and disks, we may

assume that at each boundary torus T of Nv, all the components of Σ′
v∩T are parallel

as oriented curves and no component of Σ′
v ∩ T is null-homologous. We now pick a

tubular neighborhood Σ′
v × [−1, 2] of Σ′

v and we denote by Σv the union of Σ′
v × ri

where ri =
i
dv

with i = 0, . . . , dv − 1. For each v with dv = 0 we denote by Σ′
v = Σv

the empty set.
The surfaces Σv are chosen such that at each JSJ torus the boundary curves are

parallel. Since at a JSJ edge the adjacent surfaces have to represent the same homol-
ogy class, at each JSJ torus the adjacent surfaces have exactly the same number of
boundary components which furthermore represent the same homology class in the
JSJ torus. After an isotopy in the neighborhood of the tori we can therefore glue the
surfaces Σv together to obtain a properly embedded surface Σ. Since the Thurston
norm is linear on rays, it follows from [EN85, Proposition 3.5] that Σ is a connected
Thurston norm-minimizing surface representing ϵ. By construction, the intersection
of Σ with ∂X consists of one curve, which is necessarily a longitude for K. We thus
see that Σ is indeed a genus-minimizing Seifert surface for K. It is now clear that Σ
has the desired properties. This concludes the proof of the claim.

Recall that ϵw ∈ H1(Xw;Z) is not a fibered class. By the discussion at the beginning
of this section, this implies that 1

dw
ϵw is also not a fibered class, and so Σ′

w is not a
fiber surface.

We pick a base point pw on Σ′
w = Σ′

w × 0, which is then also a base point for Xw.
It follows from Theorem 6.4 that there exists an element g ∈ π1(Xw \Σ′

w × (0, 1), pw)
such that the subgroup of π1(Xw \ Σ′

w × (0, 2], pw) generated by π1(Σ
′
w, pw) and g is

in fact the free product of π1(Σ
′
w, pw) and ⟨g⟩. It now remains to prove the following

claim.

Claim. The subgroup of π1(X, pw) generated by π1(Σ, pw) and g is the free product
of π1(Σ, pw) and ⟨g⟩.

We may pick an oriented simple closed curve c in Xw \ Σ′
w × (0, 2] that intersects

Σ′
w = Σ′

w × 0 in precisely the base point pw and that represents g ∈ π1(Xw \ Σ′
w ×

(0, 2], pw). Note that π1(Σ ∪ c, pw) is precisely the free product of π1(Σ, pw) and ⟨g⟩.
It thus suffices to show that the inclusion-induced map

π1(Σ ∪ c, pw) → π1(X, pw)

is injective.
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JSJ tori Te

JSJ torus Tu

JSJ component Xu

Seifert surface Σ

JSJ components Xv

hyperbolic non-fibered
JSJ component Xw

knot K

curve c

Figure 2. Schematic picture for the Seifert surface Σ and the curve c.

Let h be an element in the kernel of this map. We pick a representative curve d
which intersects the JSJ tori transversally. We will show that h represents the trivial
element in π1(Σ ∪ c, pw) by induction on

n(d) :=
∑
v∈V

#components of d ∩Xv.

If n(d) = 1, then d lies in the component of (Σ∪w)∩Xw = Σw∪c that contains pw.
Then c lies completely in Σ′

w ∪ c. But the map π1(Σ
′
w ∪ c, pw) = π1(Σ

′
w, pw) ∗ ⟨g⟩ →

π1(Xw) is injective, and the map π1(Xw) → π1(X) is also injective. It thus follows
that h is the trivial element.

We now consider the case that n := n(d) > 1. We then think of π1(X) as the
fundamental group of the graph of groups π1(Xv). We can view the curve d as a
concatenation of curves d1, . . . , dn such that each curve di lies completely in some Xu.
Recall that we assume that d represents the trivial element. A standard argument in
the theory of fundamental groups of graph of groups (see e.g. [He87]) implies that
there exists a di with the following two properties:

(1) the two endpoints of di lie on the same boundary torus T of some Xu,
(2) di is homotopic in Xu rel endpoints to a curve si that lies completely in T .
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Note that the two endpoints of di lie on T ∩ Σu. In fact we can prove a stronger
statement.

Claim. The two endpoints of di lie on the same component of T ∩ Σu.

We first make the following observation. Let S be a properly oriented embedded
surface S in an oriented 3-manifold M and let a be an oriented embedded arc that
does not intersect S at the endpoints. We can then associate to S and a the algebraic
intersection number S · a ∈ Z, which has in particular the following two properties:

(1) for any properly oriented embedded arc b homotopic to a rel base points we
have S · a = S · b,

(2) if a lies completely in a boundary component B of M , then S · a equals the
algebraic intersection number of the oriented curve ∂S with the oriented arc
a in B.

We now turn to the proof of the claim. We first note that there exists a home-
omorphism r : Xu → Xu which is the identity on Xu \ Σ′

u × (−1, 2), which has the
property that for any x× t with x ∈ Σ′

u and t ∈ [0, 1] we have

f(x× t) = x× (t− 1

2dv
)

and which is isotopic to the identity on Xu. More informally, r is a map that pushes
everything on Σ× [0, 1] slightly to the left. Note that r pushes everything on Σu off
Σu. Furthermore, if u = w, then the intersection of r(Σw ∪ c) with Σw is also empty.

Since si and di are homotopic rel base points and since r is homotopic to the
identity, the curves r(si) and r(di) are homotopic rel base points. It follows from the
above that Σu · r(si) = Σu · r(di). But the latter is clearly zero, since r(di) does not
intersect Σu. We now conclude that ∂Σu · r(si) = Σu · r(si) = 0. Since the curves
∂Σu ∩T are all parallel it now follows that r(si) does not intersect Σu ∩T at all. But
this means that the two endpoints of si, and thus also the two endpoints of di, have
to lie on the same component of T ∩ Σu. This concludes the proof of the claim.

We then make the following claim.

Claim. The curve di is homotopic inXu rel end points to a curve d′i that lies completely
in T ∩ Σu.

By the previous claim we know that the two endpoints of di lie on the same com-
ponent of T ∩ Σu. We denote the initial point of di by P , and the terminal point
by Q. We denote by r the component of ∂Σu that contains P . We endow r with an
orientation. Note that r is homologically essential on T . The curve r thus defines a
subsummand ⟨r⟩ of π1(T, P ) ∼= Z2.

We also pick a curve ti in T ∩ Xu from P to Q. The concatenation sit
−1
i lies

in T , and also lies in (Σ ∪ c) ∩ Xu. The curve sit
−1
i thus represents an element in

π1((Σ ∪ c) ∩Xu, P ) ∩ π1(T, P ). But the group π1((Σ ∪ c) ∩Xu, P ) is free (regardless
of whether c lies on the P -component of (Σ ∪ c) ∩ Xu or not) whereas π1(T, P ) ∼=
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Z2. The two groups thus intersect in an infinite cyclic subgroup. Furthermore, the
intersection contains the subsummand ⟨r⟩. It follows that the intersection equals ⟨r⟩.
In particular, s−1

i ti is homotopic rel P to rk for some k. It now follows that relative
to the end points we have the following homotopies:

di ∼ dis
−1
i si ∼ si ∼ sit

−1
i ti ∼ rkti.

But the curve d′i := rkti lies completely in T ∩ Σu. This concludes the proof of the
claim.

We can thus replace d = d1 . . . di−1didi+1 . . . dl by d1 . . . di−1d
′
idi+1 . . . dl and push d′i

slightly into the adjacent JSJ component of X. We have found a representative of h
of smaller length than d. The claim that h represents the trivial element now follows
by induction.

This concludes the proof that the subgroup of π1(X \ Σ× (0, 2], pw) generated by
π1(Σ, pw) and g is the free product of π1(Σ, pw) and ⟨g⟩. We are therefore done with
the proof of Theorem 6.5. �

7. Comparison with Stallings’s fibering criterion

Let K be a knot. Recall that we denote by ϵK : π(K) → Z the unique epimorphism
that sends the oriented meridian to 1. Stallings [St62] proved the following theorem.

Theorem 7.1. If K is not fibered, then Ker(ϵK) is not finitely generated.

It follows from Lemma 2.2 that if Ker(ϵK) is finitely generated, then there exists
precisely one group B such that π(K) splits over B. Thus Stalling’s theorem follows
as a consequence of either Theroem 5.1 or Theorem 6.1.

On the other hand, a group π with an epimorphism ϵ : π → Z such that Ker(ϵ) is not
finitely generated may still split over a unique group. The Baumslag-Solitar group,
the semidirect product ZnZ[1

2
] where n ∈ Z acts on Z[1

2
] by multiplication by 2n, has

abelianization Z. The kernel of the abelianization ϵ : π → Z is the infinitely generated
subgroup Z[1

2
]. Since every finitely generated subgroup of Z[1

2
] is isomorphic to Z,

Z n Z[1
2
] splits only over subgroups isomorphic to Z. (In fact, any two splittings are

easily seen to be strongly equivalent.) This shows that the conclusions of Theorems
5.1 and 6.1 are indeed stronger than the conclusion of Theorem 7.1.

Stallings’s fibering criterion has been generalized in several other ways. For exam-
ple, if K is not fibered, then Ker(ϵ) can be written neither as a descending nor as
an ascending HNN-extension [BNS87], Ker(ϵ) admits uncountably many subgroups
of finite index (see [FV12c, Theorem 5.2], [SW09a] and [SW09b, Theorem 3.4]), the
pair (π(K), ϵK) has ‘positive rank gradient’ (see [DFV12, Theorem 1.1]) and Ker(ϵK)
admits a finite index subgroup which is not normally generated by finitely many
elements (see [DFV12, Theorem 5.1]).
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8. Proof of Theorem 1.3

In this section we will prove Theorem 1.3, i.e. we will show that if K is a knot,
then π(K) does not split over a group of rank less than 2g(K). We will first give a
‘classical’ proof for genus-one knots before we provide the proof for all genera.

8.1. Genus-one knots. In this subsection we prove:

Theorem 8.1. If K is a genus-one knot, then π(K) does not split over a free group
of rank less than two.

The main ingredients in the proof are two classical results from 3-manifold topology.
First, we recall the statement of the Kneser Conjecture, which was first proved by
Stallings [St59] in the closed case, and by Heil [Hei72, p. 244] in the bounded case.

Theorem 8.2. (Kneser Conjecture) Let N be a 3-manifold with incompressible
boundary. If there exists an isomorphism π1(N) ∼= Γ1 ∗ Γ2, then there exist compact,
orientable 3-manifolds N1 and N2 with π1(Ni) ∼= Γi, i = 1, 2 and N ∼= N1#N2.

In the following, we say that a properly embedded 2-sided annulus A in a 3-manifold
N is essential if the inclusion map A ↪→ N induces a π1-injection and if A is not
properly homotopic into ∂N . The second classical result we will use is the following,
which is a direct consequence of a theorem of Waldhausen [Wal68b] (see Corollary
1.2(i) of [Sco80]).

Theorem 8.3. Let N be an irreducible 3-manifold with incompressible boundary. If
π1(N) splits over Z, then N contains an essential, properly embedded 2-sided annulus.

We turn to the proof of Theorem 8.1.

Proof of Theorem 8.1. Let K be a genus-one knot. Since K is non-trivial, the Loop
Theorem implies that ∂X(K) is incompressible. Since knot complements are prime
3-manifolds, it now follows from the Kneser Conjecture that π(K) can not split over
the trivial group, i.e. π(K) cannot split over a free group of rank zero.

Now suppose that J is a non-trivial knot such that π(J) splits over a free group
of rank one, that is, over a group isomorphic to Z. From Theorem 8.3 we deduce
that X(J) contains an essential, properly embedded, 2-sided annulus A. Lemma 2 of
[Ly74a] (an immediate consequence of [Wal68a]) implies that the knot J is either a
composite or a nontrivial cable knot. If J is a composite knot, then it follows from
the additivity of the knot genus (see, for example, [Ro90, p. 124]) that the genus of
J is at least two. Moreover, a well-known result of Schubert [Sct53] (see Proposition
2.10 of [BZ85]) implies that the genus of any cable knot is greater than one. Thus in
both cases we see that g(J) ≥ 2.

We now see that for the genus-one knot K the group π(K) cannot split over a free
group of rank one. �
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8.2. Wada’s invariant. For the proof of Theorem 1.3 we will need Wada’s invariant,
which is also known as the twisted Alexander polynomial or the twisted Reidemeister
torsion of a knot.

We introduce the following convention. If π is a group and γ : π → GL(k,R) a
representation over a ring, then we denote by γ also the Z-linear extension of γ to
a map Z[π] → M(k,R). Furthermore, if A is a matrix over Z[π] then we denote by
γ(A) the matrix given by applying γ to each entry of A.

Let π be a group, ϵ : π → Z an epimorphism, and α : π → GL(k,C) a representa-
tion. First note that α and ϵ give rise to a tensor representation

α⊗ ϵ : π → GL(k,C[t±1])
g 7→ tϵ(g) · α(g).

Now let

π = ⟨g1, . . . , gk | r1, . . . , rl⟩
be a presentation of π. By adding trivial relations if necessary, we may assume
that l ≥ k − 1. We denote by Fk the free group with generators g1, . . . , gk. Given
j ∈ {1, . . . , k} we denote by ∂

∂gj
: Z[Fk] → Z[Fk] the Fox derivative with respect to gj,

i.e. the unique Z-linear map such that

∂gi
∂gj

= δij,

∂uv

∂gj
=

∂u

∂gj
+ u

∂v

∂gj

for all i, j ∈ {1, . . . , k} and u, v ∈ Fk. We denote by

M :=

(
∂ri
∂gj

)
the l × k-matrix over Z[π] of all the Fox derivatives of the relators. Given subsets
I = {i1, . . . , ir} ⊂ {1, . . . , k} and J = {j1, . . . , js} ⊂ {1, . . . , l} we denote by MJ,I the
matrix formed by deleting the columns i1, . . . , ir and by deleting the rows j1, . . . , js
of M .

Note that there exists at least one i ∈ {1, . . . , k} such that ϵ(gi) ̸= 0. It follows
that

det((α⊗ ϵ)(1− gi)) = det
(
idk − tϵ(gi)α(gi)

)
̸= 0.

We define

Qi := gcd{det((α⊗ ϵ)(MJ,{i})) | J ⊂ {1, . . . , l} with |J | = l + 1− k}.
(Note that each MJ,{i} is a (k − 1) × (k − 1)-matrix.) It is worth considering the
special case that l = k− 1; that is, the case of a presentation of deficiency one. Then
the only choice for J is the empty set, and hence

Qi = det((α⊗ ϵ)(M∅,{i})).
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Wada [Wad94] introduced the following invariant of the triple (π, ϵ, α).

∆α
π,ϵ := Qi · det((α⊗ ϵ)(1− gi))

−1 ∈ C(t).

A priori, Wada’s invariant depends on the various choices we made. The following
theorem proved by Wada [Wad94, Theorem 1] shows that the indeterminacy is well
controlled.

Theorem 8.4. Let π be a group, let ϵ : π → Z be an epimorphism, and let α : π →
GL(k,C) be a representation. Then ∆α

π,ϵ is well-defined up to multiplication by a

factor of the form ±tkr, where k ∈ Z and r ∈ C∗.

Finally, let K ⊂ S3 be a knot and let α : π(K) → GL(k,C) be a representation. As
before, we denote by ϵ : π(K) → Z the epimorphism that sends the oriented meridian
of K to 1. We write

∆α
K = ∆α

π,ϵ.

If α : π(K) → GL(1,C) is the trivial one-dimensional representation, then Wada’s
invariant is determined by the classical Alexander polynomial ∆K . More precisely,
we have

∆α
K =

∆K

1− t
.

Wada’s invariant equals the twisted Reidemeister torsion of a knot, and is closely
related to the twisted Alexander polynomial of a knot, which was first introduced by
Lin [Lin01]. We refer to [Ki96, FV10] for more details about Wada’s invariant, its in-
terpretation as twisted Reidemeister torsion and its relationship to twisted Alexander
polynomials.

8.3. Proof of Theorem 1.3. Before we provide the proof of Theorem 1.3 we need to
introduce two more definitions. First, given a non-zero polynomial p(t) =

∑s
i=r ait

i ∈
C[t±1] with ar ̸= 0 and as ̸= 0, we write

deg(p(t)) = s− r.

If f(t) = p(t)/q(t) ∈ C(t) is a non-zero rational function, we write

deg(f(t)) = deg(p(t))− deg(q(t)).

Note that if Wada’s invariant of a triple (π, ϵ, α) is non-zero, then the degree of Wada’s
invariant ∆α

π,ϵ is well defined.

We can now formulate the following theorem.

Theorem 8.5. Let π be a group and let

f : π → ⟨A, t | f(B) = tBt−1⟩
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be a splitting. We denote by ϵ : ⟨A, t | f(B) = tBt−1⟩ → Z the canonical epimorphism
which is given by ϵ(t) = 1 and ϵ(a) = 0 for a ∈ A. If α : π → GL(k,C) is a
representation such that ∆α

π,ϵ ̸= 0, then

deg∆α
π,ϵ ≤ k(rk(B)− 1).

In [FKm06] (see also [Fr12]) it was shown that if K is a knot and α : π(K) →
GL(k,C) is a representation such that ∆α

K ̸= 0, then

(2) deg∆α
K ≤ k(2 genus(K)− 1).

In light of the discussion in Section 3, we can view Theorem 8.5 as a generalization
of (2).

Proof. Let π be a group and let

π = ⟨g1, . . . , gk, t | r1, . . . , rl, φ(b) = tbt−1 for all b ∈ B⟩
be a splitting, where φ : B → A is a monomorphism and B is a rank-d subgroup of
A = ⟨g1, . . . , gk, t | r1, . . . , rl⟩. We pick generators x1, . . . , xd for B. Note that

⟨g1, . . . , gk, t | r1, . . . , rl, φ(b) = tbt−1 for all b ∈ B⟩
= ⟨g1, . . . , gk, t | r1, . . . , rl, φ(x1)−1tx1t

−1, . . . , φ(xd)
−1txdt

−1⟩.
We write K := Ker(ϵ).

We denote by M the (l+ d)× (k+1)-matrix over Z[π] that is given by all the Fox
derivatives of the relators. We make the following observations.

(1) The relators r1, . . . , rl are words in g1, . . . , gk. The Fox derivatives of the ri
with respect to the gj thus lie in Z[K].

(2) For any i ∈ {1, . . . , k} and j ∈ {1, . . . , r} we have

∂

∂gi

(
φ(xj)

−1txjt
−1
)
=

∂

∂gi

(
φ(xj)

−1
)
+ φ(xj)

−1t
∂

∂gi
xj.

The same argument as in (1) shows that the first term lies in Z[K], and one
can similarly see that the second term is of the form t · g, where g ∈ Z[K].

Thus M∅,{k+1}, the matrix obtained from M by deleting the (k + 1)-st column, is of
the form

M∅,{k+1} = P + tQ,

where P and Q are matrices over Z[K], and where all but the last d rows of Q are
zero.

Let α : π → GL(k,C) be a representation and J ⊂ {1, . . . , d + l} a subset with
|J | = d+ l − k. It follows from the above that

MJ,{k+1} = PJ + tQJ ,

where PJ and QJ are matrices over Z[K] and where at most d rows of QJ are non-zero.
We then see that

det((α⊗ ϵ)(MJ,{k+1})) = det(α(PJ) + tα(QJ)),
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where at most kr rows of α(QJ) are non-zero. If det(α(PJ) + tα(QJ)) is non-zero,
then it follows from an elementary argument that

deg(det(α(PJ) + tα(QJ))) ≤ kr.

We now consider

Q := gcd{det((α⊗ ϵ)(MJ,{k+1})) | J ⊂ {1, . . . , l} with |J | = d+ l − k}.
By the above, if Q ̸= 0, then deg(Q) ≤ kr.

Since ϵ(t) = 1,

∆α
π,ϵ = Q · det((α⊗ ϵ)(1− t))−1 = Q · det(idk − α(t)t)−1 ∈ C(t).

Finally, we suppose that ∆α
π,ϵ ̸= 0. By the above, this implies that Q ̸= 0. In

particular, we see that

deg(∆α
π,ϵ) = deg (Q · det(idk − α(t)t)))

= deg(Q)− deg(det(idk − α(t)t))
= deg(Q)− k
≤ kr − k = k(rkB − 1).

This concludes the proof of the theorem. �
The last ingredient in the proof of Theorem 1.3 is the following result from [FV12a].

The proof of the theorem builds on the virtual fibering theorem of Agol [Ag08]
(see also [FKt12]), which applies for knot complements by the work of Liu [Liu11],
Przytycki-Wise [PW11, PW12a] and Wise [Wi09, Wi12a, Wi12b].

Theorem 8.6. Let K be a knot. Then there exists a representation α : π(K) →
GL(k,C) such that ∆α

K ̸= 0 and such that

deg∆α
K = k(2g(K)− 1).

In [FV12a, Theorem 1.2] an analogous statement is formulated for twisted Rei-
demeister torsion instead of Wada’s invariant. The theorem, as stated, now follows
from the interpretation (see, for example, [Ki96, FV10]) of Wada’s invariant as twisted
Reidemeister torsion.

We can now formulate and prove the following result, which is equivalent to The-
orem 1.3.

Theorem 8.7. Let K be a knot. If π(K) splits over a group B, then rk(B) ≥ 2g(K).

Proof. Let K be a knot and let

f : π(K) → π = ⟨A, t |φ(B) = tBt−1⟩
be an isomorphism. We denote by ϵ : ⟨A, t |φ(B) = tBt−1⟩ → Z the canonical epi-
morphism which is given by ϵ(t) = 1 and ϵ(a) = 0 for a ∈ A.

Note that ϵ ◦ f : π(K) → Z is an epimorphism. In particular, it sends the meridian
to either 1 or −1. By possibly changing the orientation of the knot, we can assume
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that ϵ ◦ f : π(K) → Z sends the meridian to 1. By Theorem 8.6, there exists a
representation α : π(K) → GL(k,C) such that ∆α

K ̸= 0 and such that

deg∆α
K = k(2g(K)− 1).

By definition, we have

∆α
K = ∆α

π(K),ϵ◦f = ∆α
π,ϵ.

Theorem 8.5 implies that

rk(B) ≥ 1

k
deg

(
∆α
π,ϵ

)
+ 1 =

1

k
deg (∆α

K) + 1 = 2g(K).

�
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