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Abstract. Let N be an irreducible, compact 3-manifold with
empty or toroidal boundary which is not a closed graph manifold.
We show that it follows from the work of Agol, Kahn-Markovic and
Przytycki-Wise that π1(N) admits a cofinal filtration with ‘fast’
growth of Betti numbers as well as a cofinal filtration of π1(N)
with ‘slow’ growth of ranks.

1. Introduction

A filtration of a group π is a sequence {πi}i∈N of finite index sub-
groups of π such that πi+1 ⊂ πi for every i. We say that a filtration
is cofinal if ∩i∈Nπi is trivial, we call it normal if πi C π for every i,
and we say it is almost normal if there exists a k such that πi C πk for
every i ≥ k. A group which admits a cofinal normal filtration is called
residually finite.

Given a filtration {πi}i∈N of a group π it is of interest to study how
the following measures of ‘complexity’ grow:

(1) the first Betti number b1(πi) = dimH1(πi;Q),
(2) the Fp-Betti numbers b1(πi,Fp) = dimH1(πi;Fp),
(3) the rank d(πi), i.e. the minimal size of a generating set,
(4) the order of TorH1(πi;Z).

Such growth functions have been studied for 3-manifold groups by
many authors over the years. We refer to [CE10, CW03, De10, EL12,
Gi10, GS91, KMT03, La09, La11, Le10, Lü94, LL95, KS12, Ra10, Ri90,
ShW92, SiW02a, SiW02b, Wa09] for a sample of results in this direc-
tion. It is clear that given any group π we have d(π) ≥ b1(π), i.e. given
a filtration the ranks grow at least as fast as the Betti numbers.

Now let N be a 3-manifold. Throughout this paper we will use
the following convention: a 3-manifold will always be assumed to be
connected, compact, orientable and irreducible with empty or toroidal
boundary. By [He87] the group π1(N) is residually finite. In this
paper we are interested in how fast Betti numbers can grow in a cofinal
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filtration of π1(N) and how slowly the ranks can grow in a cofinal
filtration of π1(N).

First note that given any cofinal normal filtration {πi}i∈N of π =
π1(N) it follows from the work of Lück [Lü94, Theorem 0.1] and Lott
and Lück [LL95, Theorem 0.1] that

(1.1) lim
i→∞

1

[π : πi]
b1(πi) = 0,

i.e. the first Betti number grows sublinearly. The same equality also
holds for almost normal cofinal filtrations of π1(N) if we apply the
aforementioned results to an appropriate finite cover of N .

Remark. Note that (1.1) does not necessarily hold for cofinal filtrations
of π1(N) which are not almost normal. In fact Girão [Gi10] (see proof
of [Gi10, Theorem 3.1]) gives an example of a cusped hyperbolic 3-
manifold together with a cofinal filtration of {πi}i∈N of π = π1(N) such
that

lim
i→∞

1

[π : πi]
b1(πi) > 0.

It is an interesting question how quickly 1
[π:πi]

b1(πi) converges to zero,

and to what degree the convergence depends on the choice of normal
cofinal filtration of π = π1(N). This question for example was recently
studied by Kionke and Schwermer [KS12].

We will use recent work of Agol [Ag12] (which in turn builds on work
of Kahn-Markovic [KM12] and Wise [Wi12]) to prove the following
theorem which says that ‘most’ 3-manifolds admit cofinal filtrations
with ‘fast’ sublinear growth of first Betti numbers.

Theorem 1.1. Let N 6= S1×D2 and N 6= T 2×I be a 3-manifold which
is neither spherical nor covered by a torus bundle. Then the following
hold:

(1) Given any function f : N→ R≥0 such that

lim
n→∞

f(n)

n
= 0

there exists an almost normal cofinal filtration {πi}i∈N of π such
that

b1(πi) ≥ f([π : πi]) for every i ∈ N.
(2) There exists a normal cofinal filtration {πi}i∈N of π = π1(N)

and an ε ∈ (0, 1) such that

b1(πi) ≥ [π : πi]
ε for every i ∈ N.
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We now turn to the construction of cofinal filtrations with ‘slow’
growth of ranks. First note that if H is a finite index subgroup of
a finitely generated group G, then it follows from the Reidemeister-
Schreier method (see e.g. [MKS76, Corollary 2.7.1]) that

d(H) ≤ [G : H] · (d(G)− 1) + 1 ≤ [G : H] · d(G).

In particular if {πi}i∈N is a cofinal filtration of a group π, then

1

[π : πi]
d(πi) ≤ d(π) for every i.

Put differently, the rank grows at most linearly with the degree.
We will again use the recent work of Agol, Kahn-Markovic and Wise

together with work of Przytycki-Wise [PW12] to prove the following
theorem which says that ‘most’ 3-manifolds admit cofinal filtrations
with ‘slow’ growth of ranks.

Theorem 1.2. Let N be a 3-manifold which is not a closed graph
manifold.

(1) Given any function f : N→ R≥0 with

lim
n→∞

f(n) =∞

there exists an almost normal cofinal filtration {πi}i∈N of π such
that

d(πi) ≤ f([π : πi]) for every i ∈ N.
(2) There exists a normal cofinal filtration {πi}i∈N of π1(N) and an

ε ∈ (0, 1) such that

d(πi) ≤ [π : πi]
ε for every i ∈ N.

Acknowledgment. We wish to thank Jack Button, Thang Le and
Wolfgang Lück for helpful conversations and feedback. We are also
grateful to the anonymous referees for carefully reading an earlier ver-
sion of the paper and for giving helpful feedback.

2. Proofs

2.1. 3-manifold groups. The world of 3-manifold topology was shaken
up considerably by the recent breakthroughs due to Agol, Kahn-Markovic,
Przytycki-Wise and Wise. In particular the following is a consequence
of these recent results:

Theorem 2.1. Let N be a 3-manifold.
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(1) Suppose that N 6= S1×D2 and N 6= T 2×I and suppose that N is
neither spherical nor covered by a torus bundle. Then π1(N) is
large, i.e. π1(N) contains a finite index subgroup which admits
an epimorphism onto a non-cyclic free group.

(2) Suppose that N is not a closed graph manifold. Then N is
virtually fibered, i.e. N admits a finite index cover which fibers
over S1.

The first statement is a consequence of the ‘Virtually Compact Spe-
cial Theorem’ of Agol [Ag12] (building on work of Kahn-Markovic
[KM12] and Wise [Wi12]) and older work of Kojima [Ko87] and Luecke
[Lu88]. The second statement is also a consequence of the ‘Virtu-
ally Compact Special Theorem’ together with further work of Agol
[Ag08] and Przytycki-Wise [PW12]. The fact that graph manifolds with
boundary are fibered follows from earlier work of Wang–Yu [WY97] (see
also [Li11, PW11]). We refer to the survey paper [AFW12] for details
and how this theorem follows precisely from the aforementioned papers.

2.2. Growth of the first Betti number of large groups. In this
section we will several times make use of the basic fact that if ϕ : G→
H is a group homomorphism with finite cokernel, then a transfer ar-
gument shows that H1(G;Q) → H1(H;Q) is surjective, and therefore
b1(G) ≥ b1(H). We start out with the following lemma.

Lemma 2.2. Let Γ be a residually finite group which admits an epi-
morphism α : Γ→ F onto a non-cyclic free group. Let g : N→ R≥0 be
a function such that

lim
n→∞

g(n)

n
= 0.

Then there exists a normal cofinal filtration {Γi}i∈N of Γ such that

b1(Γi) ≥ g([Γ : Γi]) for every i ∈ N.

Proof. Let Γ be a residually finite group which admits an epimorphism
α : Γ→ F onto a non-cyclic free group. Let g : N→ R≥0 be a function

such that limn→∞
g(n)
n

= 0. After possibly replacing g by

n 7→ max{g(1), . . . , g(n)}
we can and will assume that g is monotonically increasing. 1

Let {Gi}i∈N be any normal cofinal filtration of Γ. We denote the
projection maps Γ → Γ/Gi, i ∈ N, by ρi. We write di := [Γ : Gi],

1Note that if limn→∞
g(n)
n = 0 and if we set f(n) := max{g(1), . . . , g(n)}, then

limn→∞
f(n)
n = 0 as well. Indeed, let ε > 0. By assumption there exists an N

such that g(n)
n < ε for all n ≥ N . We now let M be any integer greater than
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i ∈ N. We pick an epimorphism φ : F → Z and given n ∈ N we

denote by φn : F
φ−→ Z → Z/n the canonical projection. We also write

ψn = φn ◦ α.

Since limn→∞
g(n)
n

= 0 we can iteratively pick ni ∈ N with

g(nidi)

nidi
<

1

di
, i.e. such that g(nidi) < ni

and such that ni+1|ni if i > 1. We now define

Γi := Ker{ρi × ψni
: Γ→ Γ/Gi × Z/ni}.

Note that nidi ≥ [Γ : Γi] and note that {Γi}i∈N is a cofinal normal
filtration of Γ. Given any i ∈ N we then have

1
g([Γ:Γi])

b1(Γi) ≥ 1
g(nidi)

b1(Γi)

≥ 1
ni
b1(Ker{ρi × ψni

: Γ→ Γ/Gi × Z/ni})
≥ 1

ni
b1(Ker{φni

: F → Z/ni})
= 1

ni
(nib1(F )− 1) ≥ 1.

�

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let N 6= S1 × D2 and N 6= T 2 × I be a 3-
manifold which is neither spherical nor covered by a torus bundle. By
Theorem 2.1 (1) the group π = π1(N) is large, i.e. it admits a finite
index subgroup Γ which surjects onto a non-cyclic free group. Since
this property is preserved by going to finite index subgroups we can
assume that Γ is a normal subgroup of π. We write k = [π : Γ].

(1) Let f : N → R≥0 be a function with limn→∞
f(n)
n

= 0. After
possibly replacing f by

n 7→ n sup

{
f(n)

n
,
f(n+ 1)

n+ 1
, . . .

}
we can and will assume that f(n)

n
is monotonically decreasing.

We apply Lemma 2.2 to Γ and the function g(n) = kf(n)
and we denote by {Γi}i∈N the resulting cofinal normal filtration

N, 2εg(1), . . . , 2εg(N − 1). For every n ≥M we then have

1
nf(n) = max{ 1ng(1), . . . , 1

ng(N − 1), 1
ng(N), . . . , 1

ng(M)}

≤ max{ 1
M g(1), . . . , 1

M g(N − 1), 1
N g(N), . . . , 1

M g(M)} < ε.
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of Γ. Note that {Γi}i∈N is a cofinal almost normal filtration of
π, and that

b1(Γi) ≥ f([Γ : Γi])[π : Γ]

= f([Γ:Γi])
[Γ:Γi]

[Γ : Γi][π : Γ]

≥ f([π:Γi])
[π:Γi]

[Γ : Γi][π : Γ] = f([π : Γi]).

(2) By Lemma 2.2 there exists a cofinal normal filtration {Γi}i∈N
of Γ such that

b1(Γi) ≥ k
1
2k

√
[Γ : Γi] for every i ∈ N.

We pick a complete set of representatives a1, . . . , ak for π/Γ.
Given i ∈ N we define

πi :=
k⋂
j=1

ajΓia
−1
j .

Note that {πi}i∈N is a normal cofinal filtration of π. Also note
that

πi = Ker{Γ→ Γ/a1Γia
−1
1 × · · · × Γ/akΓia

−1
k }.

It thus follows that

[π : πi] = [π : Γ] · [Γ : πi] ≤ [π : Γ] · [Γ : Γi]
k = k · [Γ : Γi]

k.

Finally note that b1(πi) ≥ b1(Γi), we thus see that for every i
we have

b1(πi) ≥ b1(Γi) ≥ k
1
2k

√
[Γ : Γi] ≥ [π : πi]

1
2k .

�

Remark. It seems unlikely that one can turn the almost normal se-
quence of Theorem 1.1 (1) into a normal sequence without paying a
price. For example consider the group

π = Z/2 n (F × F )

where F is a free non-cyclic group and 1 ∈ Z/2 acts by commuting the
two copies of F . If we apply the principle of the proof of Theorem 1.1
(1) to Γ = F ×F and α : F ×F → F the projection on the first factor
and Γn := Ker{F ×F → F → Z/n}, then if we normalize these groups
we really take the kernel Ker{F × F → F → Z/n × Z/n} but now
the growth of the Betti numbers is sublinear (in fact it grows with the
square root of the index).
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2.3. Growth of the rank of virtually fibered 3-manifolds. In
the following we mean by a surface group G the fundamental group of
a compact orientable surface. We will make use of the following two
facts:

(1) For any surface group G we have b1(G) = d(G).
(2) If H is a finite index subgroup of a surface group G, then an

Euler characteristic argument shows that b1(H) ≤ l · b1(G).

We can now formulate and prove the following lemma.

Lemma 2.3. Let Γ = Z n G be the semidirect product of Z with a
surface group G. Let f : N→ R≥0 be a function with limn→∞ f(n) =∞.
Then there exists a normal cofinal filtration {Γi}i∈N of Γ such that

d(Γi) ≤ f([Γ : Γi]) for every i ∈ N.

Proof. Let G be a surface group. We write r = b1(G). Note that
surface groups are residually finite, in particular there exists a cofinal
filtration {Gi}i∈N of G by characteristic finite index subgroups of G.
(Recall that a subgroup of G is called characteristic if it is preserved
by every automorphism of G.) We write di := [G : Gi], i ∈ N.

We denote by φ : Γ = ZnG→ Z the projection onto the first factor
and given n ∈ N we denote by φn : Γ = ZnG→ Z/n the composition
of φ with the surjection onto Z/n. Since limn→∞ f(n) = ∞ we can
iteratively pick ni ∈ N such that

f(nidi) ≥ 1 + dir,

such that ni divides the order of Aut(G/Gi) and such that ni|ni+1 for
i > 1. We then define Γi := niZ n Gi. Note that Γi, i ∈ N is normal
in Γ = Z n G since Gi ⊂ G is characteristic and since ni divides the
order of Aut(G/Gi). In particular the {Γi}i∈N form a normal cofinal
filtration of Γ. It now follows that

d(Γi) = d(niZ nGi) ≤ 1 + d(Gi) = 1 + b1(Gi)
≤ 1 + dir
≤ f(nidi) = f([Γ : Γi]).

�

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let N be a 3-manifold which is not a closed
graph manifold. We write π = π1(N). By Theorem 2.1 (2) there exists
a finite cover Ñ which fibers over S1, i.e. Γ := π1(Ñ) ∼= ZnG, where G
is a surface group. Since finite covers of fibered 3-manifolds are again
fibered, we can assume that Γ := π1(Ñ) is a normal subgroup of π.
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(1) Let g : N → R≥0 be a function with limn→∞ g(n) = ∞. We
then apply Lemma 2.3 to Γ = Z n G and f(n) := 1

[π:Γ]
g(n).

The resulting filtration is an almost normal cofinal filtration of
π with the desired property.

(2) By Lemma 2.3 there exists a normal cofinal filtration {Γi}i∈N
of Γ such that

d(Γi) ≤ [Γ : Γi]
1
2 for all i.

Given i ∈ N we write ni := [Γ : Γi]. We now denote by a1, . . . , ak
a complete set of representatives of π/Γ. Given any i ∈ N we
define

πi :=
k⋂
j=1

ajΓia
−1
j ⊂ Γi.

Note that {πi}i∈N is now a normal cofinal filtration of π. Given
i ∈ N we write si := [Γi : πi]. Note that ni · si = [Γ : Γi] · [Γi :
πi] ≤ nki . We thus see that si ≤ nk−1

i . Using this observation
we obtain that

d(πi) ≤ [Γi : πi] · d(Γi) = si · n
1
2
i

= s
2k−1
2k

i s
1
2k
i · n

1
2
i ≤ s

2k−1
2k

i · n
k−1
2k
i n

1
2
i

= s
2k−1
2k

i n
2k−1
2k

i = k−
2k−1
2k (sinik)

2k−1
2k

= k−
2k−1
2k · [π : πi]

2k−1
2k .

It follows that the sequence {πi}i∈N together with ε = 2k−1
2k

has
the desired properties.

�
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